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Abstract Searching for similar 3D protein structures is one of
the primary processes employed in the field of structural bioin-
formatics. However, the computational complexity of this pro-
cess means that it is constantly necessary to search for new
methods that can perform such a process faster and more effi-
ciently. Finding molecular substructures that complex protein
structures have in common is still a challenging task, especially
when entire databases containing tens or even hundreds of
thousands of protein structures must be scanned. Graphics pro-
cessing units (GPUs) and general purpose graphics processing
units (GPGPUs) can perform many time-consuming and com-
putationally demanding processes much more quickly than a
classical CPU can. In this paper, we describe the GPU-based
implementation of the CASSERT algorithm for 3D protein struc-
ture similarity searching. This algorithm is based on the two-
phase alignment of protein structures when matching fragments
of the compared proteins. The GPU (GeForce GTX 560Ti: 384
cores, 2GB RAM) implementation of CASSERT (“GPU-
CASSERT”) parallelizes both alignment phases and yields an
average 180-fold increase in speed over its CPU-based, single-
core implementation on an Intel Xeon E5620 (2.40GHz, 4
cores). In this paper, we show that massive parallelization of
the 3D structure similarity search process on many-core GPU
devices can reduce the execution time of the process, allowing it
to be performed in real time. GPU-CASSERT is available at:
http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm.
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Introduction

Protein 3D structure similarity searching is a process in which
a given protein structure is compared to another protein struc-
ture or a set of protein structures collected in a database. The
aim of the process is to find fragments in common among
compared protein structures, i.e., matching fragments. Based
on the similarities found during this process, scientists can
draw useful conclusions about the common ancestry of the
proteins, and thus the organisms (that the proteins came from),
their evolutionary relationships, functional similarities, the
existence of common functional regions, and many other
things [1]. This process is especially important in situations
where sequence similarity searches fail or deliver too few
clues [2]. There are also other processes in which protein
structure similarity searching plays a supportive role, such as
in the validation of predicted protein models [3]. Finally, we
believe that in the very near future, scientists will have the
opportunity to study beautiful structures of proteins taken
from a patient in a regular diagnostic procedure that will
utilize comparison methods to highlight areas of the proteins
that are inadequately constructed, leading to dysfunctions of
the body and serious diseases. This goal is currently motivat-
ing work leading to the development of similarity searching
methods that return results in real time.

Although protein structure similarity searching is one of the
primary tasks performed in structural bioinformatics, it is still
a very difficult and time-consuming process, mainly because:
(1) the 3D structures of proteins are highly complex, (2) the
similarity searching process is computationally complex, and
(3) the number of 3D structures stored in macromolecular data
repositories such as the Protein Data Bank (PDB) [4] is
growing exponentially.

Among these three problems, bioinformaticians can at-
tempt to ease the second one by developing new, more effi-
cient algorithms, and to—at least partially—help with the first
one by selecting appropriately representative features of
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protein 3D structures that can then be fed into their algorithms.
The collection of algorithms that have been developed for
protein structure similarity searching over the last two decades
is large, and includes methods such as VAST [5], DALI [6, 7],
LOCK2 [8], FATCAT [9], CTSS [10], CE [11], FAST [12],
and others [13, 14]. These methods use various representative
features when performing protein structure similarity searches
in order to reduce the huge search space. For example, local
geometric features and selected biological characteristics are
used in the CTSS [10] algorithm. Shape signatures that in-
clude information on C, atom positions, torsional angles, and
types of secondary structure present are calculated for each
residue in a protein structure. The DALI algorithm [6, 7],
which is well established, compares proteins based on dis-
tance matrices built for each of the compared proteins. Each
cell of a distance matrix contains the distance between the C,,
atoms of every pair of residues in the same structure (inter-
residue distances). Fragments of 6x6 elements of the matrix
are called contact patterns, which are compared between two
proteins to find the best match. On the other hand, the VAST
algorithm [5], which is available through the website of the
National Center for Biotechnology Information (NCBI), uses
secondary structure elements (SSEs: o-helices and (3-sheets),
which form the cores of the compared proteins. These SSEs
are then mapped to representative vectors, which simplifies
the analysis and comparison process. During the comparison,
the algorithm attempts to match vectors of pairs of protein
structures. Other methods, such as LOCK2 [8], also utilize the
SSE representation of protein structure in the comparison
process. The CE [11] algorithm uses the combinatorial exten-
sion of the alignment path formed by aligned fragment pairs
(AFPs). AFPs are fragments of both structures that show clear
structural similarity and are described by local geometrical
features, including the positions of C, atoms. The idea of
AFPs is also used in FATCAT [9].

Even though better methods are developed every year,
performing a protein structure similarity search against a
whole database of protein 3D structures is still a challenge.
As we showed in our previous works [15, 16] on the effec-
tiveness and scalability of the process, performing a search
with the FATCAT algorithm for a sample query protein struc-
ture using twenty alignment agents working in parallel took
25 hours (without applying any additional acceleration tech-
niques). Tests were carried out using a database containing 3D
structures of 106,858 protein chains. This shows how time-
consuming the process is, and it is one of the main motivations
for designing and developing the new methods that are report-
ed every year, such as RAPIDO [17], DEDAL [18], MICAN
[19], CASSERT [13], ClusCo [20], and others [21, 22].

On the other hand, the evolution of computer science and
computer architectures has led to (and will continue to lead to)
new hardware solutions that can be used to accelerate the 3D
structure similarity searches. Recent years have shown that
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promising results in terms of upscaling the process and accel-
erating it can be obtained by using graphics processing units
(GPUs) and general purpose graphics processing units
(GPGPUs). GPU devices, which were originally conceived
as a means to render increasingly complex computer graphics,
can now be used to perform computations that are required in
completely different domains. For this reason, GPU devices,
especially those utilizing the NVidia Compute Unified Device
Architecture (CUDA) [23, 24], are now widely used to solve
computationally intensive problems, including those encoun-
tered in bioinformatics. Given the successful applications of
GPUs in the fields of sequence similarity [25-31], phyloge-
netics [32], molecular dynamics [33, 34], and microarray data
analysis [35], it is clear that GPU devices are beginning to play
a significant role in 3D protein structure similarity searching.

It is worth mentioning two GPU-based implementations of
the process. These methods use different representations of
protein structures and different computational procedures, but
demonstrate a clear improvement in performance over CPU-
based implementations. The first one, S4 Tableau Search,
which was first presented in [36], uses simulated annealing
for tableau-based protein structure similarity searching. Tab-
leaux are based on orientations of secondary structure ele-
ments and distance matrices. The GPU-based implementation
of the algorithm parallelizes two areas: multiple iterations of
the simulated annealing procedure and multiple comparisons
of'the query protein structure to many database structures. The
second one, called pssAlign [37], consists of two alignment
phases: fragment-level alignment and residue-level alignment.
Both phases use dynamic programming. In the fragment-level
alignment phase, so-called seeds between the target protein
and each database protein are used to generate initial align-
ments. These seeds are represented by the locations of the C,
atoms. The initial alignments are then refined in the residue-
level alignment phase. pssAlign parallelizes both alignment
phases.

In the present paper, we report the GPU-based implemen-
tation of the CASSERT algorithm [13] for 3D protein structure
similarity searching. Like pssAlign, CASSERT is based on
two-phase alignment. However, it uses an extended set of
structural features to describe protein structures, and the com-
putational procedure differs too. Both the representation of
structures and the computational procedure employed by the
CASSERT algorithm are presented in the next few subsec-
tions. Originally, CASSERT was designed and implemented
as a CPU-based procedure, and its effectiveness is reported in
[13]. Its GPU-based implementation is presented in the
“Methods” section, and this implementation will be referred
as “GPU-CASSERT” throughout the paper. Before we start to
explain GPU-CASSERT, we will provide a short overview of
how to perform computations using GPU devices and the
CUDA architecture. Finally, in the “Results” and “Discus-
sion” sections, we show that the algorithm performs fast
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comparisons of protein structures and that it can be used to scan
protein databases in order to find similar biological molecules.

Representation of protein structures in the comparison process

3D protein structure similarity searching is typically realized
by performing pairwise comparisons of the query protein (Q)
specified by the user with successive proteins (D) from the
database of protein structures. In this section, we show how
protein structures are represented in both phases of the com-
parison process performed by the CASSERT.

Let us assume that Q represents the structure of the query
protein that is ¢ residues (amino acids) long, and D is the
structure of a candidate protein in the database that is d
residues (amino acids) long.

In the first phase of the alignment algorithm, protein struc-
tures Q and D are compared by aligning their reduced chains
of secondary structures consisting of the secondary structure
elements SE;:

= <SE?,SEZQ,...,SE§), (1)

where n<gq is the number of secondary structures in the chain
of the query protein O, and

D = (SEY,SE?,...,SE), (2)

where m<d is the number of secondary structures in the chain
of the database protein D.

Each element SE;, which is a part of the chain that has been
selected on the basis of its secondary structure, is character-
ized by two values, i.e.,

SE; = [SSE;, L], (3)

where SSE; describes the type of the secondary structure
selected, and L is the length of the i element SE; (measured

Fig. 1 Secondary structure

elements: (/eff) four x-helices in a

sample structure [PDBID: 1CE9];

(right) two {3-strands joined by a

loop in a sample structure [PDB

ID: 1E0QY]; visualized by

MViewer [38]. Full and reduced

chains of secondary structure

elements for the marked subunit \
(left) and the whole structure \
(right) are visible below ==

in residues). In the alignment method, we distinguish between
three basic types of secondary structure (Fig. 1):

* «-Helix (H)
*  [3-Sheet or 3-strand (E)
* Loop, turn, coil, or undetermined structure (L)

Elements SEC and SE}-D , hereafter referred to as SE regions
or SE fragments, are built from groups of adjacent amino acids
that form the same type of secondary structure. For example,
six successive residues folded into an «-helix form one SE
region. Hence, the overall protein structures are, at this stage,
represented by the reduced chains of secondary structures.

In the second phase of the alignment algorithm, protein
structures O and D are represented in more detail. At the
residue level, successive residues are described by so-called
molecular residue descriptors s;. Proteins are represented as
chains of descriptors s;:

0= (s%szg,...,sg), 4)

where ¢ is the length of the query protein Q (i.e., the number of
residues it contains), and each s corresponds to the i residue
in the chain of protein Q,

Dz(s?,sg,...,sg), (5)

where d is the length of the database protein D, and each s
corresponds to the /" residue in the chain of protein D.

Each descriptor s; is defined by the following vector of
features:

§; =< |Ci|7,yz'7SSEiari >, (6)

where |C] is the length of the vector between the C, atoms of
the /" and (i+1)™ amino acids in a protein chain, ~; s the angle
between the successive vectors C;and Cy. 1, SSE; is the type of
secondary structure formed by the /" residue, and 7; is the type
of amino acid represented by this residue (Fig. 2).
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Fig. 2 Structural features included in molecular residue descriptors
marked on part of a sample protein structure: residue type (Met, Gln,
Ile, Phe), secondary structure type ({3-strand in this case), length of the
vector between the C, atoms (|C}), and the ~yangle

General course of the matching method

Pairwise comparisons of protein 3D structures are performed
using the matching method, which consists of two phases

(Fig. 3):

1. The first phase involves the coarse alignment of spatial
structures represented by secondary structure elements
(SSEs). This is the low-resolution alignment phase, be-
cause groups of amino acids occurring in each structure
are grouped into one representative element (the SE re-
gion). This phase allows us to run fast alignments in

Fig. 3 Overview of the two-
phase alignment algorithm. In
phase 1, low-resolution alignment
is performed: protein structures
are represented as reduced chains
of secondary structures; the
similarity matrix SSE used in the
alignment is small—proportional
to the number of secondary
structures in both proteins. In
phase 2, high-resolution
alignment is performed: protein
structures are represented as
chains of molecular residue
descriptors; the similarity matrix S
used in the alignment is therefore
large—proportional to the length
of both proteins

which small similarity matrices are constructed. This
eliminates the need for computationally costly alignments
of proteins that are entirely dissimilar. Proteins that exhibit
secondary structure similarity are subjected to a more
thorough analysis in the second phase.

2. The second phase involvs the detailed alignment of spatial
structures represented by the molecular residue descrip-
tors. This alignment is performed based on the results of
the coarse alignment realized in the first phase. The sec-
ond phase is the high-resolution alignment phase, because
amino acids are not grouped in it. Instead, each amino
acid found in the structure is represented by the corre-
sponding molecular residue descriptor s; Therefore, we
align sequences of molecular residue descriptors using
much larger similarity matrices than were utilized in the
first phase. In the second phase, the algorithm analyzes
more features describing protein structures, and the pro-
tein itself is represented in more detail.

In both phases, the alignments are carried out using dy-
namic programming procedures that are specifically adapted
to the molecular descriptions of protein structures employed in
each phase. The detailed courses of both alignment phases are
shown in the following subsections.

First phase: low-resolution alignment

The low-resolution alignment phase is performed in order to
filter out molecules that do not show secondary structural
similarity. Originally, this phase was also used to establish
initial alignments that were projected onto the similarity ma-
trix in the second phase. However, since both phases are
executed independently in the GPU-based implementation,
we do not transfer alignment paths between alignment phases
in the GPU-based approach.

Phase 1

similarity matrix SSE

similarity matrix S

@ Springer



J Mol Model (2014) 20:2067

Page 5 of 17, 2067

In order to match the structures of proteins Q and D that are
represented as reduced chains of secondary structures, we
build a similarity matrix SSE of size nxm, where n and m
describe the number of secondary structures in the compared
chains of proteins Q and D. Successive cells of the SSE matrix
are filled according to the following rules:

For 0<i<n and 0<j<m:

SSE,‘70 = SSEO,] = 0’ (7)
SSES‘) = SSEi1,j1 + 0y, ®)
SSE?’) = E,, ®)
SSE?’) = Fy, (10)

i

SSE;; = max {SSE(], 0}

where J; is the similarity reward, which reflects the degree of
similarity between two regions SE and SE}D of proteins Q and
D, respectively, and vectors E and F are possible horizontal
and vertical penalties for inserting a gap.

The similarity reward ; takes values in the interval [0,1],
where 0 means no similarity and 1 means that the regions are
identical. The degree of similarity is calculated using the
formula

D_yQ
b1

(L? n L,.Q)

(12)

o5 = o= | 0y

where LZ, L_,D are the lengths of the compared regions SEZ and
SE}D , while 0;; describes the degree of similarity of the second-
ary structures for the /™ and j™ SE regions of the compared
proteins Q and D. This parameter can take three possible
values, according to the following rules:

(i) o;=1 when both SE regions have the same o-helix or (3-
strand structure
(ii) 0;=0.5 when at least one of the regions is a loop, turn,
coil, or its secondary structure is undefined
(iii) 0,70 when one of the regions is an «-helix and the
second is a {3-strand

Values of gap penalty vectors are calculated as follows:

Eij1—gk

Eij= max{ SSEi;1-g0’ (13)

Fio1gk

Fij= max{ SSE1 20" (14)

In order to assess the similarity between two reduced
chains of secondary structures, we use the Score measure,
which is equal to the highest value in the similarity matrix
SSE:

Score = max{SSE; ;}. (15)

Auxiliary vectors £ and F allow us to perform the align-
ment procedure and to calculate the Score similarity measure
in linear space, because the value of cell SSE;;depends only on
the value of cell SSE; 1, 1, SSE; , and SSE;; ;. During the
calculation of the similarity matrix SSE, we must store the
position of the maximum value of the Score in the matrix as
well as the value itself.

Second phase: high-resolution alignment

Molecules that pass the first phase (based on the user-defined
cutoff value) are further aligned in the second phase. A data-
base protein structure qualifies for the second phase if the
following condition is satisfied:

ScorelP

T >
Scoref9 ~ 2

(16)

where Score?” is a similarity measure employed when
matching the query protein structure to the database protein
structure, Score?? is the similarity measure obtained when
matching the query protein structure to itself (i.e., the maxi-
mum Score that the compared chain can achieve), and
0,[0,1] is a user-defined qualification threshold for structural
similarity.

The second phase is carried out similarly to the first phase,
except that the alignment is carried out at the residue level,
where aligned molecules Q and D are represented by chains of
molecular residue descriptors. However, the way that GPU-
CASSERT calculates the similarity reward for the two com-
pared residue molecular descriptors s; and s; is different. The
similarity reward ss;; is calculated according to the following
formula:

S8 = wcag + w,,U;j’f + WSSEO";-SE + wrafj, (17)
where a,«jcis the degree of similarity of a pair of vectors CZ and
C]D in proteins O and D, respectively, oj is the similarity of
angles 7 and WD in proteins Q and D, a;jSE is the degree of
similarity of the secondary structures of residues i and j (cal-
culated according to rules (i)—(iii) listed for the first phase), o;
is the degree of similarity of the residues defined by means of
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the BLOSUMSG62 substitution matrix normalized to the range
[0,1], and wew,,Wssg andw, are the weights of all of the
components (with default values of 1).

The similarity of vectors C2 and C]D is defined according to
the formula:

2
(etHes)
a§=e<" VA (18)

where |C¥| and |C}D | are the lengths of vectors CZ and CjD,
respectively, and the similarity of the angles A and 'ij is
defined as follows:

- ()

o;=¢

(19)

In high-resolution alignment, the value of the degree of
similarity of molecular residue descriptors ss; (Eq. 17) re-
places the similarity reward ¢ (Eq. 8).

The relative strength of each component in the similarity
search (Eq. 17) can be controlled using participation weights.
The default value for each is 1, but this can be changed by the
user. For example, researchers who are looking for surprising
structural similarities but no sequence similarity can disable
the component for the primary structure by setting the value of
w,=0.

The Score similarity measure, a basic measure of the sim-
ilarity of protein structures, is calculated in this phase. This
value incorporates all possible rewards for a match, mismatch
penalties, and penalties for inserting gaps into the alignment.
The Score is also used to rank highly similar proteins that are
returned by the GPU-CASSERT.

Third phase: structural superposition and alignment
visualization

In the third phase, we perform superposition of protein struc-
tures on the basis of aligned chains of molecular residue
descriptors. The purpose of this step is to match two protein
structures by performing a set of rotation and translation
operations that minimize the RMSD:

where N is the number of aligned C, atoms in the protein
backbones, and d; is the distance between the i pair of atoms.
We use the Kabsch algorithm [39] to complete this step.
However, the calculation is performed on the CPU of the host
workstation.

In this phase, we also calculate the full similarity matrix Sin
order to allow backtracking from the maximum value and full
visualization of the structural alignment at the residue level.
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This step is performed on the CPU of the host and only for a
limited number (M, which is configured by the user) of the
most similar molecules.

Methods

Greatly accelerated calculation speeds are possible with
GPUgs, but this also necessitates the application of an appro-
priate programming model. Before we begin describing the
GPU-based implementation of the CASSERT algorithm, we
now describe some operational details of GPU devices and the
CUDA architecture. These details are an important aid to
understanding our implementation.

The CUDA architecture and the construction of GPU devices

In GPU devices that support the CUDA architecture, high
scalability is achieved by the hierarchical organization of
threads, which are basic execution units. Threads execute, in
parallel, user-defined procedures called kernels, which imple-
ment some computational logic that is applied to data. Each
thread has its own index, the vector of the coordinates corre-
sponding to its location in the one-, two-, or three-dimensional
organizational structure called a block. Thread blocks form a
one- or two-dimensional structure called a grid. Each thread
block is processed by a streaming multiprocessor (SM), which
has many scalar processor cores (SP). The number of multi-
processors and processor cores available depends on the type
of GPU device used. The GPU device has also two special
function units, a multithreaded instruction unit (IU), a set of
registers available for each thread block, and several types of
memory (Fig. 4).

Threads can access global memory, which is the off-chip
memory that has a relatively low bandwidth but provides a
high storage capacity. Each thread also has access to the on-
chip read—write shared memory as well as the read-only
constant memory and texture memory, both of which are
cached on-chip. Access to these three types of memories is
much faster than that to the global memory, but they all
provide limited storage space and are used in specific
situations.

Multiprocessors employ a new architecture, called SIMT
(single instruction, multiple thread). In this architecture, a
multiprocessor maps each thread to a scalar processor core,
where each thread executes independently with its own in-
struction address and register state. The multiprocessor SIMT
unit creates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps. Threads in the
warp perform the same instructions, but operate on different
data, as in the SIMD (single instruction multiple data) archi-
tecture. Therefore, appropriate preparation and arrangement of
data is highly desirable before the kernel execution begins,
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Fig. 4 Architecture of the GPU
computing device, showing

streaming multiprocessors, scalar
processor cores, registers, and

.| Streaming Multiprocessor n (SM)

global, shared, constant, and

[Streaming Multiprocessor 2 (SM)

texture memories

Streaming Multiprocessor 1 (SM)

Shared Memory

3 3

.l
Registers | |

Registers | |

Reqgisters &
Scalar Scalar Scalar Instruction
Processor 1 [~ Processor 2 — | Processor m Unit
(SP) - (SP) (SP) (193]
-~ r -~ Y -~ -~ -~ r r Y

Constant Memory Cache

Texturd Memory Cache

L

Y A 4

Off-chip Global Memory

and this is one of the factors that influence the efficiency of
any GPU-based implementation [23].

Data preparation

Early tests of the first implementations of the CASSERT algo-
rithm on GPU devices showed that read operations from the
database system storing structural data were too slow. There-
fore, the present implementation of the GPU-CASSERT does
not read data directly from the database, because single execu-
tion of the searching procedure would take too long. We have
introduced binary files instead. These files contain data pack-
ages that are ready to be sent to the GPU device. The only data
that are read directly from the database are those that describe
the query protein structure Q. But, even in this situation, the
data are stored in a appropriate way in binary files. Using binary
files with data packages allows the initialization time of the
GPU device to be reduced severalfold. This is necessary to
ensure that GPU-CASSERT has a fast response time.
Binary files must be refreshed in two cases:

* Changes in the content of a database
* Changes in parameters affecting the construction of data
packages

Data packages that are sent to the GPU device have the
same general structure, regardless of what is stored inside.

Due to the size of the data packages utilized by the CASSERT
algorithm, these packages are placed in the global memory of the
GPU device. As we know from the “The CUDA architecture and
the construction of GPU devices,” when discussed GPUs and the

CUDA, global memory is the slowest type of memory available.
For this reason, it is worth minimizing the number of accesses
made of this type of memory.

Access operations are carried out in 32-, 64-, or 128-byte
transactions. When the warp (which is composed of 32
threads) reaches the read/write operation, the GPU device
attempts to perform this operation using a minimum number
of transactions. Basically, the greater the number of transac-
tions needed, the greater the amount of unnecessary data
transmitted. This unnecessary overhead can be minimized
for CUDA 2.x if memory cells that are read by all warp
threads are located within a single 128-byte memory segment.
In order to satisfy this condition, the address of this area must
be aligned to 128 bytes and the threads need to read data from
adjacent memory cells. For devices with compute capabilities
of 1.0 or 1.1, upon which GPU-CASSERT can also run, there
is the additional restriction that warp threads must be in the
same order as the memory cells being read [23]. If these
conditions are met, we can get 4 bytes of data for each of
the threads in a single 128-byte transaction. These 4 bytes
correspond to a single number of type int or float. The pre-
ferred distribution method for the first 8 bytes of the transac-
tion among threads is presented in Fig. 5. The remaining bytes
of the transaction should be distributed in the same way.

0 ; 1
lofs]2f3fafs]e]7]

Fig. 5 Preferred distribution method for the first 8 bytes of the transac-
tion among threads. Thread 0 takes the first 4 bytes of the transaction,
thread 1 takes the next 4 bytes, etc.

threads
bytes

@ Springer
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Data are transmitted to the GPU device in the form of a two-
dimensional array of unsigned integers (Fig. 6). The array is
organized in row-major order. This means that the cells in
adjacent columns are located next to each other in the memory.
This has an important influence on performance when process-
ing an array, because contiguous array cells can usually be
accessed more quickly than cells that are not contiguous. Each
column of the array is assigned to a single block thread. A
single chain of structural descriptors is stored in a single column
of the array (Fig. 6). Such a solution satisfies the condition that
contiguous addresses must be read, because block threads will
always read adjacent cells, moving from the beginning to the
end of the chain (from top to bottom). Every cell in the array is 4
bytes in size, so the transfer of data to a wrap’s 32 threads will
be made in one 128-byte read transaction. This allows us to take
a full advantage of data transfer from the memory to the
registers of the GPU device. This way of organizing data in
memory is used and described in [28, 29].

Another factor affecting the performance is the density at
which the data are packed in memory cells. The distribution of
data in memory cells depends on the phase of the algorithm
and the type of structural descriptors that are used in the phase.
There are five types of data that are sent to the memory of the
GPU device:

* Reduced chains of secondary structures formed by sec-
ondary structure elements SE; (phase 1)

* Secondary structure elements SSE; that are components of
nonreduced chains of molecular residue descriptors (phase 2)

* Amino acid residue types 7; that are components of
nonreduced chains of molecular residue descriptors (phase 2)

* Lengths of the vectors between C, atoms of subsequent
residues that are components of nonreduced chains of
molecular residue descriptors (phase 2)

threads 0 1 2 3 4 5 31
Alalala]la]a A
Bl |8 |B]|B]|B B
clelelelelcel..lc
plo|lbp]|Dp|D]|D D
Ele e |e e |]E]|..|E
FlFrlF]IFLFLF]..]F
Glg|leg|le|eg|lae]|..|o

Fig. 6 Arrangement of chains of structural descriptors in a memory array.
Block threads are assigned to particular columns. Each cell contains 4
bytes of data (structural descriptors). All block threads read contiguous
memory areas
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» ~; angles between successive vectors C; and C, that are
components of nonreduced chains of molecular residue
descriptors (phase 2)

Regardless of the type of data present in the memory cells,
the chains included in the package may be of various lengths.
For this reason, all chains of structural descriptors are aligned
to the length of the longest chain. Empty cells are filled with
zeros. In principle, comparing these zeros during the course of
the algorithm does not affect the scoring system assumed and
the final results.

Chains of structural descriptors contained in a data package
are sorted by their lengths in ascending order. In this way, we
minimize differences in processing time for individual block
threads and their idle times (threads that have already com-
pleted their work must wait for the other threads to finish
processing). A similar method is used in the work presented in
[28, 29].

Data packages are divided into subpackages. Each
subpackage consists of 32 chains of structural descriptors.
This is exactly the same as the number of warp threads.

Implementation of two-phase structural alignment in a GPU

Implementation of the two-phase structural alignment algo-
rithm in a GPU with the CUDA requires a dedicated approach.
GPU-CASSERT operates according to the following scheme:

1. Read data packages describing database protein structures
from binary files

2. Read query protein structure (Q) from database and create
appropriate data packages

3. Perform the first phase of the structural alignment on the
GPU device for all query protein (Q) vs. database protein
(D) pairs

4. Perform the second phase of the pairwise structural align-
ment for the molecules that passed the first phase (based
on the given threshold) on the GPU device

5. Return a list of the top M database molecules that are most
similar to the query molecule, together with similarity
measures

6. If the user wants to visualize the alignment, perform the
second phase on the CPU of the host computer for mol-
ecules from the list of the most similar ones to the query
molecule returned by the GPU device

7. Return alignment visualization to the user

In both alignment phases, the vector of penalties for a gap
and the similarity matrix are stored in the global memory of
the GPU device as arrays of type float. This means that a
read/write of a single element requires just one transaction. It
is also worth noting that, due to memory restrictions, each
thread remembers only the last row of the similarity matrix.
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This is sufficient to determine the maximum element of the
similarity matrix, which also provides a value for the Score
similarity measure, which is needed to check whether a data-
base structure qualifies for the second phase. The similarity
measure alone is sufficient to assess the quality of the align-
ment before the second phase. On the other hand, the second
phase is performed on the GPU device for all qualified struc-
tures, and once again on the CPU of the host for the database
proteins that are most similar to the query molecule in order to
get alignment paths and to perform structural superposition.
As a result, we obtain a list of the structures that match most
closely to the query structure and a visualization of the local
alignments of these structures at the residue level.

First phase of structural alignment in the GPU

The first phase requires data to be delivered in the form of data
packages containing reduced chains of secondary structures
(SE regions). Separate data packages are built for the query
protein and candidate protein structures from the database. For
the purpose of processing, SE regions are encoded using two
bytes: one byte for the type of secondary structure and one
byte for its length. Types of secondary structures are mapped
to integers. In the “Data preparation,” where we described the
overall structure of a data package, we also mentioned that the
data in memory are arranged in 4-byte cells. In such a 4-byte cell
we can store two encoded SE regions. This is illustrated in Fig. 7.

The data package for the query chain of secondary struc-
tures is built on the basis of a slightly different principle. If it
was created in the same way as the data packages for database
structures, then in order to extract the similarity coefficient of
secondary structures o;; we would have to read the cell (SSE,
SSE,B) from a predefined matrix of coefficients (a kind of

Fig. 7 Encoding of a reduced primary structure

chain of secondary structure in a
data package. The secondary
structure of the protein is first
translated into a reduced chain of
SE regions. Subsequently, every
two SE regions are placed in a
data package in the manner
shown, taking up 4 bytes, and in
such a way that they are loaded
into the global memory of the
GPU device

MNIFEML

seco ndarv structure LLH!

reduced chain of secondary structure
represented by SE regions

substitution matrix constructed based on rules (i)—(iii) in the
“Introduction” section), which would affect performance neg-
atively. We can avoid this by pre-computing and writing all
possible similarity coefficients directly into the data package
of the query protein, creating something like the query-
specific substitution matrix proposed in [40] and called a
query profile in the GPU-based alignment algorithm for se-
quence similarity presented in [28]. Therefore, the data pack-
age for the query protein passes through an additional prepa-
ration step. For each SE region, four versions of the similarity
coefficient are created, one for each of the secondary structure
types and one for the neutral element O (as shown in Fig. 8). In
the query profile created, the row index is defined by the index
of the structural region SE divided by 2, and the column index
is defined by the type of secondary structure present (with the
additional neutral element 0). The coefficients are converted
to integers in order to fit them into 1 byte, according to the
following rules:

+ If coefficient 0;,=0, it is encoded as 0
+ If coefficient 0;,=1, it is encoded as 1
 If coefficient 0;,=0.5, it is encoded as 2

The lengths of SE regions do not change. This process is
illustrated in Fig. 8.

Once the data packages are loaded into the host memory
and a data package for the reduced query chain is created, the
program transfers data to the GPU device. To do this, it uses
four streams. Each stream has its own memory buffers on the
GPU device side and in the page-locked memory on the host
side. The host loads data into the page-locked memory and
then initiates asynchronous data transfer to GPU device for
each of the streams. This allows transmission to take place in

IDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLN
HHHHHLLLLLLLEELLLLLEEELLLEEEELLLLLL LZHS
L7EZ
|4 i
LOHSL7EZLSE3LIE4LE ey [ 1°F>
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Fig. 9 Calculation of the similarity matrix SSE. Structural elements (SE
regions) of the candidate database structure are (virtually) located along
the vertical edge of the matrix and SE regions of the query protein

Fig. 8 Encoding the reduced chain of secondary structure for query
protein Q (leff) and constructing the query profile (righf). The query
profile shows all possible (encoded) scores when comparing the reduced
query chain of secondary structure to SE regions from candidate protein
structures from the database

parallel with the ongoing calculations, again improving per-
formance. Results are received prior to the transfer of the next
data package or after all available packages have been
processed.

Block threads perform parallel alignments of reduced
chains of secondary structures. Each block thread performs a
pairwise alignment of the query protein vs. one candidate
database protein. In order to limit the number of accesses of
the global memory of the GPU device, the similarity matrix
SSE is not calculated cell by cell but is divided into rectangular
areas of size 2x4. Calculations are performed area by area,
and row by row in each area, from left to right, as shown in
Fig. 9.

Structural elements (SE regions) of the candidate database
structure are (virtually) located along the vertical edge of the
matrix, and SE regions of the query protein structure are
located along the horizontal edge of the matrix. During the
calculation of each 2x4 area, the values of the four elements of
the vector E representing the vertical gap penalty and struc-
tural data for the four elements of the database chain are stored
in GPU registers. Calculation of a 2x4 area requires two reads
and two writes to the global memory for the vector F
representing the horizontal gap penalty, and two reads and
two writes for the similarity matrix SSE. It also requires four
reads for the query profile placed in the texture memory. In
total, the calculation of 8 cells of an area of the similarity
matrix SSE requires eight read/write transactions to the global
memory of the GPU device and four reads from the texture
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structure along the horizontal edge of the matrix. Calculations are per-
formed in areas 2x4 in size. Values of the cells in these areas are
calculated according to the given order. Colors reflect the type of
read/write operation required and the memory resources that are affected

memory. The order of calculation of cells and the read/write
operations performed are shown in Fig. 9.

After filtering candidate database proteins based on the
qualification threshold O, the program creates new, smaller
data packages that are needed in the second phase.

Second phase of structural alignment in the GPU

In the second phase, separate data packages are built for each
of the features included in the molecular residue descriptors.
In data packages for amino acid types and secondary structure
types, we can store elements for four successive molecular
residue descriptors in every 4 bytes (and then in every 4-byte
memory cell). The arrangement of bytes and cells in memory
is similar to that used in the first phase. Vector lengths and
angles occupy 4 bytes each, which is one cell of the prepared
array in memory.

For the query protein structure, data packages for amino
acid types and secondary structures are generated in a similar
manner to how this is done in the first phase. The program
creates separate query profiles for secondary structures and for
residue types. The query profile for secondary structures is
formed from the secondary structure similarity coefficients o;;
in such a way that the row index is the index of the current
element from the query chain divided by 4, and the column
index is the type of the secondary structure of the element
from the compared database protein (Fig. 8). The query profile
for residue types is derived from the normalized BLOSUM
substitution matrix in such a way that the row index is the
index of the current element from the query chain divided by
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4, and the column index is the type of the residue from the
compared database chain. Data packages containing vector
lengths and angles between these vectors, for the query pro-
tein structure, are created by rewriting these values to separate
packages.

Transfer of data packages to the device is performed in the
same manner as in the first phase. Four streams are used for
this purpose. After the first part of the data has been trans-
ferred to the GPU device, the high-resolution alignment pro-
cedure is initiated. Block threads perform parallel alignments
of chains of molecular residue descriptors. Each block thread
performs a pairwise alignment of the query protein vs. one
candidate database protein. In order to limit the number of
accesses to the global memory of the GPU device, the simi-
larity matrix S is divided into rectangular areas of size 4 x4.
Calculations are performed area by-area, and row by row
inside each area, from left to right, as shown in Fig. 10.

Molecular residue descriptors of the candidate database
structure are (virtually) located along the left vertical edge of
the matrix S, and molecular residue descriptors of the query
protein structure are located along the top horizontal edge of
the matrix. During the calculation of each 4 x4 area, the values
of the four elements of the vector E representing the vertical
gap penalty and the molecular residue descriptors for four
successive elements of the database chain are stored in GPU
registers. Calculation of a 4x4 area requires four reads and
four writes to the global memory for the vector F representing
the horizontal gap penalty, and four reads and four writes for
the similarity matrix S. It is also necessary to perform four

reads for the query profile for secondary structures, four reads
for the query profile for residue types, four reads for vector
lengths, and four reads for angles between vectors. These
reads are performed from the texture memory, where these
structural features are placed and arranged in an appropriate
manner. In total, the calculation of the 16 cells in each area of
the similarity matrix S requires 16 read/write transactions to
the global memory of the GPU device and 16 reads from the
texture memory. The order of calculation of cells and the
read/write operations performed are shown in Fig. 10.

Results

We have tested the efficiency of the GPU-CASSERT algo-
rithm and compared it with the CPU-based implementation
that was published in [13]. Both implementations, i.e., the
GPU-based and the CPU-based implementations, were tested
on a Lenovo ThinkStation D20 with two Intel Xeon CPU
E5620 2.4 GHz processors, 16 GB of RAM, and a GeForce
GTX 560 Ti graphics card with 2GB of GDDRS5 memory. The
workstation had the Microsoft Windows Server 2008 R2
Datacenter 64-bit operating system installed, together with
the CUDA SDK version 4.2. The CUDA compute capability
supported by the graphics card was 2.1. The graphics card had
the following features:

» 8 streaming multiprocessors (384 processing cores)
* 48 KB of shared memory per block

F.igt 10_ Calcu?atiop of the 1 2 3 4 1 2 3 s
similarity matrix §in the second —t
phase of alignment. Molecular 5 |6 7 P8 5 6 [F7 s
residue descriptors of the : - =

9 10 |11 |12 9 10 11 2

candidate database structure are
(virtually) located along the
vertical edge of the matrix and
molecular residue descriptors of
the query protein structure are

located along the horizontal edge

of the matrix. Calculations are
performed in areas of size 4x4.

Values of the cells in these areas
are calculated according to the

given order. Colors reflect the
type of read/write operation that

are required and the memory
resources that are affected

global memory read

global memory write

register read

register write
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* 64 KB of total constant memory
» 32,768 registers per block
* 2 GB of total global memory

Tests were conducted using the DALI database (the same
as that used by the DALI algorithm [6, 7]), which contained
the structures for 105,580 protein chains. While testing per-
formance, we used 14 selected query protein structures with
lengths between 29 and 2005 amino acids. These were ran-
domly selected molecules that represent different classes ac-
cording to the SCOP classification [41], i.e., all o, all 3, &+ 3,
«/f3, vand 3, coiled coil proteins, and others. The list of query
protein structures used in the tests performed in the present
work is shown in Table 1.

Tests were performed using different qualification thresh-
olds (0r=0.01,0.2,0.4,0.6,0.8) that the structures had to at-
tain for them to pass from the first phase to the second phase of
CASSERT. CASSERT execution times for Or=0.01 and Or=
0.2 are shown in Fig. 11. The thresholds used were not chosen
randomly. Or=0.2 is an experimentally determined threshold
that filters out a reasonable number of structures based on
secondary structure similarity but still allows short local sim-
ilarities to be found. This will be discussed further later in the
section. Or=0.01 means that almost no filtering is done based
on the secondary structure similarity, and almost all structures
in the database qualify for the second phase.

The results of the efficiency tests presented in Fig. 11 prove
that GPU-CASSERT scans the database much faster than the
CPU-based implementation. Upon analyzing execution times
for the first phase of the CASSERT algorithm (Fig. 11 top) for
both qualification thresholds (top left and top right), we can
see that increasing the query protein’s length causes the exe-
cution time for the algorithm to increase too. This is expected,
since a longer query protein chain implies a longer alignment
time for every pair of compared proteins. Small fluctuations
that are visible for short chains when using the GPU-based
implementation and O;=0.01 (top left, blue) are caused by
variations in the number of secondary structures identified in
the investigated proteins, which affect the alignment time. We
observe a similar (expected) dependency between the length

Table 1 Query protein structures used in the performance tests

PDB ID Chain Length PDB ID Chain Length
2CCE A 29 1AYE _ 400
2A2B A 40 2EPO B 600
1BE3 G 80 1KK7 A 802
1A1A B 101 1URJ A 1027
1AYY B 142 2PDA A 1230
2RAS A 199 2R93 A 1421
1TA3 B 300 2PFF B 2005
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of the query protein and the execution time while analyzing
the measured execution times after both phases of the
CASSERT algorithm for both qualification thresholds
(Fig. 11, bottom left and bottom right). However, since the
number of proteins that qualify for the second phase varies
and depends on the length and complexity of the query struc-
ture, we show average execution times per qualified protein in
Fig. 11 (bottom). We noticed that, in some cases, more data-
base protein structures qualified for the second phase for
shorter rather than longer (between 1000 and 2000 residues)
query protein structures.

Using the execution time measurements that we have ob-
tained during the performance tests, we also calculated accel-
eration ratios for GPU-CASSERT with respect to CPU-
CASSERT. Figure 12 shows how the acceleration ratio chang-
es as a function of query protein length for the first phase and
both phases for Or=0.01 (top) and 0=0.2 (bottom).

We can see that the acceleration ratio for the first phase
remains stable. In this phase, GPU-CASSERT is on average
120 times faster than CPU-CASSERT. However, for the
whole alignment, i.e., after the first and second phases, the
acceleration ratio greatly depends on the length of the query
protein structure, its construction and complexity. The whole
alignment process when performed on the GPU is 30-300
times faster than the same process performed on the CPU.

Actually, for qualification thresholds Or>0.1, we observed
a kind of compensation effect. For longer query protein
chains, which also have more complicated constructions in
terms of secondary structure, the number of candidate struc-
tures from the database that qualified for the second phase
decreases with the length of the query protein. This causes a
situation in which fewer database proteins need to be aligned
during the entire process. But, at the same time, the length of
the query protein grows, causing the alignment time to in-
crease. This growth is compensated for by the smaller number
of database structures that need to be aligned.

Figure 13 shows the relationship between query protein
length and the number of structures that qualified for the
second phase when various values of the qualification thresh-
old Or were applied. For example, for Or=0.01 (yellow line),
we can see that almost all of the database structures qualified
for the second phase, regardless of query protein length. In this
cases, there is practically no filtering based on the secondary
structures identified in the query protein. On the other hand,
for Or=0.8 (red line), we noticed that for query proteins over
150 residues in length, only single database structures are
eligible for further processing.

In many situations, such a high value of the qualification
threshold will filter out too many molecules. However, this
depends on the situation for which the entire process of
similarity searching is carried out. For example, in homology
modeling, we may want to find referential protein structures
that are very similar to the given query protein structure. For
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Fig. 11 Total execution time for the first phase (fop) and average execu-
tion time of both phases per protein that qualified for the second phase
(bottom) for qualification thresholds of 0.01 (leff) and 0.2 (righi) as a
function of the length of the query protein structure Q. Time is plotted on a
log;o scale. Comparison of two implementations of the CASSERT

functional annotation and while searching for homologous
structures, Or=0.2 could be a reasonable threshold, since it
filters out many candidate molecules and, even for very long
query proteins, it allows several thousands of structures at
least to pass through to the second phase.

We should also remember that the first alignment phase can
be turned off completely by specifying Or=0.0. Then, all of
the database molecules pass through to the second phase,
which prolongs the similarity searching process.

Discussion

The results of the efficiency tests we performed have con-
firmed our expectations. Using a graphics card with a CUDA
compute capability is one of the most efficient approaches to
use when performing protein structure similarity searching.
Upon comparing execution times, we can see that the GPU-
based implementation is several dozen to several hundred

1,00E-04

SRR, = Query protein length (residues)

algorithm: CPU-based (red) and GPU-based (CUDA, blue). Results for
14 selected query protein structures between 29 and 2005 amino acids
long. Searches were performed against the DALI database, containing
105,580 structures

times faster (an average of 180 times faster for Or=0.2) than
the CPU-based implementation. This is very important, since
the number of protein structures in macromolecular databases,
such as the Protein Data Bank, is growing very quickly, and
the dynamics of this growth is also increasing. The use of
GPU-based implementations is particularly convenient for
such processes because GPU devices are reasonably inexpen-
sive compared to, say, big computer clusters. Our experiments
were performed on a middle-class GPU device, which was set
up on a small PC workstation with two processors. For this
reason, GPU devices can be usefully applied in the implemen-
tation of many algorithms in the field of bioinformatics.

The novelty of CPU-CASSSERT lies mainly in the fast
preselection phase based on secondary structures (the low-
resolution alignment phase), which precedes the phase of
detailed alignment (the high-resolution alignment phase). This
allows the number of structures that will be processed in the
second, costly phase to be limited, which, in turn, significantly
accelerates the method itself. A comparison of CPU-
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Fig. 12 Acceleration achieved
by GPU-CASSERT with respect
to CPU-CASSERT as a function
of query protein length after the
first phase (blue) and both
alignment phases (red) with
qualification thresholds of 0.01
(top) and 0.2 (bottom)

Fig. 13 Number of structures
from the database that qualified
for the second phase as a function
of query protein length for various
values of the qualification
threshold
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CASSERT with the popular DALI and FATCAT algorithms is
presented in [13].

GPU-CASSERT provides additional acceleration over its
CPU-based version by executing the computational procedure
in parallel threads on multiple cores of the GPU device. The
resulting increase in speed is even greater than those achieved
with the methods mentioned in the “Introduction” of this
paper. SA Tableau Search provides a 33-fold increase in speed
when using a GTX 285 graphics card and a 24-fold increase
when using a C1060 GPU device rather than the CPU imple-
mentation. However, the optimization procedure is based on
simulated annealing, which is run in parallel CUDA threads.
Individual thread blocks perform the optimization procedure
for different candidate protein structures from a database.
Protein structures are represented as tableaux containing the
orientations of secondary structure elements and distance
matrices. However, one of the problems with this algorithm
is encountered when comparing big protein structures that
generate big tableaux and distance matrices, as they cannot
be stored inside the constant and shared memory during
computations. This makes it necessary to use a slower version
of the GPU kernel which exploits the global memory rather
than the faster constant and shared memory. GPU-CASSERT
avoids this problem by using a different representation of
protein structures: linear sequences of structural descriptors
(where secondary structure elements are also included) are
employed rather than two-dimensional representative
structures.

In terms of representation of protein structures and the
implementation of the method, GPU-CASSERT is closer to
pssAlign [37], which shows up to a 35-fold increase in speed
with the NVIDIA Tesla C2050 GPU over its CPU-based
implementation. Both algorithms consists of two alignment
phases. The fragment-level alignment phase of pssAlign uses
an index-based matched fragment set (MFS) in order to find
so-called seeds between the target protein and each database
protein. These seeds, which are represented by the locations of
the C, atoms, are used to generate initial alignments which are
then refined in the residue-level alignment phase. Just like
GPU-CASSERT, both phases utilize dynamic programming.
However, in GPU-CASSERT, the low-resolution alignment
phase is treated as a preselection phase for detailed alignment.
In contrast to pssAlign, both phases are executed indepen-
dently in GPU-CASSERT. We do not store alignment paths
after the first phase of the algorithm, which was done in the
original CASSERT published in [13]. Consequently, we also
do not perform backtracking in the kernel of the first phase,
since GPU-CASSERT only needs the Score measure to calcu-
late the qualification threshold QOr for the next phase. The
Score is calculated in a linear space, which also influences
the effectiveness. Backtracking is also not performed in the
GPU after the high-resolution alignment phase. It is executed
on the host instead, and only for the highest-scoring database

molecules that are returned for the user to visualize. This
allows computational time to be saved.

Additional savings can be achieved when working with
small query structures. After filtering candidate database pro-
teins based on the qualification threshold, the program creates
new, smaller data packages that are needed in the second
phase. This usually takes some time. For this reason, for
shorter query proteins (less than 100 amino acids in length),
it is reasonable to omit the first phase by setting the qualifica-
tion threshold to 0.0. The probability that such a small protein
structure (after it has been reduced to a chain of SE regions)
will be similar to many of the database proteins is very high.
This means that all or almost all of the proteins qualify for the
next phase (this is visible in Fig. 13), which makes the first
preselection phase almost useless.

GPU-CASSERT also provides additional unique features.
Following research into GPU-based sequence alignments [25,
26, 28, 29], we arrange the data in an appropriate manner
before sending them to the global memory of the GPU device.
Chains of structural descriptors representing protein structures
are stored in a prepared memory array that guarantees coa-
lesced access to the global memory in a single transaction.
Structural descriptors are not transferred to the global memory
of'the GPU device directly from a database, but they are stored
in binary files, which enables faster transfer, and they are
sorted by their lengths in order to reduce thread idle time once
they are processed. We also encoded secondary structure
descriptors of query protein structures (in both phases) as
query profiles—appropriate matrices of all possible scores.
During the computations performed on the GPU device, the
query profile and substitution matrix (needed in the second
phase) are located in the texture memory. The texture memory
is cached on the chip of the graphics card and provides a
higher effective bandwidth, reducing the number of requests
made to off-chip global memory. Streaming is also applied in
GPU-CASSERT in order to alternate kernel launches and
memory copies, resulting in further acceleration. Finally, we
optimized the kernel code to avoid introducing branching via
conditional statements.

GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/
science/gpucassert/cassert.htm

Summary

Efficient methods of 3D protein structure similarity searching
are required, as well as their new, efficient implementations, in
order to generate results in a reasonable time, considering the
exponentially growing numbers of protein structures in mac-
romolecular repositories. In this paper, we have presented
GPU-CASSERT, a GPU-based implementation of the
CASSERT algorithm for efficiently scanning a database of
protein structures in order to identify structural similarities.
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As noted in this paper and the papers of other researchers,
at the current stage of development of computer science, GPU
devices provide an excellent alternative to very expensive
computer infrastructures, as they allow large increases in
speed over CPU-based implementations for the same compu-
tational methods. Moreover, taking into account that the num-
ber of processing cores and the amount of memory in modern
GPU devices are constantly growing, the computational ca-
pabilities of GPU devices are also growing at the same time.
Although, implementing computational methods requires
some additional effort by the user, including the need to get
familiar with the completely new CUDA architecture and
programming model, and to refactor the code of existing
procedures into GPU kernels, in return we can achieve much
faster processing. This is very important because, for many
processes such as 3D protein structure similarity searching,
reducing computational complexity is a very difficult, if not
impossible, task. GPU-based implementations like that pre-
sented in the present paper do not reduce the complexity, but
they can speed up the process by implementing massive
parallelization, thus reducing the overall time required for
process execution.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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