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Accurate imputation of human leukocyte antigens
with CookHLA
Seungho Cook 1,2,11, Wanson Choi1,11, Hyunjoon Lim 3,11, Yang Luo 4,5,6,7, Kunhee Kim1,2, Xiaoming Jia8,

Soumya Raychaudhuri 4,5,6,7,9,10 & Buhm Han 1,2,3✉

The recent development of imputation methods enabled the prediction of human leukocyte

antigen (HLA) alleles from intergenic SNP data, allowing studies to fine-map HLA for immune

phenotypes. Here we report an accurate HLA imputation method, CookHLA, which has

superior imputation accuracy compared to previous methods. CookHLA differs from other

approaches in that it locally embeds prediction markers into highly polymorphic exons to

account for exonic variability, and in that it adaptively learns the genetic map within MHC

from the data to facilitate imputation. Our benchmarking with real datasets shows that our

method achieves high imputation accuracy in a wide range of scenarios, including situations

where the reference panel is small or ethnically unmatched.
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Human leukocyte antigen (HLA) genes in the major his-
tocompatibility complex (MHC) region influence many
immune-related disease phenotypes1. An essential step for

understanding how the MHC complex affects disease suscept-
ibilities is to fine-map the HLA alleles or amino acids that are
driving disease associations2. Fine-mapping analyses of HLA
often require thousands of individuals, because of the highly
polymorphic nature of HLA and long-range linkage dis-
equilibrium (LD) stretching across the MHC region. However,
acquiring HLA information of individuals can be challenging,
since neither the classical HLA typing nor next-generation
sequencing3 can easily scale-up to thousands of individuals
given a cost limit. A popular alternative approach is to impute
HLA from the SNP data of genome-wide association studies
(GWAS), utilizing recently developed computational techniques
specialized for HLA4–6. Because of their cost-effectiveness, these
imputation approaches were widely adapted in HLA studies of
many immune-mediated phenotypes, which led to the discovery
of important amino acid positions and classical alleles7–14.

Nevertheless, existing methods for HLA imputation still have
limitations in imputation accuracy. The average error rates of
previous methods range from 3 to 6% for predicting high-
resolution (four-digit) HLA alleles15. Imputation of rare alleles is
even more challenging because LD is weaker for rare alleles, the
reference panel may have only a few copies of each allele, and the
typed information can have ambiguity16. Another challenge is
that the imputation accuracy depends on the reference panel. It is
not always possible to have a large reference panel with a similar
ethnicity as the target sample. Existing methods perform poorly if
the reference panel is of low quality (different ethnicity) or low
quantity (small size). If we could maximize accuracy with the
same suboptimal reference panel, it may enhance HLA research
in diverse populations. Moreover, existing methods often have
feasibility problems. For example, the popular SNP2HLA
becomes slow for samples larger than a ten thousand5, and
HIBAG can take a month to train with a large custom reference6.

In this work, we present an accurate HLA imputation method
called CookHLA. CookHLA substantially improves imputation
accuracy over previous methods by implementing several chan-
ges. First, we employ the latest hidden Markov model17,18 as our
imputation engine. Second, we account for local variability in the
highly polymorphic exons of HLA genes. We repeat imputation
by embedding a marker set locally in each of the polymorphic
exons and use consensus posterior probabilities from the repeated
analyses. Third, we adaptively learn the genetic map of MHC
from the data, which allows us to account for the data-specific
and population-specific LD structure within MHC. We show that
in the benchmarking with real datasets, CookHLA outperforms
previous methods. For example, when we use the Type 1 Diabetes
Genetics Consortium (T1DGC)19 data as a reference panel and
the HapMap data20 as test data, our method reduces the impu-
tation error rate of the predecessor method5 by more than two-
fold from 6.6 to 2.4%. Our method is shown to be more accurate
in imputing rare alleles than other methods. Furthermore, our
method shows a robust performance even with ethnically
unmatched or small references, which suggests that our method
can be useful in studying underrepresented populations.

Results
Overview of the method. We developed an accurate HLA
imputation method, CookHLA. Similar to its predecessor,
SNP2HLA5, CookHLA translates the multiallelic HLA informa-
tion into a set of binary markers so that it can utilize an existing
imputation algorithm (Fig. 1a). CookHLA employs the state-of-
the-art imputation engine18 that is superior to the one employed

by SNP2HLA. In addition, CookHLA uses two strategies to
maximize imputation accuracy. As depicted in Fig. 1b, CookHLA
repeats imputation while locally embedding prediction markers in
each of the polymorphic exons and performs consensus calls.
This strategy enables the binary markers to capture the local
information contained in each exon more effectively compared to
the naïve strategy of SNP2HLA that puts markers only in the
center position of the gene. Next, CookHLA adaptively learns the
genetic map from the data (Fig. 1c). Many imputation models,
including the one we use, are based on the Li and Stephens
model21 that assumes each target individual as a mosaic of
reference samples. In this model, the genetic map is used to
determine how long a mosaic block stretches before switching to
another block. Since the MHC region is notorious for the com-
plex genetic structure that differs across populations22, we can
improve imputation by learning the population-specific and data-
specific genetic map from data instead of using the widely used
HapMap map obtained from averaging several populations20.

Imputation accuracy comparison. Using various datasets, we
benchmarked the prediction accuracies of differing methods. We
measured the accuracy as a proportion of correctly predicted
alleles at the P-group level (“Methods”). We compared our
method CookHLA to three other methods: SNP2HLA5, HIBAG-
prefit, and HIBAG-fit6. HIBAG-prefit refers to running HIBAG
with prefit parameters provided by the package by choosing an
appropriate population. HIBAG-fit refers to fitting new para-
meters using a custom reference panel and then running HIBAG
for prediction. For a fair comparison, we used the same reference
panel for all methods, with the exception of HIBAG-prefit for
which the parameters were already fit. Note that HIBAG-fit was
not included in comparisons if the fitting was not completed in
1 month of computation.

We masked the HLA information in the target sample and
imputed it to measure the accuracy. We first used the T1DGC
data19 (N= 5225) as the reference panel and the HapMap CEU
data20 (N= 88) as the target sample. The HapMap CEU data was
typed for six HLA genes (HLA-A, -B, -C, -DRB1, -DQA1, and
-DQB1), so we measured accuracy for these genes. When we ran
SNP2HLA, the overall accuracy was 93.4%. In contrast, CookHLA
achieved a much higher accuracy of 97.6% (Fig. 2a), reducing the
error rate by more than half (6.6% vs 2.4%) using the same
reference panel. We observed the largest accuracy gain in HLA-A.
At this gene, CookHLA achieved 98.9% accuracy whereas
SNP2HLA achieved 92.0%, thereby providing a sevenfold
reduction in error rate (8.0% vs 1.1%). A large gain was also
observed in HLA-DRB1, where CookHLA achieved 94.9% (error
rate 5.1%), whereas SNP2HLA achieved 90.3% (error rate 9.7%).
The improved imputation in HLA-DRB1 was encouraging because
HLA-DRB1 is typically the most difficult to correctly impute5,
despite its key role in many autoimmune phenotypes9,13,14. For
this benchmarking, we were not able to compare HIBAG-fit
because the fitting of the T1DGC data did not finish in one month
using 8 CPU cores (one core per each of eight genes in T1DGC).
HIBAG-prefit was excluded as well because the prefit model
included the HapMap CEU data in the reference panel6.

Next, we tried imputing the EUR population in the 1000
Genomes data23. Since we examined accuracy for the HapMap
CEU population in the previous analysis, we used the FIN, GBR,
IBS, and TSI populations (N= 404) excluding the CEU popula-
tion in this analysis. The 1000 Genomes database provides the
HLA information of five genes (HLA-A, -B, -C, -DRB1, and
-DQB1) inferred from the sequence data (see “Methods”). We
used the T1DGC data (N= 5225) as the reference and EUR data
as the target sample. The overall accuracy of SNP2HLA was
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96.1% (Fig. 2b). When we applied CookHLA, it achieved a higher
accuracy of 98.3%. We also applied HIBAG-prefit using the
European prefit parameters. The overall accuracy of HIBAG-
prefit was 96.9%. Thus, CookHLA reduced the error rate nearly
by half compared to HIBAG-prefit (3.1% vs 1.7%). However, this
comparison might not be fair because the reference panel we used
(T1DGC data) was different from the reference samples that
HIBAG-prefit used. Similar to the previous analysis, HIBAG-fit
was excluded due to the computational difficulty to fit the
T1DGC panel.

In the third benchmarking, we simulated a smaller reference
panel. To this end, we split the T1DGC data (N= 5225) into a
relatively small reference (N= 1000) and target samples (N=
4225) and measured accuracy in eight genes (HLA-A, -B, -C,
-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1). For this reference
size (N= 1000), HIBAG-fit finished the fitting of the model in
one month (27 days), which allowed us to compare all methods in
a controlled condition. In this benchmarking, the overall accuracy

of SNP2HLA was 95.7% (error rate 4.3%) (Fig. 2c). HIBAG-fit
showed an improved accuracy of 96.1% (error rate 3.9%). When
we applied CookHLA, we obtained a superior accuracy of 97.5%
(error rate 2.5%). CookHLA was the most accurate in all HLA
genes, except for HLA-DQA1 where it was very close to the top
method (99.4% compared to 99.6% in HIBAG-fit). In addition,
we also applied HIBAG-prefit. The overall accuracy of HIBAG-
prefit was lower than other methods (93.4%), mainly due to a low
accuracy in HLA-DPB1 (87.8%).

We also evaluated the accuracies of the methods in the Asian
population dataset. Using the Chinese panel (N= 9773 after QC)24

merged with the 1000 Genomes East Asian (EAS) population (N=
504)23 as our reference, we imputed HLA in the Korean panel
(N= 413)25. We used the Asian prefit model for HIBAG-prefit.
HIBAG-fit was not feasible because of the large panel size.
CookHLA achieved the best accuracy of 97.0%, while SNP2HLA
achieved 91.1% accuracy and HIBAG-prefit achieved 94.6%
accuracy (Supplementary Fig. 1).

Fig. 1 Overview of CookHLA. a In the reference panel, CookHLA encodes HLA alleles as binary markers. b CookHLA repeats imputation while embedding a
binary marker set into the middle position of each polymorphic exon. After the repeated imputations, CookHLA performs consensus calls by merging
posterior probabilities. c CookHLA adaptively learns the data-specific genetic map within the MHC from the data.

Fig. 2 Imputation accuracy comparison. Accuracies were measured based on the matches in the P-group level. a Prediction accuracy in imputing HLA of
the HapMap CEU (N= 88) using the Type 1 Diabetes Genetic Consortium (T1DGC) data (N= 5225) as a reference. b Prediction accuracy in imputing the
1000 Genomes European (EUR) populations (N= 404) using the T1DGC data (N= 5225) as a reference. c Prediction accuracy in cross-validation using
the split data from the T1DGC panel, where we used a subset as our target sample (N= 4225) and the rest as a reference (N= 1000). For HIBAG-prefit in
(b) and (c), we used the European prefit model. The error bars represent SD.
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Decomposition of accuracy gain. CookHLA differs from the
predecessor, SNP2HLA, in that it uses (1) an upgraded hidden
Markov model, (2) local embedding of markers on exons and
consensus calling, and (3) adaptive learning of genetic map. We
wanted to evaluate how much contribution each component
provided on the accuracy gain of our method. To this end, we
evaluated various versions of our method: (a) CookHLA with the
old hidden Markov model (Beagle v3)26, which is equivalent to
SNP2HLA, (b) CookHLA with the upgraded model (Beagle v4)17

but without a genetic map specified (when no map is specified,
Beagle v4 assumes a map proportional to the physical position),
which we call CookHLA-vanilla, (c) CookHLA with the upgraded
model, no map specified, and with the local embedding strategy,
which we call CookHLA-embed, (d) CookHLA with the upgraded
model with the genetic map provided by HapMap20 but without
local embedding, which we call CookHLA-HapMap, (e)
CookHLA with the upgraded model with the adaptive learning of
genetic map but without local embedding, which we call
CookHLA-adapt, and (f) the full CookHLA with the upgraded
model, adaptive genetic map, and local embedding strategy. The
full version is our method used for all previous analyses.

We used the T1DGC data19 as a reference and the HapMap
CEU data20 as target samples similar to Fig. 2a. Supplementary
Table 1 shows that all three components contributed to the final
accuracy, where the use of the upgraded model contributed the
most. Beginning from the bare version equivalent to SNP2HLA
(93.47% accuracy), applying the upgraded model (CookHLA-
vanilla) increased the accuracy to 97.00%. Then, applying
additional strategies gradually increased the accuracy. When we
applied the local embedding (CookHLA-embed), the accuracy
slightly increased to 97.16%. When we applied the adaptive map
(CookHLA-adapt), the accuracy also increased to 97.44%, which
was better than using the HapMap map (CookHLA-HapMap;
97.06%). When we applied both the local embedding and
adaptive map (full CookHLA), the accuracy was maximized as
97.63%. The combination of local embedding and adaptive map
helped much in HLA-DRB1, where the use of the upgraded model
only gave 93.18% accuracy and using all strategies gave 94.89%
accuracy. Note that our final version (full CookHLA) was the
most accurate in all genes.

This analysis showed that when we used a large reference panel
of the same ethnicity, the upgraded model contributed the most
and our two strategies contributed moderately. In the next
section, we show that in a more difficult situation where there is
no ethnically matched reference panel, our two strategies can help
increase accuracy more significantly.

Imputation using unmatched or small reference. Although a
large public reference panel is available for European19 and East
Asian24, there are many populations for which large HLA panels
have not been built. To study HLA in these populations using
imputation, a possible strategy is to build a reference panel of the
target population or to choose an existing reference panel that is
as close as possible in ethnicity. However, a self-built reference
panel will likely be small due to the cost limit, and an alternative
panel may still show the subtle difference in ethnicity. If an
imputation method can maximize accuracy on such a small or
unmatched panel, it can have broad applicability in HLA studies
of diverse populations.

In order to evaluate the performance of our method
in situations where there is no ethnically matched large panel,
we collected ten reference panels of different populations and
sizes. These included the T1DGC panel (European, N= 5225),
the 1958 Birth Cohort panel (European, N= 918), the Chinese
panel (East Asian, N= 9773), the Korean panel (East Asian,

N= 413), the Pan-Asian panel (East and South Asian, N= 530),
and the five populations of the 1000 Genomes data: AFR
(African, N= 661), AMR (admixed American, N= 347), EAS
(East Asian, N= 504), EUR (European, N= 503), and SAS
(South Asian, N= 489). Then we considered every possible pair
of these panels. For each possible pair, we evaluated the
imputation performance by assigning one panel as a reference
and another as a target. This comparison comprised a total of 90
test pairs (10 × 10= 100, excluding the 10 same-panel pairs). We
then excluded the pair of Pan-Asian and the 1000G EAS in both
directions due to their sample overlap, which led us to 88
test pairs.

Because this analysis required a lot of comparisons, running
SNP2HLA (Beagle v3) was overly slow. Therefore, we instead
made comparisons among CookHLA-vanilla, CookHLA-Hap-
Map, and the full CookHLA, as defined in the previous section.
CookHLA-vanilla can be considered as a direct update of
SNP2HLA by upgrading the imputation engine. CookHLA-
HapMap can be considered as a tuned version of CookHLA-
vanilla with the genetic map of the HapMap. The performance
gain of the full CookHLA versus CookHLA-vanilla can be seen as
the lower bound of the performance gain of CookHLA versus
SNP2HLA. The performance gain of the full CookHLA versus
CookHLA-HapMap can be seen as a pure contribution of our two
strategies: local exon embedding and adaptive map strategies. To
further increase efficiency, we used Beagle v5 for this analysis
instead of v4.

Table 1 shows the detailed results of the full CookHLA and
CookHLA-HapMap in all 88 pairs (see Supplementary Table 2 for
the results of CookHLA-vanilla). Figure 3 shows a scatter plot
comparing the full CookHLA and CookHLA-HapMap (see
Supplementary Fig. 2 for the scatter plots for CookHLA-vanilla).
The full CookHLA almost always increased the accuracy over
CookHLA-HapMap and CookHLA-vanilla, in 85 pairs out of 88.
Even in the three pairs, the full CookHLA was very close to
others.

Overall, the accuracy increase was observed in both ethnically
matched and unmatched pairs (Fig. 3). The 88 test pairs consisted
of 18 ethnically matched pairs (asterisks in Table 1) and 70
unmatched pairs. The average accuracies over the 18 matched
pairs were 92.0%, 88.8%, and 88.1% in the full CookHLA,
CookHLA-HapMap, and CookHLA-vanilla, respectively. Thus,
the full CookHLA reduced the error rate by one-third (from 11.9%
to 8.0%) compared to CookHLA-vanilla in the matched pairs. In
some matched pairs, the accuracy of CookHLA-vanilla and
CookHLA-HapMap were already high, for example when the
T1DGC panel was used. For these pairs, the accuracy gain of the
full CookHLA was relatively small. However, in other pairs with
smaller reference sizes, the accuracy gain of the full CookHLA
was more noticeable.

In the 70 ethnically unmatched pairs, the overall accuracies
were lower than in matched pairs, as expected, because the
ethnicities were different between reference and target. The
average accuracies were 75.2%, 69.1%, and 68.8% in the full
CookHLA, CookHLA-HapMap, and CookHLA-vanilla, respec-
tively. Thus, the full CookHLA increased accuracy by 6.4%
compared to CookHLA-vanilla. The largest accuracy increase was
observed in the pair of Korean (reference) and 58BC (target). For
this pair, the full CookHLA achieved 81.5% accuracy, whereas
CookHLA-HapMap only achieved 64.3% accuracy.

In this analysis, there were two datasets for which an ethnically
matched reference panel was not available: the 1000G AFR
(African) and AMR (admixed American). For AFR, the best
reference panel was the T1DGC (89.3% accuracy), and the second
best was AMR (85.9%). For AMR, the best reference was the
T1DGC (89.3%) and the second best was EUR (82.7%). Although
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the T1DGC consistently showed good performance for these
target populations, we note that our analysis might be biased
because as described in “Methods”, we confined the SNP set of
the 1000G data to the Immunochip SNPs used in T1DGC due to
computational efficiency.

Imputation of rare alleles. The IPD-IMGT/HLA database27

shows that thousands of alleles exist for a single HLA gene.
Naturally, many of the alleles are rare (≤1% population fre-
quency). Some specific rare alleles have clinical implications, such
as for disease susceptibility (HLA-DRB1*01:03 for Ulcerative
colitis: 0.6% frequency)7 or for adverse drug reaction (HLA-
B*15:02 for reaction to carbamazepine, 0.3% frequency)28. Some
known alleles are not strictly rare in our definition (>1%) but
have low frequencies close to 1%: HLA-C*12:02 for late-onset
psoriasis (1.1% frequency)29, HLA-DRB1*08:01 for primary
biliary cirrhosis (2.3% frequency)30, HLA-B*57:01 for reaction to
abacavir (1.7% frequency)31, and HLA-B*58:01 for reaction to
allopurinol (2.1% frequency; all frequencies of the alleles were
estimated from the T1DGC panel)32. Moreover, rare alleles can
be important for population genetic analyses22. Although we have
used the average accuracy to evaluate methods thus far, the
average accuracy tends to dominantly reflect the accuracy for
common alleles. Therefore, it is worthwhile to evaluate the
accuracy for rare alleles separately.

To this end, we measured the accuracy per each frequency bin.
For each HLA gene, we categorized alleles into seven allele
frequency bins: three rare allele bins (≤0.1%, 0.1~0.5%, 0.5~1%)
and four additional bins (1–5%, 5–10%, 10–20%, and ≥20%). For
each bin, we calculated the accuracies over the alleles in the bin
using competing methods. Here we defined accuracy as sensitivity
to correctly impute an allele given a true allele. We analyzed the
cross-validation experiment of the T1DGC panel (Fig. 2c), for
which all four methods were available.

Figure 4 shows that CookHLA is superior to other methods
in imputing rare alleles correctly. In the lowest frequency
bin (≤0.1%), every method had difficulties in imputingT
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Fig. 3 Pairwise comparison across ten different reference panels. We
collected ten reference panels of differing ethnicities and sizes. We then
tested every possible pair by assigning one panel as a reference and
another as a target, which comprised 88 tests after excluding overlapping
sample pairs. We compared the full version of CookHLA to CookHLA-
HapMap (upgraded engine, with HapMap genetic map). The dotted line
indicates where the two methods’ imputation accuracies are equal.
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alleles correctly, but CookHLA achieved the highest accuracy
(30.5%). The accuracy was nearly two times higher than the
second best method (HIBAG-prefit:15.9%, HIBAG-fit:14.0%,
SNP2HLA:3.2%). In the second lowest frequency bin
(0.1–0.5%), CookHLA was the most accurate (80.0% accuracy),
whereas the second best method’s accuracy was only 56.6%
(HIBAG-prefit:40.4%, HIBAG-fit:56.6%, SNP2HLA:50.4%). In
the third lowest frequency bin (0.5–1.0%), CookHLA was, again,
more accurate (92.3% accuracy) compared to other methods
(HIBAG-prefit:71.0%, HIBAG-fit:81.9%, SNP2HLA:83.6%). In
the bin of 1–5% frequency range, all methods showed ≥ 90%
accuracy. In this bin, CookHLA was still the most accurate
(95.6%), whereas the second best method’s accuracy was 93.6%
(HIBAG-fit). For higher frequency bins, the performances of the
methods became comparable. For example, in the bin of 5–10%,
CookHLA was the most accurate (98.8%), but the difference to
the second best method (HIBAG-fit, 98.0%) was small compared
to the difference observed in the lower frequency bins. The
detailed accuracy estimates are in Supplementary Data 1.

We then wanted to compare different versions of CookHLA, as
defined in the previous section. Supplementary Figure 3a shows
that CookHLA-vanilla and CookHLA-HapMap achieved similar
accuracy to the full CookHLA, except in (0.1–1.0%) bin HLA-
DRB1, showing that the increased accuracy in rare alleles was
mainly due to the imputation engine upgrade in this setting.
However, when we repeated the similar analysis assuming the
1000 Genomes EAS data as reference and the Korean data as a
target, the full CookHLA was much more accurate than
CookHLA-vanilla or CookHLA-HapMap in lower frequency bins
(Supplementary Fig. 3b). Thus, for the rare allele analysis, the
contributions of the components in CookHLA showed a similar
trend as were for the overall accuracy; for the situation where a
large ethnically matched reference panel was used, the upgraded
engine contributed the most, and for the situation where a small
panel was used, the exon embedding and adaptive map strategies
contributed significantly.

Since we defined accuracy as sensitivity, one possible concern
in this analysis can be whether our method is overly imputing
rare alleles. To examine this, in the cross-validation of T1DGC
panel, we measured a positive predicted value (PPV) for each
allele. Supplementary Fig. 4a shows that CookHLA has similar
PPV as other methods. Finally, we calculated the F1-score, which
is defined as the harmonic mean of sensitivity and PPV. When
averaged over the genes, CookHLA showed a superior F1-score
than other methods (Supplementary Fig. 4b). In the lowest
frequency bin (0.1–0.5%), CookHLA achieved the highest F1-
score (0.88) while the second best method HIBAG-fit achieved
0.78. In the second lowest frequency bin (0.5–1.0%), CookHLA

achieved the highest F1-score (0.89) while the second best
method SNP2HLA achieved 0.83. In the third lowest frequency
bin (1.0–5.0%), again, CookHLA achieved the highest F1-score
(0.96) while the second best method HIBAG-fit achieved 0.94.

Call rate and accuracy. So far we have measured the accuracy of
the methods assuming the best-guess imputed alleles. This cor-
responds to calling all alleles after imputation without considering
the uncertainty. Sometimes, one may want to drop uncertain
alleles and measure only the accuracy of the called alleles. Here,
we analyzed the relationship between accuracy and call rate in
different methods. We used the T1DGC-cross experiment in
Fig. 2c. HIBAG-fit and HIBAG-prefit provide a confidence score
for each genotype (pair of alleles). In contrast, CookHLA provides
a consensus posterior probability for each allele. We defined
CookHLA’s confidence score for a genotype as the posterior
probability of the allele for a homozygous call and the sum of the
posterior probabilities of the two alleles for a heterozygous call.
SNP2HLA does not explicitly provide a confidence score, but
the posterior probability of each allele can be extracted from the
output. Thus, we can build a similar score to CookHLA. Because
the definitions of the scores were different among methods,
we varied the score threshold for each method separately to
measure accuracy versus call rate. Supplementary Fig. 5 shows
that, as expected, the accuracy increased when the call rate was
reduced in all methods. Decreasing the call rate did not change
the relative performance of the methods; CookHLA was superior
to other methods regardless of the call rate.

HLA fine-mapping for three autoimmune diseases in WTCCC
data. We performed an example study of HLA fine-mapping
using the data of the Wellcome Trust Case Control Consortium
(WTCCC)33. HLA associations are common in autoimmune
diseases. Therefore, among seven diseases of the original study33,
we used the three autoimmune diseases: rheumatoid arthritis
(RA), T1D, and Crohn’s disease (CD). We used the patients of
diseases (RA, N= 1860; T1D, N= 1963; CD, N= 1748) along
with 2938 controls. All samples were genotyped with the Affy-
metrix 500 K array chip. We imputed HLA of the samples using
CookHLA and SNP2HLA with the T1DGC panel. We also used
HIBAG-prefit using the European prefit model. We then exam-
ined the most significantly associated marker for each disease.

For RA, all three imputation methods gave an equivalent
conclusion that the amino acid position 11 of HLA-DRβ1 was the
most significantly associated with the disease (Fig. 5). The SNP at
the second nucleotide of the codon for this amino acid, which
codes for Val11 or Leu11, gave the most significant p-value

Fig. 4 Imputation accuracy in each allele frequency bin. We used cross-validation by splitting the T1DGC panel into reference (N= 1000) and the target
sample (N= 4225). For HIBAG-prefit, we used the European prefit model. The accuracy refers to sensitivity to correctly impute an allele given a specific
allele.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21541-5

6 NATURE COMMUNICATIONS |         (2021) 12:1264 | https://doi.org/10.1038/s41467-021-21541-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(CookHLA result: OR= 2.87 (2.62–3.14), P < 10−116). This result
was consistent with a large study that analyzed 19,992 samples,
which found that the same SNP was the most significant (OR=
3.7, P < 10−526)9.

For T1D, CookHLA and SNP2HLA found the amino acid
position 57 of HLA-DQβ1 to be the most significant (Fig. 5). The
presence of alanine at this position conferred risk (CookHLA
result: OR= 4.95 (4.48–5.47), P < 10−215). This association is
historically known34 and was recently confirmed by a large study
of 18,832 samples (OR= 5.17, P < 1 × 10−1089)8. HIBAG gave a
slightly different result that the amino acid position 71 of HLA-
DRβ1 was the top signal, where the presence of lysine conferred
risk (OR= 4.23 (3.82–4.68), P < 10−170). This association was
also reported by the same study8 as one of the primary signals
(OR= 4.70, P < 1 × 10−935).

For CD, CookHLA and SNP2HLA gave the result that HLA-
DRB1*01:03 was the most significantly associated with the
disease (CookHLA result: OR= 2.75 (2.10–3.59), P < 10−12)
(Fig. 5). This allele is historically known for its association with
CD35. This finding was also consistent with a large study of
54,674 samples, which found this allele to be the most
significantly associated with CD (OR= 2.51, P < 10−61)7. In the
CookHLA imputation, this allele showed a case allele frequency of
4.12% and control allele frequency of 1.55% (OR= 2.75), of
which the effect size was consistent with this large study7 that
reported 2.35% case frequency and 1.06% control frequency
(OR= 2.51). However, HIBAG did not find this association
(Fig. 5). It turned out that HIBAG imputed HLA-DRB1*01:03 for
no samples (frequency 0% in N= 8509).

Overall, in this example fine-mapping analysis for three
diseases, SNP2HLA and CookHLA gave similar fine-mapping
results, while HIBAG often gave different results. For T1D,
HIBAG found that the amino acid position 71 of HLA-DRβ1
(P < 10−170) was much more significant than the historically
known amino acid position 57 of HLA-DRβ1 (P < 10−129). For
CD, HIBAG imputed DRB1*01:03 for no samples. We con-
jectured a possibility that this difference came from the different
reference panels used. The reference panel used for HIBAG-prefit
model was smaller (N= 2668) than the T1DGC panel (N=
5225), which might have caused the missing of HLA-DRB1*01:03
in the panel. However, when we examined the allele frequency

reported in the HIBAG study (Supplementary Table S5 of Zheng
et al.6), HLA-DRB1*01:03 existed in the reference panel with a
similar frequency (0.73% frequency) to the T1DGC panel (0.65%
frequency). Another possibility is the methodological difference.
Because the imputation models differ, the results can differ even
using the same reference panel. To test this hypothesis, we should
fit HIBAG using the T1DGC panel. However, it was not possible
because the fitting did not finish in 1 month with eight CPU
cores. All association results of the WTCCC data are in
Supplementary Data 2.

Computation time. We measured the computation time of the
methods. We used a computer server with Intel Xeon 2.1Ghz
CPU. We utilized 8 Gb memory per CPU core. Thus, when we
used nine cores, we utilized 72 Gb memory. Note that memory
size is not related to HIBAG’s efficiency, since HIBAG consumes
little memory in both fitting and running. We measured the time
to impute the EUR data (N= 503) using the T1DGC panel (N=
5225) (Task 1) as well as the time to impute the Korean data (n=
413) using the Chinese panel (N= 9773) (Task 2).

Supplementary Table 3 shows the results. SNP2HLA ran fast
for Task 1, taking 2.0 h. However, for Task 2 where the reference
panel was roughly doubled, it became much slower and took
33.2 h. SNP2HLA cannot take advantage of multiple CPUs.
CookHLA with Beagle 4 was slower than SNP2HLA for Task 1
(19.4 h) and faster than SNP2HLA for Task 2 (29.1 h). Since
CookHLA performs ensemble learning from nine runs, it can be
easily parallelized with multiple CPUs. With nine CPUs,
CookHLA became much faster, taking 2.6 h for Task 1 and
4.5 h for Task 2. CookHLA with Beagle 5 was even faster. With a
single CPU, it took 1.4 h for both Task 1 and 2, and with nine
CPUs, it only took about 10 min for both tasks. Note that for
CookHLA, an additional time of about 0.5 h was required for
preparing an adaptive genetic map. HIBAG-prefit was fast, taking
34 min for Task 1 and 11 min for Task 2. Since HIBAG-prefit
performs a separate imputation for each of the seven genes, it can
be parallelized. With seven CPUs, it took less than 10 min for
both tasks. Note that if one wants to use a custom reference panel,
HIBAG requires a separate fitting step, which can take a long
time. Fitting a subset of the T1DGC panel (N= 1000) took
27 days using eight CPUs (one CPU per gene). Fitting the whole

Fig. 5 Association analysis of the WTCCC data. We used different imputation methods to impute HLA of the WTCCC data and performed HLA fine-
mapping analysis for three autoimmune diseases. RA rheumatoid arthritis, T1D Type 1 diabetes, CD Crohn’s disease.
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T1DGC panel did not finish in 1 month. Even when we assigned
8 cores per gene (64 cores), the fitting did not finish in two weeks.

Discussion
We have developed an accurate HLA imputation method,
CookHLA. We evaluated the relative performance of our
approach compared to competing methods using a number of
real-data-based analyses. Our method performed well when the
reference panel was small or ethnically unmatched and was
accurate in imputing rare alleles. Our method was computa-
tionally feasible in all tested conditions. Incorporating a large
custom reference panel is straightforward and efficient in our
method.

Our method can have utilities in many different situations. In
the situation where a large ethnically matched reference panel is
available, existing methods are already accurate. However,
CookHLA can increase the accuracy even further. For example, in
the T1DGC-cross experiment (Fig. 2c), SNP2HLA and HIBAG-fit
were accurate (95.7% and 96.1%, respectively), but our method
increased the accuracy even further to 97.5%. Although the
absolute increase was small, the relative reduction of error rate
was not negligible (42% and 36% reduction of error rate com-
pared to the two methods). In view of the fact that traditional
typing methods often have ambiguities and errors, the accuracy of
97.5% in the resolution of the P-group can be considered very
high and even approaching the clinical level. In another situation
where there is no ethnically matched large panel, our method can
be even more useful. We have shown that our method can extract
most of the information from the panel even if the panel is
ethnically unmatched or small.

In HLA, many rare alleles are known for their critical roles for
traits7,28–32. Thus, an accurate imputation of rare alleles can have
implications in both academic researches and clinical applica-
tions. To date, many studies compared accuracies of the methods
in terms of the overall average, which may not reflect the accuracy
for rare alleles specifically5,6,15. When we narrowed the scope to a
low-frequency range, the performances of the methods appeared
to differ greatly (Fig. 4). Typically, rare alleles are more difficult to
study than common alleles due to their rareness and low statis-
tical power36. Ultimately, however, studies on rare alleles will be
an essential step in the personal care of people with rare alleles.
We expect that our method will be a useful tool for future studies
of rare HLA alleles.

In our benchmarking, we compared our method to SNP2HLA
and HIBAG. There was another HLA imputation method called
HLA*IMP:024,37. HLA*IMP:02 uses a haplotype graph model
that considers HLA types and SNPs as edges, and the relationship
between HLA types and SNPs as paths. We were unable to
compare to this method because the software became proprietary
and not available for public use. A previous study15 reported that
HLA*IMP:02 using an internal reference panel was slightly less
accurate than SNP2HLA using the T1DGC panel.

HIBAG6 is different from SNP2HLA5 or CookHLA in that it
has a separate model fitting step. We found that the model fitting
step can take a long time for fitting a large reference panel.
However, the imputation time after fitting was fast. Since HIBAG
comes with prefit models for several populations, HIBAG can be
a good choice if one wants to obtain a reasonable accuracy in a
short computation time. However, if one wants to maximize the
accuracy or wants to use a custom reference panel, our method
can be the method of choice.

Since CookHLA uses phased reference data, the phasing quality
in the reference data can be an important factor in accuracy.
Many of the existing reference panels available for CookHLA are
not trio data, and therefore there may be phasing errors. As for

the imputation accuracy of the individual alleles, we observed that
the potential phasing errors are not much problematic, because
our accuracy tests were all based on reference panels with
imperfect phasing. However, if we perform haplotype analysis,
the phasing errors may affect the results more severely. In the
future, it would be ideal to build population-specific reference
panels by minimizing phasing errors with trio or family data.

Our method introduced two strategies to improve imputation,
namely local embedding and adaptive genetic map. When we
compared the contributions of the two strategies, we found that
the contribution of the adaptive genetic map was greater (Sup-
plementary Table 1). One reason for this might be because for
many datasets we used, only exon 2 and 3 for class I and exon 2
for class II were typed. Thus, the alleles had ambiguity. Since the
class II genes were typed based on a single exon, it is not sur-
prising that local embedding did not much help. Since NGS-
based typing is becoming prevalent, we expect that in the future,
reference datasets with six-digit allele information will be avail-
able. Then, we will be able to evaluate the actual gain of local
embedding using these datasets.

Recently, there were great improvements in computational
algorithms to infer HLA from next-generation sequencing
data3,38–40. These methods turned out to be highly accurate when
the sequencing depth was sufficient41. In fact, some reference
panels we used in our analyses were generated using the HLA
information derived from the sequencing data42. These advances
in technology indicate that SNP-based imputation algorithms will
become obsolete if the cost of next-generation sequencing is
reduced to the cost of microarray technology in the future.
However, currently, large-scale studies commonly use GWAS
chips due to their low cost, as in the UK biobank study43.
Therefore, there is an ongoing and essential need to predict HLA
alleles as accurately as possible based on the SNP data. We expect
our method to help researchers decipher the role of HLA using
extensive genome data.

Methods
CookHLA
Imputation based on binary markers. CookHLA was built upon the binary marker
framework that SNP2HLA utilized5. In the context of SNP imputation, there have
been active developments of imputation models26,44,45. In order to utilize these
models in HLA imputation, SNP2HLA coded the presence and absence of each
allele as a binary marker (Fig. 1a). Suppose that an HLA gene has K different alleles,
a1; a2; ¼ ; aK . We can define K binary markers, b1; b2; ¼ ; bK , each corresponding
to each allele. Given N diploid individuals (2N chromosomes), the element of bi at
jth chromosome is

bi;j ¼
1 if ai is present at jth chromosome

0 if ai is absent at jth chromosome

�
ð1Þ

Given the reference samples with both HLA and intergenic SNP information,
we generate these binary markers and combine them with the intergenic SNP data
to build a reference panel. Then, suppose that we are given target samples to
impute HLA, for which only intergenic SNP data are available. We can perform
imputation using the reference panel to fill in the missing values at the binary
markers, which allows us to predict the HLA alleles of the target samples. Note that
since a recent imputation framework supports modeling of multialleles18, an
alternative approach would have been directly modeling alleles instead of using
binary markers. In the current study, this alternative option was not explored.

Upgraded imputation model. To impute the binary markers, CookHLA employed
a state-of-the-art imputation model (Beagle v4 and v5) that can deal with millions
of samples17,18. Previously, SNP2HLA employed an old model (Beagle v3)26. While
the old model is based on the variable-length hidden Markov model based on
haplotype graphs, our model is based on the standard hidden Markov model that
can incorporate the genetic distance as input. In particular, our model improved
both efficiency and accuracy by including only the common markers between
target samples and reference samples in the model and using interpolation for the
rest of the markers17, and by using a parsimonious state space that is a fraction of
the size of the state space of the full model18. We found that Beagle v4 and Beagle
v5 gave almost identical results in our application. In this study, we used Beagle v4
for most of the analyses, unless otherwise stated.
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These new Beagle models had functionality that can incorporate multiple alleles
at a locus. However, they were implemented to only accept A, T, C, and G or
compositions of these letters as alleles, and thus were not directly applicable to
HLA nomenclature. Therefore, we chose to use the existing scheme that defines
one binary marker per each HLA allele.

Similar to SNP2HLA, CookHLA uses phased reference data and unphased SNP
input data. When unphased data is provided as input on the new Beagle models,
the data is first phased internally and then imputed. Although the internal
procedure has changed, its use from the user’s point of view is the same as with
SNP2HLA. CookHLA uses the same phased reference data format as SNP2HLA.
Thus, any reference panel built for SNP2HLA can be used for CookHLA. In
addition, if anyone wants to build a new reference panel for CookHLA, the
MakeReference module of SNP2HLA can be used.

Local embedding of prediction markers into polymorphic exons. CookHLA
differs from SNP2HLA5 in strategies using the binary prediction markers. In
SNP2HLA, after one generates a new set of binary markers corresponding to alleles
for an HLA gene (e.g., HLA-B), one places the marker set in the center position of
the gene (e.g., chr6: 31,431,577(hg19) for HLA-B). This strategy, however, is not
necessarily optimal. There exist multiple exons in HLA genes that are highly
polymorphic and whose sequences can determine most of the alleles, such as the
exons 2, 3, and 4 in the Class I and exons 2 and 3 in the Class II genes27. Because
LD decays with distance, placing the prediction markers near the highly variable
regions can help with imputation. However, it is unclear which exon to put the
marker set in; whichever exon we choose, other exons will be overlooked. To
address this challenge, we have developed a strategy that repeats imputation
multiple times while embedding each marker set locally in the middle position of
each polymorphic exon (Fig. 1b). Specifically, CookHLA repeats imputation for
exon 2, 3, and 4 in Class I and exon 2 and 3 in Class II with an embedded marker
set. To make final consensus calls over multiple imputation results, we combine the
posterior probabilities of the binary markers as follows.

Let a1; a2; ¼ ; aK be K alleles at a locus. Let L be the set of exons that we target. We
use L ¼ f2; 3; 4g for the Class I genes and f2; 3g for the Class II genes. Let

bðlÞ1 ; bðlÞ2 ¼ ; bðlÞK be the binary markers that were embedded in the exon l. After

imputation, we obtain the imputed markers
c
bðlÞ1 ;

c
bðlÞ2 ; ¼ ;

c
bðlÞK , which indicate the

posterior probabilities of “presence” of the K alleles. Since we repeat imputation jLj
times, we want to combine these values to make a consensus call. Let j0 and j00 be the
two chromosomes of a diploid individual. The imputation model (Beagle v4 or v5)17,18

gives phased output, so one possible way would be to calculate the average posterior

probability per chromosome, such that h jð Þ ¼ argmaxk2f1;¼ ;Kg
1
jLj

P
l2L
c
bðlÞk;j

� �
.

Then, the predicted genotype would become (ahðj0 Þ, ahðj00 Þ). However, this approach will
be vulnerable to phasing errors between exons. Therefore, instead, we chose to calculate
the average posterior probabilities for both chromosomes together:

p kð Þ ¼ 1
2

X
j2fj0 ;j00g

1
jLj

X
l2L

c
bðlÞk;j

 !
ð2Þ

We find k1, the allele with the largest p kð Þ, and k2, the allele with the second
largest p kð Þ. Then, we decide the unordered genotype of j0; j00ð Þ as

Genotype j0; j00ð Þ ¼
ak1 ; ak1

� �
if p k1ð Þ≥ 2pðk2Þ

ak1 ; ak2

� �
if p k1ð Þ< 2p k2ð Þ:

8><>: ð3Þ

Our approach can be thought of as an ensemble approach46 in the sense that we
combine results from multiple runs targeting each exon. In addition, we found that
it helps to expand the ensemble structure to account for multiple model
parameters. We run imputation with differing parameters for sliding window in the
hidden Markov model (overlap parameter (number of markers) 2 {3000, 4000,
5000} in Beagle v417, or overlap parameter (cM) 2 {0.5, 1, 1.5} along with window
parameter = 5 cM in Beagle v518). As a result, we run 3 ´ 3 ¼ 9 imputations for the
Class I and 2 ´ 3 ¼ 6 imputations for the Class II genes and use the averaged
posterior probabilities. Similarly, when we run CookHLA using more than one
reference panels, we can merge the results by averaging the posterior probabilities.

Adaptive learning of data-specific genetic map. Another difference of
CookHLA from previous methods is that it adaptively learns the genetic map of
MHC from data (Fig. 1c). Using an appropriate genetic map can be important for
accurate imputation. One possible approach is to use the publicly available MHC
genetic map offered by HapMap20. However, the HapMap estimates of genetic
distances represent averages from multiple populations. Therefore, no population-
specific or data-specific LD structure of MHC is considered using the HapMap
estimates.

We estimate the genetic map from the data as follows. The hidden Markov
model for imputation considers each sample as a mosaic of the reference
individuals44. In this model, the application of the Baum–Welch algorithm47 can
approximate the transition probability between markers, the probability that the
reference individual in the mosaic changes to another. In the standard model for

imputation44, the transition probability is defined

τm ¼ 1� e�4Nerm=jHj ð4Þ

where Ne is the effective population size and rm is the genetic distance between
markers. Thus, we can calculate the genetic map (rm) given the transition
probabilities (τm). In our application, we assumed an effective population size of
Ne ¼ 104, which does not affect the results because it cancels out when we feed the
genetic map to the imputation framework. Given the reference panel and the target
samples to impute, we randomly select Q individuals from the reference and Q
individuals from the target sample (Fig. 1c). Using these 2×Q individuals, we use
the Baum–Welch algorithm implemented in MACH v1.045 to obtain the transition
probabilities. MACH tutorial (http://csg.sph.umich.edu/abecasis/MACH/tour/
imputation.html) recommends using 200~500 subsamples, so we chose Q= 100
(2 ×Q= 200). We found that increasing this number had little effect on the
performance of CookHLA (Supplementary Data 3). We convert the transition
probabilities to the genetic map using Eq. (4), which is used as input information to
CookHLA.

We note that adaptive learning builds the genetic map of intergenic SNPs and
not that of the binary markers, since the binary markers are missing in the target
samples. When we embed the binary markers in the exon, we augment the map by
defining the binary markers’ genetic map. We first calculate the center position of
the exon in terms of the genetic distance and place the markers at that position
while specifying a very small genetic distance (10−12 cM) between the binary
markers. This serves to suppress an undesired transition between the binary
markers in the hidden Markov model since binary markers are by definition
exclusive (a chromosome cannot have two alleles).

Existing HLA imputation approaches
SNP2HLA. SNP2HLA is the predecessor approach of CookHLA and is widely used
for HLA imputation5. Given the binary markers defined in Eq. (1), SNP2HLA
places only one marker set in the center position of an HLA gene. Let bg1; bg2; ¼ ; bgK
be the best-guess imputed binary markers for K alleles. We let

h jð Þ ¼ k 2 1; ¼ ;Kf g such that cgk;j ¼ 1 ð5Þ
Then, given two chromosomes j0 and j00 of a diploid individual, the predicted

genotype of SNP2HLA becomes {ahðj0 Þ, ahðj00 Þ}. If there are imputation errors, it is
possible that h jð Þ has multiple values (collision error) or no value (no call error) for
a chromosome. The imputation model in SNP2HLA (Beagle v3)26 uses a variable-
length hidden Markov model that does not require genetic map information
as input.

HIBAG. HIBAG is another imputation method that uses attribute bagging6, a
technique that uses an ensemble classifier46 from random subsets of features.
HIBAG randomly selects individuals and intergenic SNPs from a training dataset
to find the most accurate ensemble classifier for predicting HLA alleles. HIBAG
provides prefit built-in classifier models of seven genes (HLA-A, -B, -C, -DRB1,
-DQA1, -DQB1, and -DPB1) for European, Asian, Hispanic, and African ancestries,
of which only the models but not the genotype data are available to the public. For
the European prefit model, they used 2668 individuals including the HapMap CEU
individuals20.

HIBAG also allows users to fit a new model using custom reference data, which
should be done per each gene. We found that this fitting can take a long time. We
tried to fit eight classical genes in T1DGC data using eight computer CPU cores
(number of classifiers= 100), but the fitting did not finish in 1 month (8 CPU
months). We then confined SNPs to flanking regions (500 kb on each side of a
gene) and tried 64 CPU cores (8 cores per gene), but the fitting did not finish in
2 weeks (32 CPU months). We used Intel Xeon 2.1Ghz CPU for this benchmark.

Datasets
HapMap CEU panel. HapMap CEU panel48 includes 4638 SNPs within the MHC
region (chr6:26-34 Mb) genotyped using the Illumina GoldenGate platform and 4-
digit classical HLA types for HLA-A, -B, -C, -DQA1, -DQB1, and -DRB1 from
European individuals. HLA typing was carried out using PCR-SSOP-based pro-
tocols. For typing of class I, exon 2, intron 2, and exon 3 were examined. For typing
of class II, exon 2 was examined. Genotype ambiguities were then resolved by
direct sequencing of the whole PCR fragment. We downloaded the SNP2HLA-
formatted data for 124 individuals from the SNP2HLA website5, which included 88
unrelated individuals.

Type 1 Diabetes Genetics Consortium panel. The Type 1 Diabetes Genetics Con-
sortium (T1DGC) panel19 is the largest-to-date European reference panel for
SNP2HLA. This dataset includes 5868 SNPs within the MHC region (chr6:29-34
Mb) genotyped using the Illumina Immunochip platform and 4-digit classical HLA
types for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and -DRB1. HLA was
typed using the SSOP technology by performing PCR amplification of exon 2 and 3
in Class I and exon 2 in Class II49. We downloaded the SNP2HLA-formatted data
for 5225 individuals from the SNP2HLA website5. This panel is available for
research purposes per request.
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1000 Genomes panel. The 1000 Genomes project23 provides data for five super
populations: African (AFR; N= 661), admixed American (AMR; N= 347), East
Asian (EAS; N= 504), European (EUR; N= 503), and South Asian (SAS; N= 489).
EUR includes five sub-populations: CEU, FIN, GBR, IBS, and TSI. In the analysis in
which the HapMap CEU was used as a reference in HIBAG-prefit, we used the EUR
data without CEU population (N= 404). The 1000 Genomes dataset includes 225,194
SNPs within the MHC region (chr6:28–35Mb) obtained from sequencing and four-
digit classical HLA types for HLA-A, -B, -C, -DQB1, and -DRB1. HLA genotypes were
inferred from the NGS data using an in-silico typing software called PolyPheMe42. We
downloaded the data from the 1000 Genomes project website23. For computational
efficiency, we used 5539 SNPs that overlapped with the Immunochip.

Korean panel. The Korean panel25 includes 5858 SNPs within the MHC region
(chr6:25–35Mb) genotyped using the Illumina’s HumanOmniExpress platform
and 4-digit classical HLA types for HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1.
HLA genes were genotyped using Roche’s GS 454 sequencing at the Institute for
Immunology and Infectious Diseases (Murdoch WA, Australia), followed by
calling algorithms for HLA alleles that were accredited by the American Society for
Histocompatibility and Immunogenetics25. We downloaded the SNP2HLA-
formatted data for 413 individuals from the website described in Kim et al.25.

Chinese panel. The Chinese panel24 is the largest-to-date Asian reference panel for
SNP2HLA. This dataset includes 29,948 SNPs within the MHC region (chr6:28–35
Mb) obtained from sequencing and four-digit classical HLA types for HLA-A, -B,
-C, -DPA1, -DPB1, -DQA1, -DQB1, and -DRB1. This data also includes HLA-DRB3,
-DRB4, and -DRB5, which were not used in our study. HLA genes were typed by
the targeted NGS sequencing followed by in-silico typing software50. We obtained
the SNP2HLA-formatted data for 10,689 individuals from the website described in
Zhou et al.24 We applied a quality control (QC) procedure to remove any indi-
viduals who did not have exactly two appearances of the “presence” in the binary
markers at any gene, which left 9773 individuals.

Pan-Asian panel. Pan-Asian panel51,52 includes 6173 SNPs within the MHC region
(chr6:25–35Mb) genotyped using the Illumina HumanHap1M and Affymetrix
SNP 6.0 microarrays. The dataset includes four-digit classical HLA types for HLA-
A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and -DRB1. HLA genes were typed using
a sequence-based typing (SBT) method with taxonomy-based sequence analysis.
The individuals consisted of the Singapore Chinese population (N= 91); pan-
Asian datasets including 111 Chinese, 119 Indian, and 120 Malaysian subjects
(N= 350) and the HapMap Phase II Japanese and Han Chinese (JPT+ CHB)
populations (N= 89). We downloaded the SNP2HLA-formatted data for 530
individuals from the SNP2HLA website5. The details of this dataset are described in
Okada et al.51 and Pillai et al.52.

1958 Birth Cohort panel. The 1958 Birth Cohort (58BC) panel includes 6719 SNPs
within the MHC region (chr6:29–35Mb) genotyped using the Illumina Immu-
nochip platform. This dataset includes four-digit classical HLA types for HLA-A,
-B, -C, -DRB1, and -DQB1. We used the SNP2HLA-formatted data for 918 indi-
viduals that have been used in our previous study5.

Measuring imputation accuracy. We measured the imputation accuracy as follows.
In the test dataset, let (A1;A2) be the true alleles obtained by HLA typing and let
(B1;B2) be the predicted alleles at an HLA gene of an individual. We calculated the
matching score

max I A1 ¼ B1ð Þ þ I A2 ¼ B2ð Þ; I A1 ¼ B2ð Þ þ I A2 ¼ B1ð Þð Þ
2

ð6Þ

for each individual, where I is an indicator function that is 1 if the alleles match and
0 otherwise. We averaged the scores over individuals to get the accuracy at an HLA
gene. To get an overall accuracy, we averaged the accuracies over the genes.

This matching score can be interpreted as, given the two true alleles of an
individual, how many of them were correctly predicted. At the same time, we can
also interpret it as, given the two predicted alleles, how many were true alleles.
Thus, this measure is symmetric and is related to both sensitivity and positive
predictive value (PPV). However, when we measure the accuracy of a specific allele,
sensitivity and PPV may differ. In this study, when we note the imputation
accuracy of a specific allele, we used sensitivity: how many of the true alleles were
predicted correctly.

There were special considerations in determining the allele matches. First, as
described in the “Datasets” section above, HLA typing technologies used for various
datasets were heterogeneous. In some datasets, typing was based on the sequence
information in exon 2 and 3 for Class I and exon 2 for the Class II genes. Therefore,
in our study, we decided to count a pair of alleles as a match if they were identical in
amino acids at these exons. That is, we used the P-group designation for allele
matching. Second, if the typed allele name has been deprecated in the recent version
of IPD-IMGT/HLA database27, for example, HLA-A*24:01, we excluded it from the
calculation. Third, because distinguishing between HLA-DRB1*14:01 from HLA-
DRB1*14:54 is a well-known conundrum53, we counted them as a match. These rules
were consistently applied to all methods for a fair comparison.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this paper are public and published in other papers. The
HapMap CEU and Pan-Asian panels are available at the SNP2HLA website, http://
software.broadinstitute.org/mpg/snp2hla. The Korean panel is available at https://sites.
google.com/site/scbaehanyang/hla_panel, and the Chinese panel is available at http://
gigadb.org/dataset/100156. The T1DGC panel is available at https://repository.niddk.nih.
gov/studies/t1dgc-special/?query=snp2hla upon request for research purposes. 1000
Genomes data are available at https://www.internationalgenome.org/category/population
and the 1958 Birth Cohort data are available at https://ega-archive.org/datasets/
EGAD00000000031.

Code availability
The software is available at https://github.com/WansonChoi/CookHLA (DOI: 10.5281/
zenodo.4294712) for noncommercial academic research use54. The code to reproduce the
results of the paper is available upon request from the corresponding author.
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