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During differentiation in a thymus, T lymphocytes learn to recognize self alloanti- 
gens determined by the H-2 major histocompatibility complex. This imposes certain 
genetic restrictions on lymphocyte interaction during T cell-mediated immune re- 
sponses (1-3). For example, antigen-specific helper T cells acquire a binding capacity 
not only for a given foreign antigen but also for Ia alloantigens of the host haplotype. 
Our previous studies have shown that soluble allogeneie effect factors (AEF) a derived 
from mixed lymphocyte reaction (MLR) cultures of graft-versus-host reaction 
(GVHR)-activated responder T cells and either H-2- (4, 5),/-region- (6),/-subregion- 
(7, 8) or Mls-locus- (9) incompatible irradiated stimulator cells are genetically re- 
stricted in their helper activities. They each preferentially help primary and secondary 
antibody responses of B cells of the stimulator haplotype. The activity of several of 
these factors may be absorbed by alloantibodies reactive with I-A- (5, 6) or I-J- (8) 
subregion products of the stimulator haplotype but not of the responder haplotype. 
The genetic restriction of these responses may be controlled in part by the acquisition 
by G V H R  donor and MLR responder cells of G V H R  host and MLR stimulator Ia 
antigens (10). Thus, although it is apparent that both helper T cells and AEF helper 
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factors recognize an immunogen  in associat ion with syngeneic Ia  antigens,  the 
molecular  basis for this associative recognit ion is unknown.  It was therefore of  interest 

to b iochemica l ly  and  biological ly  character ize  the component(s)  of  an A E F  that  is H- 
2 restr icted in its ac t iv i ty  for a B cell response of  the s t imula tor  haplo type .  

In this report ,  we demons t ra te  that  a genet ical ly restr icted A E F  produced  across an 
11-2 incompat ib i l i ty  consists of  two ma in  act ive components .  O n e  componen t ,  of  
~30,000-35,000 mol wt, possesses ident ical  b iochemical  and  biological  propert ies  to 
mur ine  T cel l-growth factor (TCGF)  (11) and  is not genet ical ly restricted in its 

activity.  The  other  componen t  has a mol wt of  ~68,000, differs both  b iochemical ly  
and  biological ly  from T C G F ,  and  is genet ical ly  restr icted in its helper  act ivi ty  for B 
cells of  the s t imula tor  hap lo type  and  of  haplo types  that  sha re / -A- reg ion  ident i ty  with 
the s t imula tor  haplo type .  It is suggested tha t  the la t ter  AEF  componen t  is an 
a l loac t iva ted  responder  T cel l-derived receptor  for s t imula tor  cell / -A-control led  Ia 
al loantigens.  

M a t e r i a l s  a n d  M e t h o d s  
Mice. Mice used in this study were either bred and maintained at the University of Toronto, 

Toronto, Canada or purchased from The Jackson Laboratory, Bar Harbor, Maine. 
Antigens. Burro and sheep erythrocytes were purchased from Colorado Serum Co., Denver, 

Colo. 
Antisera. The anti-H-2 and anti-Ia alloantisera and the rabbit anti-bovine serum albumin 

(BSA) serum used were produced at the University of Toronto. A303 is a monoclonal antibody 
that detects Ia antigens whose a-chain subunit (E,) is controlled by a gene in 1-E k and whose 
fl-chain subunit (A~) by a gene in 1-A k (12). Either a (B6.PL-Thy-I.1 × PL/J)F1 anti-C57BL/ 
6 congenic anti-Thy-1.2 serum or an anti-Thy-1.2 hybridoma antibody (13) was used to deplete 
suspensions of T cells. Rabbit anti-mouse Fv and chicken anti-mouse Ig were kindly provided 
by Dr. M. Feldmann, Department of Zoology, University College, London, England. Rabbit 
anti-mouse VH, rabbit anti-mouse VL, and normal rabbit Ig were generously supplied by Dr. 
M. Feldmann but were produced by Dr. D. Givol, Department of Chemical Immunology, 
Weizmann Institute of Science, Rehovot, Israel. A goat anti-Scripps virus gp 70 antiserum was 
kindly provided by Dr. S. Kennel, Oak Ridge National Laboratory, Oak Ridge, Tenn. A rabbit 
antiserum against the cross-reactive idiotype (CRI) of serum anti-p-azophenylarsonate antibod- 
ies produced in A/J  mice (14) was kindly supplied by Dr. J. D. Capra, Department of 
Microbiology, Southwestern University of Texas, Dallas, Tex. 

Preparation of AEF. AEF was produced across an H-2 incompatibility by using GVHR- 
activated A.SW (H-2 ~) responder T cells and irradiated A/WySn (H-2 a) stimulator spleen cells, 
according to procedures previously described (4-9). Briefly, spleen cells were recovered from 
irradiated (800 rad) A/WySn recipients that were injected intravenously .5 d earlier with 10 s 
A.SW thymocytes. Supernates were recovered from 16- to 20-h MLR cultures (1-ml volume) in 
a serum-free RPMI-1640 medium (8) of 107 A.SW activated responder spleen T cells and 107 
irradiated (3,000 rad) normal stimulator A/WySn spleen lymphocytes. They were then assayed 
for AEF activity. 

Chromatographic Resolution of AEF. All chromatography was performed at 4°C using sterile 
buffers, essentially as described before (11). 

Approximately 1.5 ml of unseparated AEF was applied to a 2- × 90-cm column of UItrogel 
ACA 54 (Fisher Scientific Co., Pittsburgh, Pa.) previously equilibrated with 0.9% NaCI. 
Column fractions (8 ml) were eluted in this buffer and their OD~0 were continuously monitored 
with an LKB Uvicord II (LKB Instruments, Inc., Rockville, Md.). The column was calibrated 
with the following molecular weight standards: human serum albumin (mol wt 67,000), 
ovalbumin (tool wt 43,000), TCGF (mol wt 30,000), and cytochrome c (tool wt 12,500). 

Biologically active fractions (see Fig. 2A, pools I and II) from the ACA 54 column were 
dialyzed against 0.04 M NaCI buffered in 0.01 M Hepes, pH 7.2, and applied to a 1.5- X 8-cm 
column of DEAE-Sephacel (Pharmacia Fine Chemicals, Uppsala, Sweden) previously equili- 
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brated in this buffer. Column fractions (8 mi) were eluted using a 120-ml linear gradient of 
0.04-0.5 M NaCI buffered in 0.01 M Hepes, pH 7.2, and their ionic strengths monitored with 
a conductivity meter. 

Active fractions that eluted between 0.05 and 0.1 M NaC1 (Fig. 3, pool III) from the DEAE- 
Sephacel column were dialyzed against 1% 81ycine, adjusted to contain 2% Ampholines (pH 3- 
10; LKB Instruments, Inc., Rockville, Md)  and then mixed with 5 g of Uhrodex (treated 
Sephadex G-75; LKB Instruments, Inc.). T ae gel suspension was spread on a horizontal flat- 
bed isoeleetric focusing (IEF) tray and electtophoresis was carried out at 5°C for 26-30 h using 
a constant current of 8 mA (see Fig. 4A) (11). After IEF, gel sections were made, analyzed for 
their pH, and then transferred to 1- × 5-cm columns that were eluted with 5-10 ml sterile 
water. Each sample was dialyzed against 0.04 M NaCI to remove Ampholines, lyophilized, and 
finally resuspended in 200 pl sterile water before assay. 

Alternatively, selected DEAE column fractions were further resolved by IEF on a 110-ml 
preparative column (model 8100-1; LKB Instruments, Inc.) that was stabilized with a gradient 
of 0-60% glycerol (15). Ampholytes (Pharmacia Fine Chemicals, Div. of Pharmacia, Inc.) in 
the pH range of 3-10 were added to the gradient at a 1:40 dilution. Electrophoresis was carried 
out for 25 h at 4°(3. 40 2.5-ml fractions were collected, their pH determined, and then 
neutralized to pH 7.2 using 1 M Tris base before assay. 

Radioiodination of AEF. Biologically active AEF fractions separated by IEF were dialyzed 
using sterilized Spectrapor membranes (3,500-mol wt cutoff; Spectrapor Medical Industries, 
Los Angeles, Calif.) for 48 h against phosphate-buffered saline (PBS), pH 7.4, with several 
buffer changes. They were then concentrated with Millipore (Millipore Corp., Bedford, Mass.) 
immersible CX uhrafihration units (10,000-mol wt cutoff), and adjusted to pH 8.5 using 1 M 
PBS, pH 9. Samples were labeled with 12sI using the Bolten-Hunter reagent (>1375 Ci/mmole 
sp act; Amersham Corp., Oakville, Ontario) according to the method of Langone et al. (16), 
with the exception that a PBS buffer that contained 0.1% gelatin and 10 mM Tris-HCl, pH 
7.4, was used (12). 

Gel Electrophoresis of AEF. 125I-labeled AEF fractions were analyzed under reducing and 
nonreducing conditions by one-dimensional (l-D) sodium dodecyl sulfate (SDS)-polyacryl- 
amide (10% wt:vol) slab gel electrophoresis (SDS-PAGE) or were subjected to electrophoresis 
on a two-dimensional (2-D) gel according to the method of O'Farrell (17), as previously 
described (18). Dried gels were impregnated with EN3HANCE (New England Nuclear, Boston 
Mass.) and were then exposed to preflashed (19) Kodak XR-1 film (Eastman Kodak Co., 
Rochester, N. Y.) using a Cronex Lightning Plus image-intensifying screen (Du Pont Canada 
Inc., Markham, Ontario, Canada). 

Immunoprecipitation ofofAEF. Aliquots (50/tl) of x25I-labeled AEF previously purified by IEF 
and containing ~5,000-6,000 cpm were reacted with 25 #1 of various antisera for 18 h at 4°C. 
Samples were further treated for 30 min at 4°C with 100 p.1 of a 10% (vol:vol) heat-killed, 
formalin-fixed suspension of Staphylococcus aureus, Cowan I strain (SaCI). They were then 
centrifuged at 6,300 g for 15 rain through 1 ml of 2 M sucrose in 0.02 M Tris-HC1, pH 7.4, to 
remove unbound antibody and to dissociate nonspecifically formed immune complexes. After 
washing of the pellets three times with 1 ml of PBS that contained 0.5% Nonidet P-40 and 5 
mM KI, they were resuspended at 23°C in 50 p.l of a solution of 2% (vol:vol) 2-mercaptoethanol 
and 5% (vol:vol) SDS, centrifuged, and the radioactivity in the supernates was determined in 
a Beckman 300 gamma counter (Beckman Instruments, Inc., Fullerton, Calif.). 

Biological Assays ofAEF. AEF fractions separated by ACA 54, DEAE-Sephacel and IEF were 
assayed for their capacity to promote (a) the proliferation of mouse cytotoxic T lymphocytes 
(CTC) harvested from long-term TCGF-dependent cultures (CTLL cells), (b) concanavalin A 
(Con A)-induced mitogenesis of normal mouse thymocytes, (c) cytolytic reactivity to alloantigens 
in mouse thymocyte and nude spleen cell cultures, and (d) antibody responses to either sheep 
or burro erythrocytes (SRBC, BRBC) in cultures of either nude mouse spleen or T cell-depleted 
normal spleen cells. These assays were performed as previously reported (8, 9, 11). After each 
biochemical method of resolution of AEF, aliquots of isolated fractions were examined for 
activity in each of the above biological tests. Fractions were assayed in replicate at concentrations 
ranging between 5 and 50% (vol:vol). Peak responses in thymocyte mitogenesis, CTL, and 
antibody production assays were usually observed at a sample concentration of ~5-10%. 
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Results  

H-2-restricted Helper Activity of Unfractionated AEF. Table I summarizes our previous 
studies in which 9 out of 10 AEF generated across either H-2 ([4, 5]; and T. Delovitch. 
Unpublished observations.),/-region (6),/-subregion (7, 8), or Mls-locus (9) incom- 
patibility displayed an H-2 restriction in their helper activity for B cells of the 
stimulator haplotype. An AEF (AEF-1) generated using B I0.BR activated responder 
T cells and B10.S irradiated stimulator spleen cells was the only AEF that elicited an 
equivalent response of B cells of the responder and stimulator haplotypes (4). However, 
it showed an apparent genetic restriction as it helped B cells of only some of the 
haplotypes tested. The difference in activity of this AEF when compared with that of 
the nine others listed in Table I may be because: (a) it was produced in the absence 
of the antiserum plus complement (C') treatments of the responder and stimulator 
cells used for AEF-2 (5) and (b) it was produced using an x-ray source and tissue 
culture medium that differed from those used to generate AEF 3-10 (4-9). The 
conditions used for the latter AEF were those indicated for AEF-4 in the Materials 
and Methods section of this report. Because genetic restriction of helper activity was 
displayed for all AEF examined and in 90% of the cases AEF helper activity was 
restricted to cells of the stimulator haplotype, it was conceivable that a major 
component, which mediated this type of H-2 restriction, was present in each of these 
AEF. 

Thus, a biochemical and biological analysis of an AEF produced across an H-2 
incompatibility was performed. Because an AEF generated across an H-2 difference 
yields the strongest helper activity (Table I) and the H-2 ~ and H-2 k haplotypes differ 
most widely in their expression of Ia antigenic specificities, AEF was derived from 
M L R  cultures of A.SW (H-2 ~) GVHR-act ivated responder T cells and A/WySn (H- 
2 a) irradiated stimulator spleen cells. These strains were in greater supply in our 

TABLE I 

Helper Activities of Various AEF 

Strain* Activity§ 

Responder 

Incompatibil- H-2 restric- 

Stimulator ity:~ Re- Stimula- tion 
sponder tor 

1. B10.BR BI0.S H-2 s + + + +  + + + +  No 
2. B10.BR (Ia-) B10.S (Thy- H-2" ± + + + +  Yes 

1.20) 
3. B10.S B 10.BR H-2 k ± + + + +  Yes 
4. A.SW A/WySn H-2 ~ + + + + +  Yes 
5. A.TH A.TL I~,TL?,Qa? + + + + +  Yes 
6. (A.TH × B10.HTT)F~ A.TL 1-Ak,I-B~,I-J k :t: + + +  Yes 
7. B 10.A(3R) B 10.A(5R) l -J  k - + +  Yes 
8. B 10.A(5R) B 10.A(3R) l -J  b - + +  Yes 
9. B 10.S(7R) B 10.HTT I-ECk, TL?,Qa? ± + + +  Yes 

10. C 3 H / H e J  B 10.BR M l s  b - + +  Yes 

* Strains used for the production of AEF. 
:[: Genetic incompatibility in the G V H R  and M L R  phases of AEF production. 
§ Helper activity with T-cell depleted spleen cells of either responder or stimulator haplotype. Relative 

strengths of AEF helper activity are shown as: + + + +  (2,000-3,000 PFC/107 cells), + + +  (1,000-2,000 
PFC/107 cells), + +  (300-1,000 PFC/107 cells), + (100-300 PFC/107 cells), ± (50-100 PFC/107 cells), 
and - (<50 PFC/107 cells). 
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colony than  the h i s toeompat ib le  B I0.S(H-2 s) and  B10.BR(H-2 k) strains previously 
used for A E F  1-3. They  also enab led  the use o f  several r ecombinan t s  o f  the  H-28 and  
H - 2  k haplo types  to ca r ry  out  genetic m a p p i n g  studies of  A E F  helper  act ivi ty.  

Fig. 1A demons t ra tes  tha t  A E F  preferent ia l ly  helps A / W y S n ,  bu t  not  A.SW,  T 
cel l -deple ted  spleen cells. O p t i m u m  helper  ac t iv i ty  was ob ta ined  at  a concent ra t ion  
o f  0.01% (i.e., a d i lu t ion of  1:10,000). A E F  helper  ac t iv i ty  is, therefore,  genet ical ly  
restr ic ted for B cells of  the  s t imula to r  hap lo type .  This  A E F  also helps B 10.A, B 10.BR, 
B10.S(SR), B10.A(4R),  A .TL,  and  B A L B / c  B cells; bu t  not  A . T H ,  B10.S, B10, 
BI0 .A(5R) ,  and  B I 0 . H T T  B cells (da ta  not  shown). Thus,  A E F  seems to help 
p r imar i l y  B cells o f  hap lo types  tha t  sha re / -Ak-subreg ion  iden t i ty  wi th  the  s t imula to r  
hap lo type .  T h e  only  except ion to this I-A iden t i ty  requ i rement  for A E F  ac t iv i ty  is the  
B A L B / c  s train;  the  reason tha t  A E F  helps this s t ra in  is present ly  not unders tood  and  
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Fro. 1. H-2 restriction and immunoadsorption of AEF helper activity. (A) Anti-Thy-1.2 plus C'- 
treated spleen cells (106) from either responder (R) A.SW (0) or stimulator (S) A/WySn (A) 
unprimed mice were cultured with or without BRBC (3 X 10 s) in the absence or presence of AEF 
at various final concentrations ranging from 0.0001 to 10% (vohvol). Direct PFC in triplicate 5-d 
cultures in RPMt-1640 medium containing 5% fetal calf serum were enumerated and are presented 
as SEM (arithmetic). The results of two experiments are shown. Background PFC values obtained 
in the absence of antigen ranged from 0 to 100 and have been subtracted. T~ae haplotype origin of 
the H-2 regions of the strains used are indicated. (B) Anti-Thy-l.2 plus C'-treated A/WySn spleen 
cells were cultured with or without antibody-column adsorbed AEF. The anti-Ia sera used for 
adsorption and their potential reactivities are presented. Other conditions used are as in (A) above. 
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may be related to a structural homology of Ia k and la d antigens (see Discussion). 
Compatible with this mapping data is the finding that AEF helper activity for A/  
WySn T cell-depleted spleen cells could be removed by immunoadsorption on 
cyanogen bromide-activated Sepharose 4B columns conjugated with either A.TH 
anti-A.TL (anti-I~,S k) or (A.TH × B 10.HTT)F1 anti-A.TL (anti-l-A k,l-B*,I-Jk), but 
not with (B 10 × HTI)F1 anti-B10.A(5R) (anti-I-Jk,I-Ek,I-CY,S a) or A.TL anti-A.TH 
(anti-Ia,S 8) (Fig. 1B). These observations suggested that unfractionated AEF possesses 
a component(s), potentially responder T cell membrane-derived, that can recognize 
and bind to Ia antigens determined by the I-A h subregion of the stimulator haplotype. 
To attempt to understand the molecular basis of T cell recognition of Ia alloantigens, 
it was considered important to identify such an AEF component. A biochemical 
characterization of AEF was, therefore, performed. AEF was subjected to various 
methods of resolution and the fractions obtained examined for their activity in several 
biological assays. 

Gel Filtration. Approximately 15 ml of AEF harvested in a serum-free RPMI-1640 
medium supplemented with the protease inhibitor Trasylol (8) was fractionated 
according to size by chromatography in 0.9% NaCI on an ACA 54 column. The 
fractions obtained were assayed at a 1:10 dilution for their ability to stimulate a 
primary in vitro anti-SRBC direct plaque-forming cell (PFC) response of either nude 
spleen cells or T cell-depleted spleen cells under culture conditions that were limiting 
for helper T cells (11). Fig. 2A shows that fractions eluting in the 50,000- to 70,000- 
and 25,000- to 35,000-mol wt ranges, designated pools I and II, respectively, potentiate 
a PFC response of BALB/c (H-2 a) nude spleen cells. The helper activity, expressed as 
the fraction of responding microcultures, of pool I was about twofold greater than 
that of pool II. This AEF helper activity for BALB/c nude spleen cells is consistent 
with the observation of AEF helper activity for BALB/c T cell-depleted spleen cells 
mentioned above. Pool II displays TCGF-like activity when tested (fractions were 
diluted 1:5) for their capacity to stimulate the growth of TCGF-dependent CTLL 
cells (Fig. 2A), and promotes Con A-induced mitogenesis of thymocytes and the 
generation of cytotoxic T cells in either thymocyte or nude spleen cell cultures (J. 
Watson. Unpublished observations.). By contrast, pool I does not possess any of the 
latter three biological activities. Pool I also differs from pool II because it helps a PFC 
response of B10.A but not B10.S T cell-depleted spleen cells (Fig. 2B). Again, the 
helper activity of pool I was about twice that of pool II. This indicates that the helper 
activity of pool I is restricted to B cells that are histocompatible with the stimulator 
haplotype and not the responder haplotype; the helper activity of pool II is not 
genetically restricted. Thus, gel filtration demonstrates that AEF may be resolved into 
two main components, pool I and pool II, which differ in their molecular size and 
biological activity. 

Ion-Exchange Chromatography. To further resolve any differences in the biochemical 
properties of pools I and II eluted from ACA 54, these biologically active components 
were analyzed by ion-exchange chromatography. The fractions collected were ana- 
lyzed at a 1:10 dilution for their helper activity with BALB/e nude spleen cells and 
for their TCGF-Iike activity at a 1:5 dilution with CTLL cells. 

It is evident from Fig. 3A that pool I eluted from DEAE-Sephacel with a major 
peak between 0.05 M and 0.1 M NaCI-Hepes, pH 7.2, and a minor peak between 
0.15 M and 0.2 M NaCI-Hepes, pH 7.2. A similar elution profile was obtained for 



D E L O V I T C H  ET AL. 113 

0.7 

0.6 

0.5 

I 0.4 

0.3 

.! 0.2 

=Z 0.1 

g 
IJ rr 

.~ 0.6 

0.5 

BALBIc nus'nu ~ ~lls 
67K 43K 30K 1~,5K 

R 

/ i 

J. ¢ 
, 4 , . .  %, . . . . .  

Anti-Thy-1.2.T reatl¢l 8plelm C4dhl 

67K 12.~ 

10 

8 i 

s cb 
i 
o .  

- 4  ~, 

- 2  

B 

0.4 L ,L B10,A 

0,3 ~ '  

0.2 

0.1 

i I I I 

Fraction Number 
FIo. 2. Assay of AEF activity after gel filtration on ACA 54. (A) Column fractions were assayed 
for their capacity to promote at a 1 : 10 dilution a primary in vitro anti-SRBC direct PFC response 
of BALB/c  nude spleen cells (A) or to st imulate at a 1:5 dilution C T L L  cell growth (0). PFC results 
are expressed in terms of the fraction of responding microcuhures in the 120 cultures tested for each 
column fraction (11). Results of  cell growth are expressed as [aH]thymidine counts per minute 
incorporated into trichloroacetic acid-precipitable DNA. The  molecular weight markers used to 
calibrate the column were h u m a n  serum albumin (67,000), ovalbumin (43,000), TCGF (~30,000), 
and cytochrome c (12,500). (B) Column fractions were assayed at a 1:10 dilution for their ability to 
st imulate an anti-SRBC response of either B I0.S (0) or B 10.A (A) T cell-depleted spleen cells. In 
(A) and (B) above, two distinct components,  pools I and II, were identified. 

pool II (Fig. 3 B). The contamination of pool I with pool II in Fig. 3 A and vice-versa 
in Fig. 3 B presumably arises from the manner in which pools I and II were originally 
selected (Fig. 2). Interestingly, AEF helper activity resided in fractions eluting both at 
low (0.05-0.1 M) and high (0.15-0.2 M) NaCI concentrations, whereas TCGF-like 
activity was present only in those fractions eluted at the higher NaCI concentration 
(Fig. 3 B). Thus pool I activity may be fractionated between 0.05 and 0.1 M NaCI 
and pool II activity may be fractionated between 0.15 and 0.2 M NaCI. This further 
demonstrates that the biologically active pools I and II consist of biochemically 
different molecules. Because pool I lacks TCGF-Iike activity but possesses H-2- 
restricted helper activity, it was of interest to further characterize the major peak 
eluted from DEAE-Sephacel at 0.05-0.1 M NaCI, which was designated as pool III. 
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FIo. 3. Assay of AEF activity after ion-exchange chromatography on DEAE-Sephacel. Active 
AEF components obtained from ACA 54 pool I (A) and ACA 54 pool II (B) were fractionated on 
DEAE-Sephaeel and assayed either for their helper activity with BALB/c nude spleen cells (&) or 
their ability to stimulate CTLL cell growth (0). The concentration gradient of 0.04-0.4 M NaCI- 
Hepes, pH 7.2, is indicated (---). Fractions eluted between 0.05 and 0.1 M NaC1 were designated as 
pool III. 

IEF. AEF pool III  collected from the DEAE-Sephacel  eluates shown in Fig. 3 was 
separated by IEF using a p H  gradient of  3-10. Two major  peaks of  helper activity 
(assayed at a 1:3 dilution) for B 10.A T cell-depleted spleen cells were obtained by IEF 
on a horizontal flat-bed of  Sephadex G-75 (Fig. 4A). The  isoelectric point (pI) of  
peak I was 5.8 and of  peak II was 6.2. It should be noted that  a broad peak of  activity 
with a pI  in the 5.5-6.5 range was sometimes observed (J. Watson. Unpubl ished 
observation.). It, therefore, remains uncertain whether peaks I and II represent two 
distinct molecules of  similar molecular size and different molecular charge. 

When  pool I II  o f  the DEAE-Sephacel  column was separated by IEF on a preparat ive 
vertical column stabilized with a gradient of  0-60% glycerol, one predominant  peak 
with a pI  in the range of  5.5-6.0 was observed (Fig. 4 B). The  latter peak preferentially 
helped an ant i -SRBC direct PFC response of  T cell-depleted spleen cells of  the A /  
WySn stimulator haplotype and not of  the A.SW responder haplotype.  Thus,  the H- 
2-restricted helper activity o f  AEF was maintained throughout  the several biochemical 
methods of  resolution used and seems to reside with a major  component ,  component  
I, of  pI 5.5-6.0. 

Gel Electrophoresis. To further analyze whether the H-2-restricted AEF helper 
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Fro. 4. Assay of AEF activity after IEF (pH 3-10). Pool III from DEAE-Sephacel was analyzed by 
either horizontal flat-bed IEF (A) or preparative vertical column IEF (B). Fractions obtained were 
diluted 1:3 and assayed for their helper activity with either BI0.A T cell-depleted spleen cells (A) 
or A.SW (0) and A/WySn (C)) T cell-depleted spleen cells (B). 

activity of pI 5.5-6.0 is attributable to one or perhaps more than one component, the 
IEF fractions containing helper activity were characterized by gel electrophoresis. 

Fractions 17 and 19 of AEF component I shown in Fig. 4A were each dialyzed to 
remove Ampholines, concentrated, and labeled with ]2sI using the Bohon-Hunter  
reagent. They were then fractionated on Sephadex G-25 to remove free lzsI, dialyzed, 
concentrated, and applied to a lentil lectin affinity column; the unbound and bound 
fractions were lyophilized, dissolved, and analyzed under reducing conditions by 1-D 
10% SDS-PAGE. The gel fluorogram presented in Fig. 5 demonstrates that the lentil 
lectin-unbound material of fractions 17 (track A) and 19 (track B) consists of a major 
band in the 68,000-mol wt (Fig. 5, 68 K) region. This band is absent from the lentil 
lectin-bound material of these fractions (Fig. 5, tracks C and D). Another band at 
-10,000-15,000 tool wt which comigrated with the Coomassie blue dye front was 
present in both of the unbound and bound fractions (Fig. 5, tracks A-D). These data 
suggest that the 68,000-mol wt component does not possess mannose residues and, 
therefore, may not be a glycoprotein. The glycoprotein nature of the 10,000- to 15,000- 
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Fl+. 5. I-D gel fluorogram of 12Sl-labeled AEF component I after IEF and lentil lectin affinity 
chromatography. Flat-bed IEF fractions 17 (tracks A and C) and 19 (tracks B and D) of AEF 
component I (Fig. 4A) were radioiodinated, separated on a lentil lectin column into their unbound 
(tracks A and B) and bound (tracks C and D) components, respectively, and then analyzed under 
reducing conditions by 1-D 10% SDS-PAGE. The position of migration of the molecular weight 
markers, bovine serum albumin (68,000), Ig heavy chain (55,000), ovalbumin (43,000), porcine 
lactate dehydrogenase (36,000), and Ig L+cbain (25,000) are indicated by arrows. 
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mol wt component remains uncertain, as it appeared in both of the lectin-bound and 
-unbound fractions. It is possible, however, that these lectin fractions contain proteins 
of similar molecular size but that are either glycoprotein or nonglycoprotein in nature, 
respectively. 

To determine whether the 68,000- and 10,000- to 15,000-mol wt components can 
be found in associated form in a larger molecular weight complex, 125I-labeled 
fractions 17 and 19 of Fig. 4A and pooled fractions 17-19 of Fig. 4B were subjected 
to electrophoresis under nonreducing conditions. For comparison, the samples were 
also run under reducing conditions on the same 1-D slab gel. Samples were not 
subjected to lentil lectin chromatography before electrophoresis. The results shown in 
Fig. 6 reveal that identical gel patterns were obtained when fractions 17, 19, and 17- 
19 were analyzed under reducing (tracks A, C, and E, respectively) and nonreducing 
(tracks B, D, and F, respectively) conditions. Two major bands were observed in the 
68,000- and 10,000- to 15,000-tool wt regions. The bands were quite broad because 
the gel was overloaded with the samples to identify any possible contaminating minor 
components. Because no proteins ~68,000 mol wt were seen, it is unlikely that the 
68,000- and 10,000- to 15,000-mol wt components are covalently associated. A 
noncovalent association between these components may not be ruled out, however, as 
they were run in the presence of SDS. 

To examine the possible subunit structure of the two AEF components, 125I-labeled 
fractions 17, 19, and 17-19 were subjected to electrophoresis under dissociating 
conditions on a 1-D acid-urea 10% polyacrylamide slab gel in the absence of SDS 
(20). Only the 68,000- and 10,000- to 15,000-mol wt components appeared on this gel 
(T. Deiovitch. Unpublished observations.). Thus, these AEF components do not seem 
to be composed of noncovalently associated subunits. 

The molecular heterogeneity of these components was further assessed by 2-D gel 
electrophoresis. The fluorogram of 125I-labeled fraction 17-19 (Fig. 4 B) shown in Fig. 
7 reveals a major spot (enclosed area) having a mol wt of ~68,000 and a pI of ~5.8. 
This pI value is in close agreement with that previously estimated for this component 
by preparative IEF (Fig. 4). Moreover, the gel pattern indicates that this component 
is presumably homogeneous because one, and only one, spot was evident in this region 
of the gel. In contrast, the radioactivity that appeared in the 10,000- to 15,000-mol wt 
region at the dye front of the gel was not confined to a single discrete spot but was 
spread across the entire pH gradient. It is therefore possible that the 10,000- to 15,000- 
mol wt component identified above is not a single protein with biological activity, 
but rather that this mol wt region contains a series of products of similar size that 
result from the degradation of either the 68,000-mol wt component or of a protein 
somewhat larger in mol wt than 68,000. Alternatively, the radioactivity in the 10,000- 
to 15,000-mol wt regions of the gels shown in Figs. 5-7 may derive in part from 
residual non-protein-bound, free ~25I in the samples. 

Taken together, the gel analyses presented above suggest that the H-2-restricted 
helper activity of AEF is a property of a single, non-glycoprotein having a mol wt of 
-68,000 and a pI of ~5.8. 

Serological Characterization. Because the 68,000-mol wt component of AEF appears 
to be a single, responder T cell-derived product that recognizes Ia antigens determined 
by the I-A subregion of the stimulator haplotype, it was considered important to 
serologically identify the antigenic determinants on this molecule. 
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Fie:. 6. I-D gel fluorogram of 12'~I-labeled AEF component I after IEF. Flat-bed IEF fractions 17 
(tracks A and B) and 19 (tracks C and D) of Fig. 4A and vertical-column IEF fractions 17-19 
(tracks E and F) of  Fig. 4 B were radioiodinated and analyzed by I-D 10% SDS-PAGE under either 
reducing (tracks A, C, and E) or nonreducing (tracks B, D, and F) conditions. Molecular weight 
markers are as in Fig. 5. 
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Fro. 7. 2-D gel fluorogram of I~I-labeled AEF component I after IEF. mI-labeled samples of 
vertical-column IEF fractions 17-19 (Fig. 4B) were separated by IEF in the first dimension (left to 
right) and by 10% SDS-PAGE in the second dimension (top to bottom). The basic end (pH 7.5) is 
at the left and the acidic end pH (4.5) at the right. Molecular weight markers are as in Fig. 5. The 
radioactive spot in the 68,000-mol wt region at pl 5.8 is enclosed. 
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IEF fractions 17 and 19 (see Fig. 4A) were pooled, radioiodinated, and aliquots 
containing -5,000-6,000 cpm were immunoprecipitated with various antisera over- 
night. They were then treated for 30 rain with SaCI and the pellets were counted. A 
similar method of serologic analysis was recently used to characterize hapten-specific 
T cell hybrid products (14). The results presented in Table II indicate that each of 
the antisera used yielded a negative reaction with the purified, 68,000-mol wt H-2- 
restricted component of AEF. Thus, within the limits of sensitivity of this radioim- 
munoassay, which is considered to be more direct and perhaps more sensitive than 
testing for biological activity of factors after immunoadsorption (see Fig. 1 B), it can 
be concluded that the 68,000-mol wt AEF component does not bear any Ia determi- 
nants of either the stimulator or responder haplotype, does not carry Ig isotypic H- 
chain and L-chain determinants or Ig idiotypic determinants, and is unrelated to 
BSA and gpT0. 

Discussion 

To further probe the molecular basis for the H-2 restriction of allogeneic lymphocyte 
interaction, a biological and biochemical analysis of an AEF produced across an H-2 
difference was carried out. The results presented demonstrate that AEF consists of 
two distinct components that possess different biochemical and biological properties 
(see Table III). 

One component, component I, chromatographs in the 50,000- to 70,000-mol wt 
range by gel filtration on ACA 54 under nondissociating conditions, elutes from 
DEAE-Sephacel between 0.05 and 0.1 M NaCl, has a pI of ~5.8, and is not a 
glycoprotein as based on its inability to bind to lentil lectin. Gel electrophoretic 
analyses indicated that component I is comprised of a single, homogeneous protein of 
~68,000 mol wt. It is rather unlikely that this protein is either mouse serum albumin 

TABLE II 

Serological Characterization of AEF Component I 

Antiserum cpm precipitated* 

A.TH anti-A.TL (anti-I k) 85 
(A.TH × B10 .H ' I~F ,  anti-A.TL (anti-l-A k) 46 
(B 10 × HTI)F, anti-B10.A(5R) (anti-/-E k) 56 
A303 (anti-Aek:Eak):~ 42 
A.TL anti-A.TH (anti-l ') 61 
Normal mouse serum 52 
Rabbit anti-mouse Vn 79 
Rabbit anti-mouse VL 85 
Rabbit anti-mouse Fv 65 
Rabbit anti-CRI 90 
Rabbit anti-Thy- 1 59 
Rabbit anti-BSA 95 
Rabbit anti-mouse Ig 83 
Normal rabbit Ig 75 
Goat anti-gp 70 70 
None 20 

* Each reaction included 5,000-6,000 cpm of l~I-labeled AEF component I, 25 #! of antiserum, and 100 
#1 of SaCI. The arithmetic mean of cpm precipitated in duplicate samples is shown. 

:~ Approximately 30 #g of purified A303 IgG~ monoclonal anti-Aek:Ea k (12) was used. 
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TABLE III 
Biochemical, Serological, and Biological Properties of AEF 
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Property Component  I Component  II 

Biochemical 
Molecular weight (ACA 54) 50,000-70,000 30,000-35,000 
Molecular weight (SDS-PAGE) 68,000 ND* 
Salt elution from DEAE-Sephacel 0.05-0.1 M 0.15-0.2 M 
pI 5.8 4.3, 4.9 
Lentil lectin affinity - - 

Serological 
Ia 
Ig (isotypic and idiotypic) B m 

Biological 
Helper activity 

1-1-2 restricted + - 
H-2 nonrestricted - + 

Stimulation of C T L L  growth - + 
Stimulation of thymocyte mitogenesis - + 
Generation of cytotoxic T cells - + 

* ND, not done. 

(mol wt 68,000) or gp 70, the major envelope glycoprotein (mol wt =70,000) of 
murine leukemia RNA viruses. Serum albumins from a variety of species have a pI of 
4.7 (21), and gp 70 is a glycoprotein that has extensive pI microheterogeneity in the 
pH range of 4-6 (22). The latter two proteins, therefore, differ from the AEF 68,000- 
mol wt component in their net charge. In addition, the 68,000-mol wt component of 
AEF is not immunoprecipitable by either rabbit anti-BSA or goat anti-Scripps virus 
gp 70 antisera (Table II). A band of 10,000-15,000 mol wt was also evident in the gel 
electrophoretograms of component I; however, as a result of its considerable charge 
heterogeneity on a 2-D gel, we tentatively concluded that this region of the gel consists 
primarily of either degradation products or free lz~I and not a discrete product (s) with 
biological activity. The latter conclusion is compatible with the observation that no 
AEF helper activity was found in this molecular size region upon fractionation on 
ACA 54. Component I possesses helper activity for H-2 a nude spleen cells, for T cell- 
depleted spleen cells of the stimulator (H-2~), but not the responder (H-2~), haplotype, 
and for T cell-depleted spleen cells of haplotypes that share only an/-A-subregion 
identity with the stimulator haplotype. Thus, the helper activity of component I 
seems to be H-2 restricted. 

Component II has a tool wt of -30 ,000-35,000,  elutes from DEAE-Sephacel 
between 0.15 and 0.2 M NaCI, and does not bind to lentil lectin (data not shown). It 
elicits a primary anti-SRBC response of nude spleen cells and of T cell-depleted 
spleens of both the responder and stimulator haplotypes. Moreover, it also stimulates 
(a) the growth of a CTLL cell line in vitro, (b) thymocyte mitogenesis in the presence 
of nonmitogenic doses of Con A, and (c) the generation of cytotoxic T cells in either 
thymocyte or nude spleen cell cultures. The latter three biological activities are not 
manifested by component I. Furthermore, whereas the helper activity of component 
I is H-2 restricted, the helper activity of component II is not H-2 restricted. It is clear, 
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therefore, that AEF components I and II differ markedly in their biochemical and 
biological properties. 

The properties described here for component II are identical to these previously 
reported for a class of lymphokines derived from culture supernates of Con A-activated 
mouse spleen cells and known as TCGF (11), or otherwise designated as either 
costimulator or interleukin-2 (23, 24). TCGF has pI of 4.3 and 4.9 (11) and does not 
bear Ia antigens (23). These findings indicate that TCGF can also be found in MLR 
culture supernates and appears to be a major active component of AEF. It is likely 
that this component is a T cell product because a factor with similar activity has 
recently been detected in the supernatant fluids of a Con A-stimulated T cell 
hybridoma (25) and TCGF was recently shown to be produced by/-A-negative T 
lymphocytes (26). 

Con A-activated spleen cell supernates also contain another lymphokine of 30,000 
mol wt that has a pI of 3-4, activates a nongenetically restricted anti-SRBC response 
of T cell-depleted spleen cells, and does not possess any of the T cell stimulatory 
activities common to TCGF and AEF component II (11). This lymphokine is 
commonly termed T cell-replacing factor (TRF) (27). It is not yet known whether 
AEF contains TRF-like activity. If this is the case, T R F  would be a constituent of 
AEF component II and could be separated from the TCGF-Iike activity in AEF by 
isoelectric focusing. 

A comparison may be made of the biochemical and biological properties of the 
AEF described above with those of another AEF, which for clarity and simplicity will 
be termed AEF'. Whereas AEF' was shown by Armerding et al. (28) to consist of a 
40,000- to 65,000-mol wt component when fractionated under nondissociating con- 
ditions, the AEF characterized in this study yielded 50,000- to 70,000- and 30,000- to 
35,000-mol wt peaks of activity when separated under similar conditions. These AEF 
components did not bind to lentin lectin, whereas AEF' did bind to lentil lectin. The 
DEAE-Sephacel elution profiles of both AEF' and AEF displayed peaks of helper 
activity at 0.07 M NaCI and 0.14-0.2 M NaCI. Chromatography of AEF' under 
dissociating conditions demonstrated that it consists of 40,000-mol wt and 12,000-tool 
wt components, respectively. Electrophoresis patterns of the AEF 50,000- to 70,000- 
mol wt peak under either nonreducing, reducing, or dissociating conditions each 
revealed a major band at 68,000 mol wt and a minor band at 10,000-15,000 tool wt. 
The relationship of the latter low molecular weight AEF component to the 12,000 
dalton AEF' component is unknown, because no biological activity was ever found to 
be associated with a 10,000- to 15,000-mol wt component of AEF. Similarly, no 
functional relationship is apparent between the 40,000- to 65,000-mol wt nondisso- 
ciated form of AEF' and the 68,000-mol wt component I of AEF. Both the nondisso- 
ciated form of AEF' and its two subunits, which act synergistically, provide helper 
activity for T cell-depleted spleen cells of the responder haplotype (activity for 
stimulator haplotype was not tested). The helper activity of AEF component I was H- 
2 restricted for cells of the stimulator haplotype. Because the 30,000- to 35,000-mol wt 
component II of AEF is not genetically restricted, it may be functionally related to 
the 40,000-tool wt subunit of AEF'. Compatible with this suggestion is the recent 
observation that AEF' can autonomously induce a primary CTL response in vitro in 
the absence of stimulating target cells during the sensitization phase.(29). This AEF' 
activity presumably is mediated by its TCGF-Iike activity which probably resides in 
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its 40,000-mol wt component. As shown above, the 30,000- to 35,000-mol wt compo- 
nent II of AEF displays TCGF-like activity. Hence, although AEF' and AEF have 
some biochemical and biological properties in common, they also differ in certain 
other properties. 

As (a) helper T cells interact in an H-2-restricted manner with both antigen and 
self Ia determinants on macrophages and B cells (reviewed in 1, 2, and 9) and (b) AEF 
component I is H-2 restricted in its helper activity, the immunological significance of 
this 68,000-mol wt protein warrants further discussion. The biological importance of 
the TCGF-like AEF component II has already been discussed elsewhere (11, 30). 

AEF component I is most likely a product of an alloactivated MLR responder 
helper T cell. Support for this cellular origin of component I derives from two main 
findings. First, ~90-95% of the alloactivated MLR responder cell population used to 
prepare AEF was serologically detected to be G V H R donor T cells. It is known that 
GVHR donor T cell blasts passively acquire host cell-derived H-2 and Ia antigens 
onto their surface (10), a similar intercellular exchange of Ia antigens occurs from 
stimulator cells to responder T cells during an MLR (31). In addition, the Ly antigen 
phenotype of these GVHR- and MLR-activated T blasts is Lyt-1+,2 - (10, 31), which 
is identical to the Ly antigen phenotype of antigen-specific helper T cells (32). These 
data previously prompted us to propose that this cellular transfer of Ia antigens is 
responsible in part for the H-2 restricted interactions of antigen- and alloantigen- 
specific helper T cells (10). Note that TCGF also requires the presence of Lyt-l+,2 - T 
cells for its production (26), and hence AEF components I and II may be products of 
the same T cell subpopulation. Second, component I possesses helper activity and 
seems to recognize Ia antigens of the G V H R host and MLR stimulator haplotype. It 
is, therefore, conceivable that component I is a G V H R donor and MLR responder T 
cell surface membrane protein that binds to host and stimulator Ia antigens, and is 
present in AEF because it is either shed or secreted by the activated MLR responder 
T cells. If this is indeed the case, then this 68,000-mol wt component of AEF might be 
classified as a T cell alloantigen receptor. 

AEF is commonly regarded as an antigen-nonspecific helper factor. However, 
because AEF component I exhibits alloantigen specificity, AEF should now be 
considered to be an alloantigen-specific helper factor. 9 out of 10 AEF examined thus 
far elicit H-2-restricted helper activity (Table I). It is probable that these AEF each 
consist of a structurally distinct 68,000-mo1 wt component that has binding specificity 
for different Ia determinants. As a corollary, this might infer the existence of a large 
repertoire of polymorphic T cell receptors for H-2-1inked alloantigens. The observation 
that the helper activity of AEF component I is about twofold greater than that of 
component II (Fig. 2) might explain why most AEF preparations when tested at an 
appropriate dilution manifest H-2-restricted help. We suggest that the H-2-restricted 
or non-H-2-restricted activity of a particular AEF is dependent upon its relative 
amounts of component I and II identified herein. 

Based on immunoadsorption studies, we have previously reported that various AEF 
are Ia-positive helper factors (4-7, 9). These Ia antigens were shown to be stimulator 
B cell and/or  macrophage derived. In the present study, it is important to note that 
although a similar immunoadsorption experiment indicates that AEF bears stimulator 
haplotype derived Ia antigens (Fig. 1), a more direct and sensitive serological assay of 
AEF component I suggests that this H-2-restricted component is Ia-negative (Table 
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II). Furthermore, spots corresponding to Ia antigens are absent from the 2-D gel 
fluorogram of component I (Fig. 7). It is possible that stimulator cell-derived Ia 
antigens are active components of AEF and can perhaps bind noncovalently to 
component I of AEF when AEF is in an unfractionated form. A biochemical resolution 
of AEF into its various components may, as a result of extensive manipulation, cause 
the dissociation of Ia antigens from the 68,000-mol wt component of AEF. Neverthe- 
less, because various anti-Ia sera do not bind to this 68,000 component, this result 
would tend to negate the possibility that such antisera contain anti-idiotype antibodies 
that bind to the anti-self Ia idiotype of T cell-derived factors (33). 

Although we have proposed that AEF component I recognizes Ia antigens deter- 
mined by the I-A k subregion, the reason for its helper activity for BALB/c (H-2 a) 
nude spleen cells was unclear. The model of two-gene complementation for Ia antigens 
(34) might explain this result. The H-2 k and H-2 a haplotypes express Ia antigens 
composed of an a-chain subunit (E~) controlled by a gene in I -E that is noncovalently 
associated with a fl-chain subunit (A~) controlled by a gene in I-A. Ae k and Ae a possess 
-40-50% structural homology, whereas E, k and E~ a share -90% structural homology 
(35). In certain cases, helper T cells recognize an antigen in association with an Ae:Eo 
complex on the surface of an antigen-presenting macrophage (36). In addition, some 
clones of alloreactive T cells appear to recognize, and are stimulated by, the surface 
form of the A~ chain (37). Thus, the 68,000-mol wt component of AEF may have a 
binding capacity for membrane-bound Ae k and Ae a chains of macrophages and/or  B 
cells in nude spleen and T cell-depleted spleen cell populations. More significantly, if 
this type of interaction can be shown to occur preferentially for macrophage-derived 
Ia antigens, this would provide strong support for the claim that H-2 restriction of 
lymphocyte interaction occurs primarily between T cells and accessory cells (macro- 
phages) and not between T cells and B cells (38). 

Our  previous observations that Ia antigens determined by only the stimulator 
haplotype and not the responder haplotype (5-8) led us to postulate that AEF is a B 
cell and/or  macrophage product. The data presented herein, however, suggest that 
the H-2-restricted activity of AEF is conferred not by Ia antigens themselves, but 
rather by an Ia-negative, and possibly Vn- and idiotype-negative, alloactivated T cell- 
derived, 68,000-mol wt protein that can recognize and bind to Ia antigens on B cells 
and/or  macrophages. This AEF component may in fact bear VH and idiotypic 
determinants that differ from those detected by the sera used. It seems that a ligand: 
receptor interaction, which is Ia:anti-Ia in nature, is mediated by AEF component I. 
We therefore now reinterpret our original observations to suggest that whereas AEF 
Ia antigens may be products of B cells and macrophages, the Ia-negative,/-A-restricted 
component of the AEF analyzed here is an alloactivated T cell product. 

During the last few years, a number  of soluble T cell-derived helper and suppressor 
factors have been described. Although their active components were not purified to 
apparent homogeneity, their biological activity was ascribed to molecules in the 
40,000- to 70,000-mol wt range. More recently, with the availability of the hybridoma 
and T cell cloning technologies, products of both T cell hybrids formed by the fusion 
of a thymoma cell line with antigen-specific suppressor T cells (14) and of nontrans- 
formed, antigen-specific suppressor T cell clones (39) have been characterized. Some 
of these molecules have been shown to have a mol wt of either 62,000 (14) or 68,000 
(39) and to express (14, 40) or not express (39) Ia determinants. Another antigen- 
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specific suppressor factor derived from uncloned T cells, when purified, was shown to 
have a mol wt of 68,000 and to be Ia negative (41). Although none of these T cell 
products bear any known Ig isotypic H or L chain determinants, one of them seems 
to carry cross-reactive idiotypic determinants (14). The AEF component I purified 
and characterized here is similar in size (68,000 mol wt) to the above-mentioned T 
cell products, does not possess Ia determinants, and bears neither Vn, CH, L-chain, 
nor idiotypic determinants. This AEF component bears some resemblance to a 
previously identified 70,000-mol wt, Ia-negative, idiotype-positive constituent of 
alloactivated T cells (42). More extensive biochemical and biological analyses of the 
above-mentioned, as well as other, T cell-derived products should ultimately resolve 
the molecular nature of antigen-specific and alloantigen-specific T cell receptors. 
They may even provide an answer the problem of whether dual recognition by T cells 
is mediated by either two receptors--one receptor for foreign antigens and a second 
receptor for H-2 ant igens--or  a single receptor for these two groups of antigens. 

S u m m a r y  

An allogeneic effect factor (AEF) derived from mixed lymphocyte reaction (MLR) 
cultures of alloactivated A.SW (H-2 ~) responder T cells and irradiated A/WySn (H- 
2 a) stimulator spleen cells helps an in vitro primary anti-erythrocyte plaque-forming 
cell PFC response of BALB/c nude spleen cells and also A/WySn but not A.SW T 
cell-depleted spleen cells. AEF activity is adsorbed by anti-I  k and anti-I-A k but not 
by anti-I-J k, anti-I-EC k, and anti-/8. Gel filtration of ACA 54 resolves AEF into two 
main components that which appear  in the 50,000- to 70,000-mol wt (component I) 
and 30,000- to 35,000-mol wt (component II) regions, respectively. Component I has 
a mol wt of 68,000, elutes from DEAE-Sephacel at 0.05-0.1 M NaC1, and has an 
isoelectric point (pI) of 5.8. It helps A/WySn but not A.SW B cells and, therefore, is 
H-2 restricted. Component  II is not H-2 restricted, because it helps both A.SW and 
A/WySn B cells. It also stimulates (a) the growth of a long-term cytotoxic cell line in 
vitro, (b) Con A-induced thymocyte mitogenesis, and (c) the generation of cytotoxic 
T cells. The latter three properties of component II are not shared by component I. 
In addition, component II elutes from DEAE-Sephacel at 0.15-0.2 M NaCI and has 
a pI of 4.3 and 4.9. Ia determinants and Ig Vm Cn, L-chain, and idiotypic determi- 
nants are not present on either component I or component II. The properties of 
component II are identical to that of a T cell growth factor produced by Con A- 
stimulated spleen cells. It is suggested that the H-2-restricted component I of AEF 
might be an MLR-act ivated responder T cell-derived Ia alloantigen receptor. 
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