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Automatic detection of lung nodules is an important problem in computer analysis of chest radiographs. In this paper, we propose
a novel algorithm for isolating lung abnormalities (nodules) from spiral chest low-dose CT (LDCT) scans. The proposed algorithm
consists of three main steps. The first step isolates the lung nodules, arteries, veins, bronchi, and bronchioles from the surrounding
anatomical structures. The second step detects lung nodules using deformable 3D and 2D templates describing typical geometry
and gray-level distribution within the nodules of the same type. The detection combines the normalized cross-correlation template
matching and a genetic optimization algorithm. The final step eliminates the false positive nodules (FPNs) using three features that
robustly define the true lung nodules. Experiments with 200 CT data sets show that the proposed approach provided comparable

results with respect to the experts.

1. Introduction

Lung cancer remains the leading cause of cancer-related
deaths in the US. In 2012, there were approximately 229,447
new cases of lung cancer and 159,124 related deaths [1]. Early
detection of lung tumors (visible on chest film as nodules)
may increase the patient’s chance of survival, but detecting
nodules is a complicated task. Nodules show up as relatively
low-contrast white circular objects within the lung fields.
The difficulty for computer-aided detection (CADe) schemes
is distinguishing true nodules from (overlapping) shadows,
vessels, and ribs.

CADe systems for detection of lung nodules in thoracic
CT generally consist of two major stages: (1) selection of the
initial candidate nodules and then (2) elimination of the false
positive nodules (FPNs) with preservation of the true positive
nodules (TPNs). At the first stage, conformal nodule filtering
or unsharp masking can enhance nodules and suppress other

structures to separate the candidates from the background
by simple thresholding or a multiple gray-level thresholding
technique [2, 3]. To improve the separation, background
trend is corrected in [4, 5] within image regions of interest.
Then, a series of 3D cylindrical and spherical filters are used
to detect small lung nodules from high-resolution CT images
[6, 7]. Circular and semicircular nodule candidates can be
detected by template matching [8-11]. However, these spher-
ical, cylindrical, or circular assumptions are not adequate
for describing the general geometry of the lesions. This is
because their shape can be irregular due to the speculation
or the attachments to the pleural surface (i.e., juxtapleural
and peripheral) and vessels (i.e., vascularized) [12]. In [13, 14],
morphological operators were used to detect lung nodules.
The drawbacks to these approaches are the difficulties in
detecting lung wall nodules. Also, there are other pattern-
recognition techniques used in detection of lung nodules,
such as clustering [15], linear discriminate functions [16],
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gray-level distance transform [17], and a patient-specific a
priori model [18].

The FPNs are excluded at the second stage by nodule
classification. The most popular way to do classification is
to use a feature-based classifier. First, the nodule candidates
identified in the first step are segmented, and features are
extracted from the segmented nodule candidates. Features
may include morphologic (or shape-based) features (e.g.,
size, circularity, and curvature), gray-level-based features
(e.g., histogram-based features), and texture features. The
task of the classifier is to determine “optimal” boundaries
for separating classes (i.e., nodules or nonnodules) in the
multidimensional feature space which is formed by the input
features [19].

Recently, Dehmeshki et al. [20] proposed a shape-based
template matching approach based on a genetic algorithm
(GA) for the detection of spherical nodules. They compared
their method, on a set of 70 CT scans, with Lee et al’'s GA
template matching method [8], achieving better detection
rate and lower false positives. Pu et al. [21] developed a scor-
ing method based on the similarity distance of medial axis-
like shapes obtained through a progressive clustering strategy
combined with a marching cube algorithm from a sphere-
based shape. Ye et al. [22] used a rule-based system followed
by a weighted support vector machine (SVM) for classifica-
tion. Murphy etal. [23] applied a k-nearest-neighbor classifier
for classification, whereas Tan et al. [24] implemented a
feature-selective classifier based on a genetic algorithm and
artificial neural networks (ANNs) for classification. Messay
et al. [14] developed a sequential forward selection process
for selecting the optimum features for LDA and quadratic
discriminant analysis. A heuristic approach was used by
Riccardi et al. [25] for classification based on geometric
features followed by an SVM. Thus, various approaches have
been proposed for the classification component in CADe
systems. However, most of these techniques do not investigate
the detection of irregularly shaped nodules as well as cavity
nodules.

To detect the different types of lung nodules (including
small nodules, nodules attached to the wall, irregularly
shaped nodules, and cavity nodules), we model nodule types
with four central-symmetric deformable templates: (i) the
solid spherical model of a large size (above 10 mm), calcified,
and noncalcified nodules appearing in several successive
slices; (ii) the hollow spherical model of large lung cavity
nodules; (iii) the circular model of small nodules appearing
in only a single slice; and (iv) the semicircular model of
lung wall nodules. This approach allows for the isolation of
abnormalities which spread over several adjacent CT slices.

Each template has a specific gray-level pattern which is
analytically estimated in order to fit the available empiri-
cal data. Normalized cross-correlation is used for template
matching. The 3D or 2D position, size, and gray-level pattern
of each template is adjusted to the most similar part of
the segmented veins, arteries, and lung abnormalities by a
genetic optimization technique [26]. After all the candidates
are detected, a supervised Bayesian classification of geometric
and textural features of the candidate nodules partially
excludes the FPNs. This paper presents an extended version
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of our previously published papers [27-30], containing more
illustrations about each step of the proposed method as
well as more experimental results to verify the accuracy and
benefits of the proposed approach.

2. Lung Abnormalities

In this paper, we focus on three types of lung abnormalities
that can appear in spiral low-dose computed tomography
(LDCT). These three types are calcified lung nodules, non-
calcified lung nodules, and cavity lung nodules.

Calcification is usually detected visually when thinly
collimated slices (1 to 3mm) are performed through the
nodule [31, 32]. It has recently been shown that the cal-
cification can be inferred when a 3 to 7mm nodule is
visible on standard mediastinal images obtained using 10 mm
collimation [31, 32]. Measurement of CT attenuation values
can also be used to infer the presence of calcium within the
nodule [31, 32]. A CT attenuation value of 200 Hounsfield
units is usually used to distinguish between calcified and
noncalcified nodules. Calcification of a nodule can be useful
in determining benignity, although the majority of benign
nodules are not calcified [31, 32]. Calcification that is diffusely
solid, centrally punctuate, laminated, or “popcorn-like” in
appearance is diagnostic of a benign nodule. The noncalcified
lung nodules appear in the CT similar to calcified nodules but
with a CT attenuation value less than 200 Hounsfield.

Cavitations occur in benign and malignant nodules and
appear clearly in CT. Malignant cavities typically have thick,
irregular walls, while benign cavities have smooth, thin walls
[32]. For instance, 97% of cavity nodules with a wall thickness
greater than 16 mm are malignant and 93% with a wall
thickness less than 4 mm are benign. Cavity nodules appear
in spiral CT images as hollow spheres.

3. Deformable Templates of Abnormalities

Our detection of lung nodules begins with two segmentation
stages, which considerably reduce the search space. At the
first stage, as shown in Figures 1(a) and 1(b), lung tissues are
separated from the surrounding anatomical structures, for
example, ribs, liver, and other organs, appearing in the chest
LDCT scans based on an iterative Markov-Gibbs-random-
field-(MGRF-) based segmentation framework, illustrated
in [33]. Briefly, a linear combination of discrete Gaussians
(LCDG) model [34] with positive and negative components
was used to approximate the empirical distribution of the
LDCT signals of the lung fields and their background,
describing the Ist-order visual appearance model of the
LCDG image. An initial segmentation of the lung fields
was obtained by voxelwise Bayesian maximum A posteriori
(MAP) classification of a given image, based on its LCDG
approximation of the signals of the lung fields and their
background. For accurate and smooth segmentation that
retains nodules attached to the lung wall, the segmentation
of the lung fields was iteratively refined by the iterative
conditional mode (ICM) relaxation that maximizes a MGRF
energy that accounts for the 1st-order visual appearance
model and the spatial interaction between the image voxels.
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FIGURE 1: First two segmentation steps: (a) an original CT lung date sample; (b) the first segmentation step, that is, segmentation of the lung
fields; and (c) the second segmentation step, that is, extracting arteries, veins, bronchi, and lung abnormalities.
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FIGURE 2: (a) The empirical gray-level distribution over the extracted regions in Figure 1(c) and (b) nodule positions and shapes.

The second stage extracts arteries, veins, bronchi, and lung
abnormalities (see Figure 1(c)) from the already segmented
lung tissues based on representing each CT slice as a sample
of an MGREF of region labels and gray levels. Details of the
two segmentation stage algorithms are presented in [33, 34],
and in this paper we focus only on the third stage of detecting
and classifying the nodules among the extracted objects.

Figure 2(a) shows the empirical gray-level distribution
over the extracted regions in Figure 1(c). Both the nodules
and normal tissues, such as arteries, veins, and bronchi,
have almost the same gray-level distributions, so abnormality
detection must include their geometry. Four basic classes
of lung abnormalities are small calcified, large calcified,
noncalcified, and cavity nodules. The first three classes tend
to be solid spherical shapes, whereas the cavity nodules are
hollow spheres.

Generally, the smaller nodules appear only in a single 2D
slice like in Figure 2, whereas the larger ones spread over a 3D
volume represented by several successive slices. The lung wall
nodules may also appear in one or more slices, depending on
their size. However, they are semicircular in shape as shown
in Figure 2(b).

Our analysis of 2D CT slices suggests that spatial changes
of gray-levels across the central cross-section of a solid-
shape 3D nodule or across a solid-shape 2D nodule can
be approximated with a central-symmetric Gaussian-like
template:

2
q(r)=qmaxeXp(—<£> ) 0<r<R 1)

Here, r is the radius from the template’s center, g(r) is the gray
level in a template point with Cartesian coordinates (&, 77) with
respect to the center (ie., 7 = & + #%), g, denotes the
maximum gray level for the template, R is the template radius
depending on the minimum gray level g,.;. = g(R), and the
parameter p specifies how fast the signals decrease across the
template.

4. Genetic Algorithm (GA) Template Matching

GA template matching is used to effectively search for the
location of lung nodules that are scattered within the lung
areas. In this method, the GA is used to determine the
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FIGURE 3: Examples of the deformed templates for GA template matching process: (a) solid spherical models consisting of three slices to
detect large calcified and noncalcified nodules, (b) hollow spherical models consisting of three slices to detect thick cavity nodules, (¢) circular
models to detect small nodules, and (d) semicircular models to detect lung wall nodules.

target position in an observed image and to select the proper
radius to generate a template model for the template matching
process. Details of the GA process are described below.

4.1. Template Identification. The CT slices in our study have
in-plane spatial resolution of 0.4 mm per pixel so that the
radius range for all lung nodules is R = 5—30 pixels. The third
spatial axis has lower resolution. For large solid and hollow
lung nodules, we use the 3-layer template. Thin lung nodules
appearing only in a single slice have the circular templates.
The lung wall nodules are semicircular shapes. We assume
that the template deformations, other than translations, are
restricted to different scales (radii) of all the templates
and also different (orientation) angles of the semicircular
templates. Examples of the deformed templates are presented
in Figure 3.

In order to better match between the template model
and lung nodules, we have to generate templates which have
densities close to the density of the segmented veins, arteries,
and lung abnormalities, shown in Figure 2(a). Gray-level
distribution density over the 2D Gaussian template can be
found as follows:

v (q) = 27r (q) )
since r(q) = pvyIng., —Ing; then y(q) can be expressed as
follows:

v (q) = 27TP \ In Imax ~ In q (3)

In order to compute the density for the template using
(3), we need to estimate the parameter p. Following (1)
for a template with radius r = R, g(R) = gu,
Grmax eXp(—(R/ p)z), the parameter p can be estimated from
the following equation:

1/2

p = R(In Gy —Inqeyiy) (4)

By using (4), the gray-level distribution density over the 2D
Gaussian template can be expressed in the following closed
form:

In Imax ~ In q

In Imax ~ In Imin .

V/(q | Imin> qmax) = ZﬂR\j (5)

This relationship allows us to roughly estimate the tem-
plate parameters q,,, and ¢,,;, from the empirical density in
Figure 2(a) (in this particular case q,,,, = 255 and g,,,;, = 61).
In particular, for the circular templates of the radii R = 5 and
30, the estimated p = 4.18 and 25.08, respectively. Figure 4
shows that the estimated densities for templates using (5),
with radii 5 and 30, are close to the empirical density for veins
and arteries as shown in Figure 2(a). Note that the jump in the
estimated density y, shown in Figure 4, is due to the fact that
it is defined between q,,,;, and g,

In the case of the 3D solid spherical templates, the 2D
template is first identified for the central cross-section. Next,
the upper and lower cross-sections are specified by the same
parameters in the following equation:

(r* +0%)
v (1") = dmax €XP | — P > (6)
p
where v is the slice thickness in pixels (v = 7 in our

experiments below). The radius of upper and lower circles is
specified by the relationship q,(R) = gpin-

The hollow spherical templates used to detect cavity lung
nodules are obtained in a similar way by removing the central
part of the solid templates up to 75% of the radius R.

4.2. The GA Template Matching Process. As mentioned above
GA is used to determine the target position in an observed
image and select a suitable radius to generate a template
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FIGURE 4: Estimated template gray-level distributions (y(g)) with respect to the empirical density (f(g)).

model [28,29]. In this paper we use the GA with the following
structure (for more details about GA see [26, 35])

(i) Chromosome: each chromosome has 28 bits, of which
23 determine the target position and the last 5 bits
determine the radius of the generated templates R.
Furthermore, the 23 position bits are divided into 9-
, 9-, and 5-bit sets corresponding to the coordinates
(x, ¥,2). Once we know R, g,,i,» and g,,,«> we calculate
p from (4). By using p and q,,,,, we generate the
corresponding template. Then, similarities between
the cut image (i.e., the subvolume which we cut from
the original volume with the size of the generated
template) and the generated template are calculated.

(ii) Fitness: we define the fitness of an individual as
the “similarity” calculated by the normalized cross-
correlation of two images, a and b [8], as

Y Z;’l—l (aij - ma) (bz] - mb)

VS S (g, )\ S X (By-my)’
(7)

Similarity, , =

where m, = (1/n*) Y7 121 1 Gijp 1y, = (/) YL 121 19
and the values a and b signify the images for comparison. The
a;; is the value of pixel at site (i, j) in image a, similarly b;.
We particularly use GA since it is suitable for discrete
optimization problems and fits the selection of candidate
lung nodules, that is, select the appropriate location and
radius of the lung nodule from a discrete set of candidates.
The second segmentation step gives all possible candidate

locations (the search space for locations). The location part

in the initial population is selected randomly from these
locations, whereas the radius part is selected randomly from
its defined range. The next generation is formed by applying
cross-over with a percentage of 75% and mutation with a
percentage of 5%. If the location part in a new generated
chromosome is not in the search space, we alternatively define
the chromosome by its closest location on the search space.
The matching algorithm runs separately for each type of lung
abnormality. Note that for the semicircular template model,
we add another part in the chromosome that represents
the angle. All spatial locations where the similarity score is
greater than a certain threshold (in our experiments 0.8) are
extracted as candidate nodules.

5. Postclassification of Nodule Features

Because actual lung nodules are not exactly spherical, cir-
cular, or semicircular, some true nodules can be missed.
A number of false positive nodules (FPNs) can also be
encountered during the initial extraction of the candidates.
To reduce the error rate, postclassification of the candidate
nodules is performed with three textural and geometric
features of each detected nodule: (i) radial nonuniformity
U = maxy(d(0)) — ming(d(0)) of its borders; here d(6)
is the distance at the angle 0 between the center of the
template and the border of the segmented object as shown
in Figure 5(d); (ii) the mean gray-level (q,,.) over the 3D
or 2D nodular template; and (iii) the 10% tile gray level
for the marginal gray-level distribution over the 3D or 2D
nodular template (a threshold value at which 10% of the
nodular template points have gray-level values lower than
this threshold, i.e., a threshold representing the 10% of the
area under the marginal gray-level probability distribution
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FIGURE 5: (a) Estimated and empirical density for radial nonuniformity, (b) estimated and empirical density for mean gray level, (c) estimated
and empirical density for 10% tile gray level, and (d) the calculation of d(6) at 8 directions.

of the nodular template). To distinguish between the FPNs
and true positive nodules (TPNs), we use Bayesian supervised
classifier learning statistical characteristics from a training set
of false and true nodules. To train this classifier, a training set
of 60 nodules was selected from 50 separate subjects, which
are not included in the test. The training data are shown in
Figure 6 (20 FPN, 20 lung TPN, and 20 lung wall TPN).

All three features (i)-(iii) are used to classify the FPNs
in the lung, while only the last two features can be applied
to the lung wall nodules. The density estimation required in
the Bayes classifier is performed for each feature by using
a linear combination of Gaussians (LCG) with positive and
negative components. Their parameters are estimated using a

modified EM algorithm which was described in [33, 34]. In
this paper we assume that the three features are independent
with equiprobable priors, hence the estimation for the density
for each feature is done separately by using the modified
EM algorithm. Figure 5 shows the empirical and estimated
densities for each feature for both TPNs and FPNs.

6. Experimental Results

The algorithm was tested on the CT scans of 200 subjects
enrolled in the screening study. These subjects were over
60 years of age with positive smoking histories (>10 pack-
years). The CT scans are collected using a screening study
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FIGURE 7: Examples nodules detected by the proposed approach. This classification was validated by a radiologist.

at the Jewish Hospital, Louisville, KY, where each patient
was screened every 3 months. All nodules are validated by a
radiologist (Dr. Falk, a coauthor in the paper). Small nodules
(less than 3mm) are monitored in subsequent scans, and
when they reach a size of 10 mm or larger, their types are
identified by a radiologist as either true nodules or not. This
clinical database was collected by the LDCT scan protocol
using a multidetector GE Light Speed Plus scanner (Gen-
eral Electric, Milwuakee, USA) with the following scanning
parameters: slice thickness of 2.5mm reconstructed every
1.5 mm, scanning pitch 1.5, pitch 1 mm, 140 KV, 100 MA, and
EOV 36 cm. Among these 200 subjects, 21 subjects had
abnormalities in their CT scans and 179 subjects were normal
(this classification was validated by a radiologist). To train
the second stage postprocessing classifier, another set of 50

subjects scanned with the same scanning parameters is used
to train the classifier.

At stage one, the template matching extracted 110 true
candidates (out of the true 130 nodules) and 49 FPNs. The
classification at stage two reduced the number of FPNs to
12, but simultaneously rejected three true nodules. Thus, the
final number of the TPNs became 107 out of 130, giving the
overall correct detection rate of 82.3% with the FPNs rate of
9.2% (the number of FPNs with respect to the total number of
true nodule, i.e., 12 out 0f 130). This gives a positive predictive
value (PPV) of 89.9%, 107 TPNs out of a total 119 detections
(107 TPNs + 12 FPNs). Table1 presents the numbers of
TPNs and FPNs before and after the postclassification stage.
Figure 7 shows examples of small lung nodules that were
detected by the proposed approach. More visual results are
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FIGURE 8: More visual results: examples of nodules attached to the wall (e.g., (a), (b), and (c)), cavitary (e.g., (c), (d), and (e)), and irregularly
shaped (e.g., (e) and (f)) nodules that are successfully detected using our template matching approach. This classification was validated by a

radiologist.
TABLE 1: Detection rate for different types of abnormalities (TPNs: the nodules determined by a radiologist).
True detecting False detecting True detecting False detecting
Type of lung nodules nodules before nodules before nodules after nodules after
removing FPNs removing FPNs removing FPNs removing FPNs
Lung wall 28:29 8 27:29 2
Calcified 46:49 4 46:49 1
Non-calcified 12:18 5 12:18 3
Cavity 8:11 7 8:11 1
Small 17:23 25 15:23 5

presented in Figure 8, where examples of cavitary nodules,
irregularly shaped nodules, and nodules attached to the
wall are successfully detected using our template matching
approach.

To illustrate the efficiency of the proposed algorithm,
we compare the results obtained by the proposed algorithm
with the related work of Wang et al. [9], that detects lung
nodules from a spiral CT scan using a template matching
method (see Table 2). This algorithm detects only three types
of nodules—large lung nodules, small lung nodules, and
lung wall nodules—by using fixed templates. We ran Wang’s

algorithm on the same data sets. The algorithm detected 83
true candidates (out of the true 130 nodules) and 85 FPNs,
giving the overall correct detection rate of 63.8%, a PPV of
49.4%, and a FPNs rate of 65.4%. Table 2 presents the details
of the results obtained by the algorithm proposed in [9]. It
is clear from Table 2 that this algorithm fails to detect large
numbers of true nodules because the algorithm uses fixed-
size templates in spite of employing an adaptive appearance
model for the nodules. Moreover, their algorithm did not
apply any postprocessing step to reduce the high rate of false
positives.
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FIGURE 9: Examples of uncertainty of nodules that were not detected using our approach. The nodule’s size, location, and shape resemble that

of bronchi. This classification was validated by a radiologist.

TABLE 2: Detection rate for different types of abnormalities by using
the algorithm proposed in [9] (TPNs: the nodules determined by a
radiologist).

Type oflung  True detected nodules  False detected nodules
Lung wall 17:29 25
Calcified 39:49 21
Non-calcified 12:18 16
Cavity — —
Small 15:23 23

7. Summary and Conclusion

A novel deformable template matching algorithm has been
proposed for detection of lung nodules in chest CT scans.
Four template shapes were used: solid sphere, hollow sphere,
solid circle, and solid semicircle. The radius and the gray-
scale intensity of the templates were made to vary, in order to
maximize their detection capabilities. This variability in the

size and shape of the templates enables detection of different
types of nodules, for example, irregularly shape nodules,
cavitary nodules, and small nodules (as shown in Figures 7
and 8). An analytic approach is introduced to estimate the
distribution of the intensity of the templates. A preprocessing
step is performed before template matching in order to isolate
the lungs from the chest. Further, we isolate the homogenous
tissues in the lung, which cannot be confused with the
abnormalities, before template matching. The remaining lung
tissues consist of blood vessels, bronchi and bronchioles,
and nodules/abnormalities. This preprocessing provides data
reduction of the search space before template matching and
improvement in the overall detection power of the templates.

The intensity of the templates and the diameter are
estimated as follows. For a given template shape (e.g., spher-
ical), and starting from a given location (x, y,z) in the
reduced images (CT slices), a global optimization approach
is employed to choose the diameter and the intensity distri-
bution that provides good matching (good cross-correlation
with the intensity in a 64 X 64 x 3 volume centered at x, y, z).
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The location (x, y, z) is made to vary, and the corresponding
density and diameter are estimated. Candidate templates
(having the same shape, but with various diameters and
intensities) are generated by the global optimization, imple-
mented by a genetic algorithm, such that the cross-correlation
is above a certain threshold (0.8 in our implementation).
This step generates candidate locations of possible nodules.
This process is repeated for the other template shapes. The
final outcome is a number of possible/candidate lung nodules
per template. A following step is implemented to reduce
(ideally eliminate) all the false positive nodules (FPN), which
is performed using a Bayes classifier.

Due to the nature of the search process, the speed of
execution is a function of the CPU and the data size. Our
present C++ implementation on the Intel dual processor
(3 GHz each) with 16 GB memory and 2 TB hard drive with
RAID technology takes about 5 minutes for processing 182
LDCT slices of size 512 x 512 pixels each. Current efforts
are directed towards including other deformations than
the radius and the intensity of the templates (e.g., jagged
template shape). The results obtained have been validated by
a radiologist and it is superior to what has been reported in
the literature. The availability of a subject’s history (e.g., chest
CT scans obtained at previous times) has been shown to be an
asset in improving the detection sensitivity (e.g., distinction
between small nodules and bronchioles) and accuracy (e.g.,
reduction of false positives). We plan to incorporate this
information, if available, as data fusion to our approach.

Despite the large accuracy obtained by our algorithm, as
compared to related work (e.g., [9]), a number of problems
still persist in detecting small nodules that are confused with
bronchioles as well as small blood vessels (see Figure 9, which
represents examples of uncertainty of nodules that were not
detected using our approach).
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