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Abstract: The aim of this study was to develop a deep learning-based algorithm for fully automated
spleen segmentation using CT images and to evaluate the performance in conditions directly or
indirectly affecting the spleen (e.g., splenomegaly, ascites). For this, a 3D U-Net was trained on
an in-house dataset (n = 61) including diseases with and without splenic involvement (in-house
U-Net), and an open-source dataset from the Medical Segmentation Decathlon (open dataset, n = 61)
without splenic abnormalities (open U-Net). Both datasets were split into a training (n = 32.52%),
a validation (n = 9.15%) and a testing dataset (n = 20.33%). The segmentation performances of the
two models were measured using four established metrics, including the Dice Similarity Coefficient
(DSC). On the open test dataset, the in-house and open U-Net achieved a mean DSC of 0.906 and
0.897 respectively (p = 0.526). On the in-house test dataset, the in-house U-Net achieved a mean
DSC of 0.941, whereas the open U-Net obtained a mean DSC of 0.648 (p < 0.001), showing very poor
segmentation results in patients with abnormalities in or surrounding the spleen. Thus, for reliable,
fully automated spleen segmentation in clinical routine, the training dataset of a deep learning-based
algorithm should include conditions that directly or indirectly affect the spleen.

Keywords: automated segmentation; deep learning; image processing; diagnostic techniques and
procedures; diagnosis

1. Introduction

The spleen is the largest lymphoid organ and plays a significant role in the immune re-
sponse [1]. It can be affected by hematological malignancies, infections and other systemic
diseases, leading to changes in volume, morphology, and metabolic activity [2–6]. Com-
puted Tomography (CT) has been shown to be the most reliable noninvasive method for
the volume measurement and assessment of splenic involvement in various diseases [7,8].
A precise segmentation of the spleen can deliver valuable information about morphological
changes, but manual segmentation of the spleen is time-consuming and not feasible in
clinical routine. Several automatic and semi-automatic methods based on image processing
have been proposed for abdominal organ segmentation [7,9,10]. However, the accuracy of
these methods is often limited, and manual correction is required [11].

In recent years, deep learning algorithms have achieved a high performance in seman-
tic segmentation tasks [12–15]. A widely used deep neural network to segment structures
and organs in medical images is the U-Net [16]. The U-Net represents a symmetric Con-
volutional Neural Network (CNN) consisting of two parts, a down-sampling path of
convolutions which extracts image information, followed by an up-sampling path of
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convolutions to produce pixel- or voxel-wise predictions [17]. Skip-connections from down-
sampling to up-sampling blocks are used within the U-Net architecture to preserve spatial
information [17].

Earlier studies reported accurate results of spleen segmentation using CNN algorithms
on CT-images [18,19]. However, these studies focused on technical feasibility without
validating the algorithms in varying conditions affecting the spleen [20,21].

The aim of this study was to develop a deep learning-based automatic segmentation
model that correctly segments the spleen, even under diverse conditions. For this, a dataset
consisting of patients with different medical conditions, with or without splenic involve-
ment, was curated. To further assess the effects of the training dataset on the performance,
the model was also trained using another dataset of patients with an unremarkable spleen.

2. Materials and Methods

This retrospective study was approved by our institutional review board (No.: EA4/136/21).
The requirement for informed consent was waived due to the retrospective design of the study.

The deep learning-based automatic segmentation model was developed on the open-
source MONAI Framework (Medical Open Network for AI, version 0.5.0) [22]. During
the first stage, one model was trained on an in-house dataset consisting of patients with
different conditions with or without splenic involvement (e.g., splenomegaly, ascites).
During the second stage, another model was trained on an open medical image dataset
comprising patients with an unremarkable spleen (Medical Segmentation Decathlon) [23].
Both models were of the same architecture. The performance of the two segmentation
models was then evaluated to assess whether algorithms trained on unremarkable organs
could also be applied in patients with alterations that change or obscure the normal splenic
anatomy, and vice versa.

2.1. In-House Dataset

We retrospectively identified 61 consecutive CT scans covering the abdomen in portal
venous phase of patients with different underlying conditions, either with or without
splenic involvement (search period from October 2020 to March 2021). The number of
CT scans was set at 61 to match the number of patients in the open dataset as described
below. CT scanners from two manufacturers were used to acquire the CT scans: Aquilion
One (number of performed examinations = 24) and Aquilion PRIME (n = 18) from Canon
Medical Systems (Otawara, Tochigi, Japan) and Revolution HD (n = 5), Revolution EVO
(n = 8) and LightSpeed VCT (n = 6) from General Electric Healthcare (Boston, MA, USA).
The contrast agents used were iomeprol (Imeron®, Bracco Imaging, Milan, Italy) iobitridol
(Xenetix, Guerbert, Villepinte, France) and iopromide (Ultravist, Bayer, Leverkusen, Ger-
many) with amounts varying between 100 and 140 mL. Portal venous phase imaging was
performed at 70–80 seconds after intravenous administration of the contrast agent. Axial
reconstructions with a slice thickness of 5 mm without gaps were used in this study.

The dataset was subsequently curated by two radiologists (R1, with 9 years and R2
with 5 years of experience) to ascertain sufficient image quality (CT scans with visually
sharp depiction of the splenic contour and optimal portal venous phase, no motion arti-
facts). After curation, the CT studies were extracted from the PACS (Picture Achieving
and Communication System) and de-identified by anonymization of the Digital Imaging
and Communication in Medicine (DICOM) tags. The spleen was subsequently semi-
automatically segmented using a 3D Slicer (Version 4.11.20210226, http://www.slicer.org
(accessed on 29 October 2021)) [24]. Contours were manually adjusted by the two radiolo-
gists. The Intraclass Correlation Coefficient (ICC) Estimate between the two radiologists
was greater than 0.9 (95% CI: 0.914–0.998) and was indicative of excellent reliability [25].
The segmentations of R2 were considered as the ground truth (GT) for the training and
testing of the U-Net model (as described below). Patient and disease characteristics are
outlined in Table 1.

http://www.slicer.org
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Table 1. Characteristics of the In-house Dataset.

Training and Validation Dataset Testing Dataset

Number of Patients 41 20

Female 23 (56%) 5 (25%)
Age * 62.6 ± 16.2 60.4 ± 15.1

Splenomegaly 21 (51.2%) 7 (35%)

Liver cirrhosis 11 (26.8%) 3 (15%)
Lymphoma 6 (15.6%) 2 (10%)

No pathology 4 (9.8%) 1 (5%)
Other ** 21 (51.2%) 14 (70%)

Unless otherwise indicated, data are expressed as number of participants. * Data are expressed as mean ± standard
deviation; ** other pathologies include lung, pancreas, liver, prostate, and colorectal cancers, without direct
splenic involvement, but in whom splenomegaly or ascites could be present.

2.2. Medical Segmentation Decathlon Dataset (Open Dataset)

The Medical Segmentation Decathlon (MSD) is a web-based open challenge to test the
generalizability of machine learning algorithms applied to segmentation tasks [23]. Spleen
segmentation is one task of the MSD for which a dataset is provided. The spleen dataset
contains 61 CT studies—41 studies for training and validation, 20 studies for testing—
of patients undergoing chemotherapy treatment for liver metastases at Memorial Sloan
Kettering Cancer Center (New York, NY, USA). Since the challenge is still ongoing, the
ground truth of the test dataset was not publicly available and therefore the segmentation
was performed by our radiologists as described above using a 3D Slicer.

2.3. Image Preprocessing and Model Architecture

The image data were reformatted from standard DICOM to Neuroimaging Informatics
Technology Initiative (NIfTI) format and subsequently transferred to an in-house server for
training, validation, and testing of the model.

The 3D U-Net Model was implemented using the Python programming language
(version 3.7, Python Software Foundation, https://www.python.org (accessed on 12 April
2021)) on the open-source deep learning framework MONAI in conjunction with the Py-
Torch Lightning framework (version 0.9.0, https://www.pytorchlightning.ai
(accessed on 12 April 2021)) and PyTorch (version 1.8.1 https://pytorch.org (accessed
on 12 April 2021)) [26], Numpy (version 1.19.5 https://numpy.org (accessed on 12 April
2021)) [27] as well as Matplotlib (version 3.0.0 https://matplotlib.org (accessed on 12 April
2021)) [28] libraries.

The model architecture consisted of an enhanced version of U-Net which has residual
units, as described by Kerfoot et al. [23]. Each layer has an encode and decode path with
a skip connection between them. In the encode path, data were down-sampled using
strided convolutions and in the decode path they were up-sampled using strided transpose
convolutions. During training, we used the Dice loss as the loss function and Adam as the
optimizer, with a learning rate set at 1e-4 and backpropagation to compute the gradient of
the loss function.

2.4. Network Training

The in-house and open dataset (each n = 61) were both split into a training (n = 32.52%),
a validation (n = 9.15%) and a test dataset (n = 20.33%). First, we set deterministic training
for reproducibility. In-house U-Net was trained and validated with the in-house dataset,
and subsequently tested on the open test dataset. Open U-Net was trained and validated
with the open dataset, and tested on the in-house test dataset. Figure 1 depicts the design
of our study. For training we used a batch size of 2. Each model was trained for 500 epochs
and validated every two epochs. During training, we used different augmentations: image
data were resampled to a voxel size of 1.5 × 1.5 × 2.0 mm (x, y and z direction) using

https://www.python.org
https://www.pytorchlightning.ai
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bilinear (images) and nearest neighbor interpolation (segmentation masks). The images
were then windowed and values outside the intensity range of −57 to 164 Hounsfield
units were clipped to discard unnecessary data for this task. Because of the large mem-
ory footprint of the 3D training model, each scan was randomly cropped to a batch of
balanced image patch samples based on a positive/negative ratio with a patch size of
96 × 96 × 96 voxels.
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Figure 1. Study Design: In-house U-Net was trained and validated with the in-house training and
validation dataset, then tested on both test sets. Open U-Net was trained and validated with the
open training and validation dataset, then tested on both test sets.

2.5. Image Postprocessing

To produce the final segmentation results, various post-processing transforms were
applied: A sigmoid activation layer was added. Since each patch was processed separately,
the results were stitched together, and converted to discrete values with a threshold set
at 0.5 to obtain binary results. The output was then resampled back to the original scan
resolution. Subsequently, the connected components were analyzed and only the largest
connected component was retained. For a better visualization of the results, the contour
of segmentation was extracted using Laplace Edge detection and was merged with the
original image.

2.6. Statistical Analysis and Evaluation

Both models were evaluated on the in-house and the open test dataset. Four estab-
lished segmentation metrics were used: Dice similarity coefficient, Hausdorff distance,
average symmetric surface distance and relative absolute volume difference. The Dice
similarity coefficient (DSC) provides information about the overlapping parts of segmented
and ground truth volumes (1 for a perfect segmentation, 0 for the worst case), and is
defined as 2 × true positive voxels/(2 × true positive voxels + false negative voxels).
The maximum Hausdorff distance calculates the maximum distance between two point
sets (in our case voxels, 0 mm for a perfect segmentation, maximal distance of image for
the worst case). The average symmetric surface distance (ASSD) determines the average
difference between the surface of the segmented object and the reference in 3D (0 mm
for a perfect segmentation, maximal distance of image for the worst case). The relative
absolute volume difference (RAVD) provides information about the differences between
volumes of segmentation and the ground truth (0% for a perfect segmentation, 100% for
the worst case). Per metric, the mean, standard deviation and 95% confidence intervals
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were reported. We computed the p-values using the Mann–Whitney U test to evaluate
whether there was a statistical difference between the DSC of the in-house U-Net and
the open U-Net. A p-value below 0.05 was considered to indicate statistical significance.
Statistical analysis was performed using Python 3.7, the scikit-learn library (version 0.23.1,
https://scikit-learn.org (accessed on 6 June 2021)) [29] and statsmodels (version 0.11.1,
https://www.statsmodels.org (accessed on 6 June 2021)) [30].

3. Results
3.1. Segmentation Performance in the Open Test Dataset

On the open dataset, the in-house U-Net obtained a DSC of 0.906 ± 0.071 and the open
U-Net a DSC of 0.897 ± 0.082. The surface distance-based metrics (maximum Hausdorff
and ASSD) showed that open U-Net had fewer outliers than the in-house U-Net and thus
had a better segmentation result. The relative absolute volume difference (RAVD) for
in-house U-Net and open U-Net were 9.70% and 11.49% respectively. The Mann–Whitney
U test showed no significant difference between the DSC of the in-house U-Net and the
open U-Net (p = 0.526), as described in Table 2.

Table 2. Model performances on the in-house and open testing datasets.

Model Dataset DSC RAVD * (%) ASSD (mm) Hausdorff (mm)

In-house
U-Net

In-house testing
dataset

Mean
±SD

0.941
±0.021

4.203 0.772
±0.274

7.137
±5.440

95% CI 0.932–0.951 2.313–6.094 0.644–0.900 4.591–9.683

Open testing
dataset

Mean
±SD

0.906
±0.071

9.690 0.999
±0.657

8.787
±6.889

95% CI 0.873–0.939 3.877–15.504 0.692–1.307 5.563–12.011

Open
U-Net

In-house testing
dataset

Mean
±SD

0.648
±0.289

42.255 5.158
±5.881

30.085
±30.885

95% CI 0.513–0.784 26.503–58.008 2.406–7.911 15.630–44.539

Open testing
dataset

Mean
±SD

0.897
±0.082

11.488 0.982
±0.618

7.569
±5.242

95% CI 0.859–0.935 5.323–17.653 0.693–1.272 5.115–10.023

SD: standard deviation. 95% CI: 95% confidence interval. DSC: Dice Similarity Score (the higher the better). RAVD: Relative Absolute
Volume Difference (the lower the better); * no standard deviation is reported because this metric is zero centered and we used the absolute
value. ASSD: Average Symmetric Surface Distance (the lower the better). Hausdorff: Maximum Hausdorff Distance (the lower the better).

3.2. Segmentation Performance in the In-House Test Dataset

In the in-house dataset, the in-house U-Net obtained a DSC of 0.941 ± 0.021 and
the open U-Net a DSC of 0.648 ± 0.289. The surface distance-based metrics (maximum
Hausdorff and ASSD) showed that open U-Net had many more outliers than the in-house
U-Net. The relative absolute volume difference (RAVD) for in-house U-Net and open
U-Net were 4.20% and 42.25% respectively. The Mann–Whitney U test showed a significant
difference between the DSC of the in-house U-Net and the open U-Net (p < 0.001).

On the basis of these results (Table 2), the in-house U-Net outperformed the open
U-Net in all four metrics in the in-house test set, and the difference was highest in patients
presenting abnormalities within or surrounding the spleen. The in-house U-Net further-
more outperformed the open U-Net also in the open test set on two metrics (DSC and
RAVD) but showed worse results in the surface distance-based metrics (ASSD and maxi-
mum Hausdorff). There was no significant statistical difference of the segmentation results
based on the DSC. The Figure 2 shows boxplots comparing the segmentation performance
of the models on both testing datasets. Figure 3 shows samples of a qualitative evaluation
of segmentation results of the two models.

https://scikit-learn.org
https://scikit-learn.org
https://www.statsmodels.org
https://www.statsmodels.org
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Figure 2. Boxplots showing the segmentation performances of in-house U-Net and open U-Net
applied on the open and in-house test datasets. The methods are compared using the Dice similarity
score (DSC). Mean (red dashed) and median (green) values are depicted. When applied to the in-
house test dataset, the performance of the open U-Net generally drops and becomes more unreliable,
which is depicted by a lower mean and median, as well as a larger spread between the best and worst
DSC. Table 2 further gives an overview of the results.
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In the open dataset, in-house U-Net and open U-Net show performances, whereas in the in-house dataset, open U-Net
shows bad segmentation results, especially in patients with splenomegaly.

4. Discussion

In this study, we evaluated an open-source deep learning-based algorithm to automat-
ically segment the spleen in CT scans of patients with or without splenic abnormalities.
When trained and tested on patients with an unremarkable spleen (open dataset), the U-Net
showed accurate segmentation results. However, the segmentation accuracy decreased
when the model was evaluated on a dataset including CT scans with alterations in the
splenic anatomy or abnormalities in the neighboring structures.

A variety of methods have been proposed for an automated segmentation of ab-
dominal organs, including statistical shape models [31], atlas-based models [10], and
three-dimensional deformable models [32]. These methods showed acceptable segmenta-
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tion performances, but often needed manual correction [11]. Now, deep learning-based
segmentation methods are rapidly overtaking classical approaches for abdominal organ
segmentation [33]. For example, the methods of Gibson et al., Yura Ahn et al. and Gabriel
et al. reached a mean DSC over 0.95 in automated segmentation of the spleen [19,34,35].
However, Gabriel et al. reported bad and failed segmentation results in patients with
splenic distortions, even if their model reached a DSC of 0.962 [34]. Table 3 shows that not
all methods were assessed considering splenic abnormalities.

Table 3. Comparison between our in-house U-Net (in Bold) and previous works.

Method DSC Modality Abnormalities

Gauriau et al. [36] 0.870 ± 0.150 Abd. CT No
Wood et al. [37] 0.873 Abd. CT Yes
Gloger et al. [38] 0.906 ± 0.037 MRI No
In-house U-Net 0.941 ± 0.021 Abd. CT Yes
Gibson et al. [19] 0.950 Abd. CT No
Linguraru et al. [10] 0.952 ± 0.014 Abd. CT Yes

The aim of this study was to develop a robust deep learning algorithm for spleen
segmentation across various conditions that can alter or obscure the normal splenic anatomy.
The segmentation results showed clearly that a robust segmentation algorithm needs to
be trained with a dataset including different conditions affecting the spleen in order to
produce reliable results appropriate for clinical routine.

There are multiple potential applications of such an algorithm in clinical practice. For
example, automated precise segmentation and feature extraction could help to identify
quantitative imaging biomarkers to differentiate between toxic, infectious and hematologi-
cal causes of splenomegaly, or to assess the severity of cirrhotic liver diseases and portal
hypertension, as suggested by previous studies [39,40]. The potential clinical implications
of our algorithm should thus be evaluated in future studies in this regard.

Although our study showed reliable results, it had several limitations. First, our
in-house dataset was small. This was intended to match the medical segmentation de-
cathlon dataset (n = 61) and thus to receive comparable results. Yura Ahn et al. and
Gabriel et al. trained their algorithms with 250 and 450 manually segmented CT-Scans,
respectively [34,35]. In addition, no cross-validation was performed for training. This
could have improved the segmentation performance on the validation dataset, but it often
leads to model overfitting. Furthermore, our 3D U-Net was trained and validated using
only portal venous phase CT images. To achieve accurate results on different acquisition
techniques, our algorithm may need additional training data and updated model weights
using Transfer Learning [41]. Moreover, complex intrasplenic distortions, such as splenic
infarctions or focal lesions, were excluded from this study due to their relatively low in-
cidence and high heterogeneity, creating the risk of a preselection bias. To overcome the
scarcity of such distortions, data augmentation using Generative Adversarial Networks
(GANs) could be investigated in future research [42].

5. Conclusions

We trained and evaluated the performance of state-of-the-art deep learning-based
algorithms for an automated spleen segmentation in patients with diseases with and
without splenic involvement and could demonstrate the crucial role of the quality of the
training dataset. In order to achieve highly accurate segmentation results in clinical routine,
the training dataset should include an important proportion of patients with splenic
abnormalities. Future studies are needed to investigate the role of data augmentation using
GANs to compensate the low incidence of rare conditions and the role of transfer learning
to avoid the intensive time and energy-consuming training of the algorithm.
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