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Abstract: Bound states in the continuum (BICs) have attracted much attention due to their infinite Q
factor. However, the realization of the analogue of electromagnetically induced transparency (EIT)
by near-field coupling with a dark BIC in metasurfaces remains challenging. Here, we propose and
numerically demonstrate the realization of a high-quality factor EIT by the coupling of a bright electric
dipole resonance and a dark toroidal dipole BIC in an all-dielectric double-layer metasurface. Thanks
to the designed unique one-dimensional (D)–two-dimensional (2D) combination of the double-layer
metasurface, the sensitivity of the EIT to the relative displacement between the two layer-structures
is greatly reduced. Moreover, several designs for widely tunable EIT are proposed and discussed.
We believe the proposed double-layer metasurface opens a new avenue for implementing BIC-based
EIT with potential applications in filtering, sensing and other photonic devices.

Keywords: electromagnetically induced transparency; bound states in the continuum; double-
layer metasurface

1. Introduction

The analogue of electromagnetically induced transparency (EIT) has attracted much
attention since it was realized in metamaterials (MMs) [1–3]. The key to realize EIT in MMs
is the optical near-field coupling between two resonance modes, which includes the follow-
ing two ways: bright–dark mode coupling [2–8] and bright–bright mode coupling [9–13],
where the bright mode or dark mode refers to whether a resonance can be directly excited
by the incident electromagnetic waves or not. In order to obtain a high-Q EIT, the two
resonances need to have a small detuning and large Q contrast [14]. In recent years, the
bound state in continuum (BIC) has proved to be an effective method for achieving a
high-Q resonance.

The bound state in the continuum lies inside the continuum and coexists with ex-
tended waves, but it remains perfectly confined without any radiation [15–19]. In fact,
due to the finite extent of structures, material absorption and other external disturbances,
ideal (or dark) BICs collapse to a Fano resonance with a finite Q factor, which is called
quasi-BIC [20]. At present, a large number of Fano resonances with high Q factors have
been obtained through quasi-BIC in the fields of photonic crystals [21–24], gratings [25,26],
waveguides [27] and MMs [28,29]. There are three main types of BIC in MMs: symmetri-
cally protected BICs (S-P BICs) [28–34], Friedrich–Wintgen BICs (F–W BICs) [35–39] and
topologically protected BICs (T-P BICs) [40]. The coupling coefficient could vanish due
to the symmetry reason when the spatial symmetry of the mode is incompatible with the
symmetry of the of outgoing radiating waves, such a kind of BIC is called S-P BIC [37]. If
two resonances pass each other as a function of a continuous parameter, then interference
causes an avoided crossing of the resonance positions and at one particular set of the
parameters, one resonance has an exactly vanishing width and, hence, becomes an F–W
BIC [35].
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Recently, a high-Q factor EIT was realized based on an S-P quasi-BIC in a dielectric
MM in the case of oblique incidence [41]; however, there are no reports on an ideal BIC-
based EIT. Because the commonly used S-P BIC is a longitudinal dipole BIC, for an ideal
S-P BIC, it cannot be coupled with a low-Q transverse dipole resonance in the case of
normal incidence [41]. On the contrary, the F–W BIC in MMs is usually a transverse dipole
BIC [36–38], which is easy to be coupled with a low-Q transverse dipole resonance, but
it is very sensitive to the structural parameters of MMs. Therefore, it is often difficult to
eliminate the detuning between the two coupled F–W BIC and low-Q resonance in single-
layer MMs. For double-layer MMs, not only can the two resonances be independently
designed, but the near-field coupling of them can also be effectively manipulated by
adjusting the relative displacement or distance of the two structures [42–45], which provides
the possibility for the realization of an ideal BIC-based EIT. However, there is no research
work reported on this issue yet.

In this paper, we realized and numerically studied an ideal toroidal dipole (TD) BIC-
based EIT in the near-infrared range (NIR) in an all-dielectric double-layer metasurface,
consisting of a one-dimensional (1D) silicon rod metasurface (RMS) and two-dimensional
disk metasurface (DMS). Thanks for the proposed unique 1D–2D double-layer metasurface,
a robust high-Q EIT is realized by near-field coupling of a bright electric dipole resonance
(ED) of the DMS and a dark TD-BIC of the RMS. The influences of the coupling distance
and relative displacement between the double-layer structures on the EIT performance are
analyzed. In addition, several methods for achieving a widely tunable EIT are discussed.

2. Silicon Rod Metasurface Supporting F–W BIC

We began our investigation from a typical 2D RMS supporting a high-Q TD reso-
nance [38,44,46], as shown in Figure 1a. The length, width and height of the rod are
represented by l1, w1 and h1, respectively. The periods of the unit cell in the x and y
directions are Px = Py = P = 900 nm. The permittivity of silicon was set to be 11.9 in
simulation. Numerical simulations were carried out by using a commercial finite element
frequency domain solver in COMSOL Multiphysics (COMSOL Inc., Stockholm, Sweden).
We calculated the transmission of the 2D RMS in the frequency range of 200–220 THz when
l1 = 800 nm, w1 = 335 nm and h1 = 200 nm, as shown in Figure 1b. It can be seen from the
figure that there was a sharp Fano resonance at 208.5 THz, and its Q value was 1.37 × 103

calculated by the Fano fitting formula [37]. In order to understand the micro properties of
this resonance, we used the multipole decomposition calculation in Cartesian coordinates
to obtain the contribution of the scattering power of the resonance (not shown in the
figure). At the resonance, the TD had the highest scattering power, which was seven times
larger than the second largest magnetic quadrupole. The electric and magnetic near-field
distributions at the resonance shown in Figure 1c,d also verified the TD resonance: the
displacement current shown in Figure 1c formed clockwise and counter clockwise circular
loops in the upper and lower parts of the rod, which produced a head-to-tail magnetic
moment in the y–z plane shown in Figure 1d, indicating that this was a transverse TD along
the x direction.

The influence of the length l1 on the TD resonance is shown in Figure 2a. When l1
increased from 860 nm to 900 nm, the TD resonance red-shifted and gradually narrowed
until it disappeared, i.e., the Q factor of the TD resonance shown in Figure 2b rose up
quickly and became infinite when l1 = Py, which is a typical feature of BIC [19]. Thus, we
calculated the dispersion curves of the first Brillouin zone in the ΓX and ΓX’ directions
when l1 = 900 nm. The calculated band structure of the lattice is shown in Figure 2c, where
we focused on the two TE bands (TE1 and TE2) above the light cone. The corresponding
magnetic field distributions (Hz) are shown in Figure 2d, and the eigenmode corresponding
to the TD resonance was TE1. Due to the strong coupling of the TE1 and TE2, the avoiding
crossover behavior occurred at the Γ point, resulting in the vanishing of TE1 with an infinite
Q factor. Therefore, the F–W BIC condition was satisfied, and the TD-BIC at 200 THz was
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achieved [35,38]. In fact, when l1 = Py, the 2D RMS became 1D BIC-RMS; when l1 < Py, the
TD-BIC collapsed into a high-Q Fano resonance, i.e., quasi-BIC.
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Figure 1. (a) A high-Q 2D RMS consisting of a silicon rod array surrounded by air. The length, width
and height of the rod are represented by l1, w1, and h1, and the periods of the unit cell in the x and y
directions are Px = Py = 900 nm. (b) Transmission of 2D RMS when l1 = 800 nm, w1 = 335 nm and
h1 = 200 nm. (c) Near-field electric field diagram and displacement current (arrow) distribution at the
resonance. (d) Near-field magnetic field diagram at the resonance.
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Figure 2. (a) Map of transmission spectra for 2D RMS by sweeping length l1 from 860 to 900 nm,
where width w1 (335 nm) and height h1 (200 nm) were kept constant. (b) Q factor with respect to
length l1. (c) Numerically simulated band structure. The bands under consideration were above the
light cone. The lower right inset shows the first Brillouin zone; the middle inset is an enlarged view
near the Γ point. (d) Magnetic field distribution of TE1 and TE2 at Γ point.

3. BIC-Based EIT in 1D–2D Double-Layer Metasurface
3.1. Structure Design

Since the TD-BIC cannot be directly excited by the normal incident wave in a single-
layer RMS, we proposed a double-layer metasurface shown in Figure 3a and demonstrated
the realization of EIT by coupling a bright ED mode to the dark TD-BIC. The 2D silicon
disk metasurface (DMS) and the 1D BIC-RMS were on the top and bottom of a dielectric
layer with thickness t, forming the double-layer metasurface R-DMS. The relative position
of the rod and disk in the unit cell is shown in Figure 3b. The disk had radius r2 = 328 nm
and height h2 = 200 nm; the middle dielectric layer had ε = 2.13.
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Figure 3. (a) Schematic diagram of a double-layer R-DMS. The 2D DMS and 1D RMS were on the top
and bottom of a dielectric layer with thickness t. (b) Top view of the unit cell. Geometric parameters
of the disk were r2 = 328 nm and h2 = 200 nm.

The calculated transmission of the individual DMS with a dielectric layer is shown in
a red dashed line in Figure 4a. There was a wideband ED resonance centered at 195 THz
with a Q factor of 23. The first row in Figure 4b displays the electric near-field distribution
and displacement current in the disk at the resonance, which shows an obvious ED in the
x-direction in the center of the disk. In addition, two circular displacement current loops
with opposite directions were formed in the upper and lower parts of the disk, which was
similar to that in the rod of RMS in Section 2, i.e., TD moment along the x-direction also
made a significant contribution to the resonance. The multipole decomposition result (not
shown here) shows that the scattering power of the ED at the resonance was the highest
and dominant, which was four times larger than that of the TD moment.
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Figure 4. (a) Transmission curves for individual 2D DMS (red dashed line), individual 1D RMS (black
dashed line), and double-layer R-DMS (blue solid line) when t = 600 nm. Dip1, Dip2 and Peak refer
to frequencies of the two dips and peak in the EIT transparency window, respectively. (b) The first
row displays the electric near-field distribution and displacement current at the resonance of 195 THz
for the individual DMS, the second row is the electric near-field distributions in the disk at Dip1,
Peak and Dip2 after being coupled.

When the 2D DMS and 1D RMS formed a double-layer R-DMS, we found that the
bright ED resonance of the DMS could be easily and strongly coupled to the dark TD-BIC
of the RMS, leading to an EIT transparency window at 194.9 THz with a bandwidth of
1.1 THz, as shown in a blue solid line in Figure 4a. The black dashed line in the figure
represents the transmission of the individual 1D RMS with the dielectric layer, the TD-BIC
red-shifted to 194.9THz compared to that of 200 THz in Figure 1 due to the influence of
the dielectric layer; thus, the detuning between the ED and TD-BIC was small. As a result,
the EIT transparency window had a good symmetry. The near-field coupling between the
two modes could also be verified from the electric near-field distributions in the disk at
Dip1, Peak and Dip2 shown in Figure 4b: the ED in the disk at Peak became very weak
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due to destructive interference, and it is much weaker than that at Dip1 and Dip2, while
the electric and magnetic near-field distributions in the rod (not shown in the Figure) were
quite similar to those in Figure 1 because of the excitation of the TD-BIC.

3.2. Structural Parameter Analysis

The near-field coupling of the two resonances would largely determine the EIT perfor-
mance, which could be manipulated by the coupling distance (thickness t) or the relative
position between the two structures. Figure 5 shows the EIT transmission spectra when
the coupling distance changed from 100 to 800 nm. When t was small (100–400 nm), the
near-field coupling of the ED and TD-BIC was very strong, resulting in a wideband trans-
parency window. Because the ED resonance had a certain degree of asymmetry, the EIT
transparency window was asymmetric as well. As t increased from 400 nm to 800 nm, the
near-field coupling between the two resonances became weaker and weaker. Therefore,
the EIT transparency window became narrower and more symmetrical; its Q value rapidly
increased from 20 to 816, and, meanwhile, the peak of the EIT maintained a large value
over 0.93.
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800 nm, when l1 = 900 nm, w1 = 335 nm.

We also investigated the dependence of the EIT performance on the relative displace-
ment between the RMS and DMS, as shown in Figure 6. The relative displacement between
the disks and rods in the x, y direction is represented by Sx, and Sy, respectively. When Sx
changed from 0 nm to the full range of 450 nm, a robust EIT was achieved due to a good
coupling ability between the ED and TD-BIC; the peak transmittance of the EIT only de-
creased from 0.96 to 0.91, and the Q factor increased from 180 to 241, as shown in Figure 6a.
Moreover, owing to the special 1D–2D combination of the double-layer R-DMS, Sy had no
impacts on the EIT as shown in Figure 6b. Considering the EIT conventionally realized by
the coupling of the two resonances in a 2D–2D double-layer metasurface (including 2D–2D
R-DMS here) [42,44], not only the length of the rod, but also the relative displacement Sy
would have a great influence on the EIT performance. The greatly reduced sensitivity of
the proposed TD-BIC-based EIT to the relative displacement would ease the fabrication of
the double-layer metasurface.
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3.3. Widely Tunable EIT Based on TD-BIC

The EIT working in a large frequency range is important for real applications. In
order to achieve a widely tunable TD-BIC-based EIT, it is necessary to change the size
of the rod so that the TD-BIC can be tuned in a wide frequency range; at the same time,
the frequency of the ED resonance needs to be adjusted to roughly match the TD-BIC as
well. We used the same eigenmode analysis as in Section 2 to study the dependence of
the TD-BIC on the rod’s geometric parameters. The results showed that for the fixed rod
length l1 = Py = 900 nm, when w1 varied in the range of 300–600 nm or h1 in the range
of 100–400 nm, the conditions of F–W BIC for the TD resonance were all satisfied; the
frequency of the TD-BIC with respect to w1 and h1 are displayed in Figure 7a. As w1
increased from 300 nm to 600 nm, the frequency of the TD-BIC decreased from 210.7 THz to
162.2 THz (from 204.4 THz to 159.5 THz when rod array with dielectric layer). Similarly, as
h1 increased from 100 nm to 400 nm, the TD-BIC resonance also showed a downward trend,
from 238.9 THz to 174.9 THz. Obviously, the TD-BIC was very sensitive to the rod’s width
and height. Meanwhile, the ED was very sensitive to the disk radius r2; when r2 increased
from 305 nm to 438 nm, the resonance frequency of the ED decreased from 205.7 THz to
162 THz. Therefore, a widely tunable EIT can be achieved via near-field coupling of the
two small, detuned resonances by changing the disk radius and rod width, as shown in
Figure 7b. Four EIT transparency windows were obtained at different rod widths of 600 nm,
500 nm, 400 nm and 300 nm; the corresponding disk radii were 438 nm, 415 nm, 366 nm
and 305 nm, respectively. The TD-BIC-based EIT tuned from 159.5 THz to 204.4 THz, with
a large peak value over 0.9 and a small variation bandwidth (1.17 ± 0.18 THz).

Another interesting way to achieve a widely tunable EIT is by changing the disk
radius r2 and lattice constant Py. Actually, for the 1D RMS, the variation of Py did not
change the RMS at all. However, it was meaningful for the tuning of the dark TD-BIC. In
this way, a widely tunable EIT was achieved as shown in Figure 7c. When Py increased
from 800 nm to 1400 nm, and the disk radius r2 varied from 315 nm to 385 nm to make the
detuning of the two resonances small, as a result, the EIT with high peak transmittance
tuned from 203.9 THz to 156.8 THz; nevertheless, the bandwidth of the EIT increased
largely from 0.47 THz to 8.46 THz. This was because as the radius of the disk increased, the
near-field coupling between the ED and TD-BIC became stronger and stronger, resulting in
a substantial increase in the bandwidth of the EIT.

Considering the fabrication of the device we designed, in the existing technology,
for the double-layer all-dielectric metasurface of the optical waveband, silicon can be
deposited by using plasma-enhanced chemical vapor deposition on both sides of the
substrate, and then the nano pattern can be manufactured by electron-beam lithography
and dry etching [47,48]. Due to the very thin dielectric layer of the structure, an additional
layer of substrate is required for a real device, which may have a certain impact on the
simulation results. When the proposed structure was extended to the terahertz band, the
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coupling distance could be larger than 500 µm [49], no additional substrate was needed
and the device could be easily fabricated by photolithography and deep etching [38].
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Figure 7. (a) Resonance frequencies of the TD-BIC with respect to rod width w1 when h1 = 200 nm
(blue), and with respect to height h1 when w1 = 335 nm (red). (b) EIT tuning characteristics obtained
by changing disk radius r2 and rod width w1. (c) EIT tuning characteristics obtained by changing
disk radius r2, lattice constant and let Px = Py for simplicity. The thickness t was fixed of 600 nm and
h1 = h2 = 200 nm.

4. Conclusions

In summary, we proposed and numerically demonstrated the realization of high-Q
an EIT in NIR by coupling the bright ED resonance to the dark TD-BIC in an all-dielectric
double-layer metasurface. Owing to the unique 1D–2D combination of the double-layer
metasurface, the sensitivity of the EIT to the relative displacement between the double-
layer structures was greatly reduced. When the relative displacement changed in its full
range, the peak value of the robust EIT remained above 0.90. As the coupling distance
increased, the Q factor of the EIT reached 816. Additionally, a much higher Q value of
the EIT could be expected by weakening the near-field coupling of the two resonances in
all-dielectric or plasmonic-dielectric hybrid double-layer metasurfaces. In addition, several
methods for widely tunable EIT were proposed and discussed, and the EIT with a tunable
range of ~45 THz and a small variation bandwidth (1.17 ± 0.18 THz) was demonstrated by
changing the disk radius and rod width. We believe the proposed double-layer metasurface
provides a new platform for implementing BIC-based EIT and can be extended to other
electromagnetic waves such as microwaves and the terahertz band.
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