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Abstract 

Background:  When modeling single-molecule fluorescence lifetime experimental data, the analysis often involves 
fitting a biexponential distribution to binned data. When dealing with small sample sizes, there is the potential for 
convergence failure in numerical optimization, for convergence to local optima resulting in physically unreasonable 
parameter estimates, and also for overfitting the data.

Results:  To avoid the problems that arise in small sample sizes, we have developed a gamma conversion method to 
estimate the lifetime components. The key idea is to use a gamma distribution for initial numerical optimization and 
then convert the gamma parameters to biexponential ones via moment matching. A simulation study is undertaken 
with 30 unique configurations of parameter values. We also performed the same analysis on data obtained from a 
fluorescence lifetime experiment using the fluorophore Cy3. In both the simulation study and the real data analysis, 
fitting the biexponential directly led to a large number of data sets whose estimates were physically unreasonable, 
while using the gamma conversion yielded estimates consistently close to the true values.

Conclusions:  Our analysis shows that using numerical optimization methods to fit the biexponential distribution 
directly can lead to failure to converge, convergence to physically unreasonable parameter estimates, and overfitting 
the data. The proposed gamma conversion method avoids these numerical difficulties, yielding better results.
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Findings
Background
In the single-molecule fluorescence lifetime experiments, 
a fluorophore is attached to the molecule under study, 
which is placed in a focal volume illuminated by a pulsed 
laser. The fluorophore emits photons when excited by the 
pulsed laser. The time length that it takes for the fluoro-
phore to release the photon from the moment that it is 
excited is termed as the photon delay time (or fluores-
cence lifetime). The photon delay time is recorded by 
time-correlated single photon counting device [1].

Because the dye’s photon emission pattern depends 
on its photophysical state and molecular environment 
which are then affected by the conformational or elec-
tronic state of the molecule with which it is interacting 

(e.g., the active and inactive states of an enzyme could 
have different effect on the dye’s photon emission inten-
sity in certain cases), by examining how the photon emis-
sion pattern fluctuates over time, one can investigate the 
underlying dynamics of the molecules. It is thus of inter-
est to study the photon delay time.

This time lapse (or fluorescence lifetime) data are often 
binned to form count data. The decay curve describing 
the stochasticity of the continuous time lapse is then 
indirectly estimated from the count data. This leads to a 
two-level hierarchical model, where the first level models 
the binned counts and the second level models the con-
tinuous time lapse. That is, the stochasticity of the count 
data is determined by certain bin probabilities (the first 
level), and these probabilities are in turn modeled by the 
decay curve corresponding to the time lapse (the second 
level).

More specifically, conditioning on the total number of 
photons counted, the bin counts follow a multinomial 
distribution. The probability that a photon is counted 
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during a given time interval (bin) is determined by the 
cumulative distribution function (cdf ) of the time lapse. 
A mixture of exponential probability density functions 
(pdf) is most widely used to model the decay curve of 
the fluorescence lifetime [2–4]. The specific context con-
sidered here is that the data follow a two-component 
mixture of exponentials (biexponential distribution). 
Furthermore, we assume that, by carefully controlled 
experimental conditions, the major lifetime component 
is known (though as we will see later, this restriction is 
not necessary to our method of parameter estimation) 
and we aim to estimate the second component.

Parameter estimation in this context can often be dif-
ficult, unreliable and biased. Novikov et  al. [5] showed 
that the parameter estimation for biexponential decays 
is more critical and depends on the detection procedure, 
leaving substantial obscurity on the estimation. Early 
work to address this was done by Sasaki and Masuhara 
[6], who used a convolved autoregressive model that 
can be fitted using the least squares (LS) method. This 
approach was made more efficient by Enderlein and Erd-
mann [7]. However, employing LS leads to unnecessary 
bias [8].

A better statistical approach would be to try to find 
the maximum likelihood estimators (MLEs) of the 
biexponential distribution involved in this hierarchi-
cal model. Indeed, using LS is equivalent to finding the 
MLE while assuming the bin counts follow a normal 
pdf; however, this assumption of normality is clearly 
not the case, as small bin counts and sparsity of the data 
make the normal model an inadequate approximation of 
the distribution of the bin counts [9]. The fact that find-
ing the MLE is more appropriate than using LS has been 
reviewed by Maus et al. [10], Edel et al. [11], and Lau-
rence and Chromy [9].

When dealing with mixture models such as a biexpo-
nential pdf, the expectation–maximization (EM) algo-
rithm has been widely used for finding MLE’s [12]. In this 
hierarchical setting, however, the EM algorithm may be 
both difficult to implement and slow to converge, and 
hence other numerical optimization methods may be 
employed. With a small sample size and small bin width, 
there will inevitably be a zero count in many of the bins 
[8], and such sparsity of the data may cause these numer-
ical optimization techniques to be unstable and error-
prone in finding the MLE for a mixture distribution. The 
commonly used direct search Nelder–Mead algorithm 
[13] was found to perform poorly with such a two level 
hierarchical model (see McKinnon [14] for more details 
on situations in which the Nelder–Mead algorithm fails). 
Enderlein et al. [15] used an MLE approach to distinguish 
between distinct states or molecules. [16] used MLE and 
iterative convolutions to fit the arrival time histograms 

to single exponential decay. Enderlein and Sauer [17] 
presented a pattern-matching procedure for identifying 
single molecules from a mixture of molecules, although 
the algorithm presented works best only if the lifetimes 
are already known. This is not applicable to the cases 
where we cannot experimentally separate the two dis-
tinct states of a complex. complex always exhibits mixed 
states because we cannot predetermine the lifetimes of 
the respective states. Edel et  al. [11] developed a modi-
fied MLE method to compensate localized background 
fluorescence and instrument response function (IRF). 
However, this method focuses on fitting only the mono-
exponential decay curve.

Moreover, there are some non-MLE based param-
eter estimation methods in the literature. For example, 
Digman et al. [18] developed a phasor plot method and 
required labor-intensive visual inspection. Kim et al. [19] 
developed a promptness ratio method for estimating the 
lifetime.

This paper focuses on two issues, numerical stability 
and overfitting small data sets. Overfitting the data in 
this context can be described as yielding a model which 
gives very high probability to data similar to the observed 
data yet describing the true underlying generative pro-
cess poorly. When fitting a mixture of exponential decay 
curves with binned data, the numerical optimization 
algorithm for finding MLE may not converge. Even if it 
converges, in practice the numerical optimization algo-
rithm may converge to a value that is physically unrea-
sonable. In addition, we show that the MLE’s for the 
mixture of exponential distributions can often overfit the 
data, hence giving estimates that appear satisfactory but 
fail to accurately represent the true parameter values.

To address these issues, we propose a novel method of 
estimating the parameters of the biexponential distribu-
tion using binned count data. The object is to find a gen-
eralization of the mono-exponential distribution whose 
pdf is flexible enough to well approximate the shape of 
a biexponential density curve. With this motivation in 
mind, we propose a new estimation method which uti-
lizes the gamma distribution family, a family which con-
tains that of monoexponential distributions. We show 
that our approach can successfully recover the param-
eters of the underlying biexponential distribution, while 
avoiding the inherent numerical instabilities involved 
with a mixture distribution. Our proposed estimation 
algorithm is robust, and is not likely to overfit the data.

The rest of the paper is organized as follows. We first 
present the model and the estimation method. We then 
demonstrate the performance of the proposed method 
through simulations in which data sets are generated 
using biexponential pdfs with varying parameters. We 
finally present results for real data analysis from the 
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fluorophore Cy3, collected via single photon counting 
technique.

Methods
Given the total number of photons, denoted by n, the pho-
ton counts in m time intervals Y = {Y1 . . .Ym} has multi-
nomial distribution Y ∼ Multinom (n, p1, p2, . . . , pm) [2]. 
Let the delay time for the i-th photon be Xi. We assume 
that Xi’s are independently and identically distributed 
with some pdf fX (x) and cdf FX (x) =

∫ x
0 fX (s)ds. Then pj 

is the probability that Xi falls in 
(
δ(j − 1), δj

)
, where δ is 

the width of time interval (bin width). To ensure the con-
straint that 

∑m
j=1 pj = 1, we have the following normal-

ized bin probabilities:

As discussed before, we assume henceforth that fX is a 
biexponential pdf, and further from carefully controlled 
experimental conditions the main lifetime component is 
known. When fitting the model to the data via finding 
the MLEs of the parameters, instead of directly fitting 
a biexponential distribution, we propose to fit a gamma 
distribution to the Xi’s. In particular, the pdf of the biex-
ponential distribution and of the gamma distribution are 
given respectively as

The gamma distribution is chosen because it avoids the 
numerical instability found in practice when finding 
MLEs of the parameters in a mixture distribution and 
is flexible enough to approximate the biexponential dis-
tribution while being less likely than biexponential to 
overfit small data sets. It is worth noting that when α = 1 
and either c ∈ {0, 1} or τ1 = τ2, the gamma distribution is 
exactly the biexponential distribution (and both equal the 
monoexponential). Also of note is that although gX (x) 
diverges as x → 0 (for 0 < α ≤ 1, which we restrict to 
be the case), this is in practice negligible since the prob-
ability of x being in a neighborhood around zero goes 
to zero as the neighborhood itself shrinks to zero, i.e., 
P(x < ǫ) → 0 as ǫ → 0.

We estimate the parameters (α, τγ ) of the hierarchical 
model via maximum likelihood method through the min-
imization of

(1)

pj = Prob
(
δ(j − 1) ≤ Xi < δj

)
/Prob(0 ≤ Xi < δm)

= FX (δj)− FX (δ(j − 1))

FX (δm)

(2)fX (x) =
c

τ1
e
− x

τ1 + 1− c

τ2
e
− x

τ2

(3)gX (x) =
1

( τγ
α

)α
Ŵ(α)

xα−1e
− αx

τγ .

where GX is the cumulative distribution function cor-
responding to the gamma distribution in (3), yj is the 
observed photon count in the jth time interval, and C is a 
constant; GX implicitly depends on the parameters (α, τγ ). 
The minimization of (4) is carried out using the Nelder–
Mead algorithm.

The estimates of parameters in the gamma distribution 
are then converted to those in the biexponential distri-
bution with equal mean and variance, i.e., we match the 
first and second moments of the biexponential and the 
gamma pdf ’s. Since there are two remaining unknown 
parameters in the biexponential distribution, we solve the 
system of equations satisfying

By solving this system of equations, we are matching 
the expected value of Xk for k = 1, 2. This is equivalent 
to the system of equations given by the derivatives of the 
moment generating functions as following

where

and where M(k)
X ,· is the kth derivative of MX ,· with respect 

to t. The closed form solutions using the MLEs from fit-
ting the gamma distribution to approximate the param-
eters of the biexponential distribution are

Note that, while the focus of this paper is the con-
text where one lifetime component is known, this new 
method of estimating the parameters of the biexponential 
distribution can be easily extended to the cases where the 
main lifetime component is unknown. We can accom-
plish this by simply matching the first three moments, i.e. 
letting k = 1, 2, 3 in Eq. (5). If this is the case, the conver-
sion equations become

(4)

−loglik(α, τγ ; y) = n log(GX (δm))−
m∑

j=1

yj log(GX (δj)

− GX (δ(j − 1)))+ C

(5)E(Xk |X ∼ Gamma ) = E(Xk |X ∼ Biexp ) for k = 1, 2.

(6)M
(k)
X ,γ (0) = M

(k)
X ,BE(0) for k = 1, 2.

(7)MX ,γ (t) =
(
1− τγ

α
t
)−α

,

(8)MX ,BE(t) = c(1− τ1t)
−1 + (1− c)(1− τ2t)

−1
,

(9)

τ̂2 =
2ατγ τ1 − (1+ α)τ 2γ

2ατ1 − 2ατγ
,

ĉ =
(1− α)τ 2γ

2ατ 21 − 4ατγ τ1 + (1+ α)τ 2γ
.
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To the authors’ knowledge, single molecule lifetime 
analyses involve only as complex a model as a biex-
ponential decay. However, there is no theoretical rea-
son as to why our method could not be applied to an 
exponential mixture decay curve with greater than 
two components, though as the number of compo-
nents in the exponential mixture model increases, the 
algebra in finding the closed form solution quickly 
becomes tedious and impractical. In general, assum-
ing no lifetime components known a priori, the system 
of equations needed to be solved for a M component 
exponential mixture model is M(k)

X ,γ (0) = M
(k)
X ,BE(0) for 

k = 1, 2, . . . , 2M − 1.

Results
The performance of the proposed method can be 
assessed in two ways. First, we compare the estimates 
of the second unknown lifetime component τ2 to the 
true value. Second, we evaluate the overfitness of the 
estimation by comparing how well the estimates fit 
the data to how close the estimates are to the truth. To 
this end we use two quantitative measures, Pearson’s 
χ2 statistic and the Hellinger Distance (see., e.g., [20]). 
We compute the Pearson’s χ2 statistic based on the 
multinomial distribution of the binned count data to 
determine how closely our fitted model fits the data. It 
is computed as

where E(yj) is

To measure how close our estimated biexponential curve 
is to the true curve we use Hellinger’s Distance. This is a 
metric commonly used in the statistical literature to com-
pare two different pdf ’s. By using Hellinger’s Distance to 
compare the true curve and the estimated curve, we see 
how close to the truth our estimations are. Hellinger Dis-
tance can by computed as

(10)

τ̂1 =
τγ
(√

2(2− α)(α + 1)− α − 1
)

√
2(2− α)(α + 1)− 4α + 2w

τ̂2 =
τγ

(√
2(2+ α − α2)+ 2(α + 1)

)

6α

ĉ =

(
α+1
2α

)
τ 2γ − τ 22

τ 21 − τ 22
.

(11)χ2 =
m∑

j=1

(yj − E(yj))
2

E(yj)

(12)E[Yj] = n · pj = n ·
FX

(
δj
)
− FX

(
δ(j − 1)

)

FX (δm)
.

where f  represents a curve fit from the small data sets, 
and h represents the true (or our best approximation 
to the true) data generating process. We do not have a 
closed form for the Hellinger Distance between two biex-
ponential distributions; however, since

and since one can make random draws from h, it is 
straightforward to use the Monte Carlo estimate of the 
Hellinger Distance H(f , h) for any f . That is, for suffi-
ciently large N,

where z1, z2, . . . , zN are independent draws from h.

Simulation results
Biexponential data were simulated as follows. In the biex-
ponential distribution, the first lifetime component τ1 
was fixed at 1,500, and assumed known when fitting the 
biexponential distribution directly by maximizing the 
likelihood and when fitting the biexponential distribution 
indirectly by using the gamma conversion method; the 
first component weight c took values in {0.60, 0.75, 0.90}
; the second lifetime component τ2 took values equal-
ing kτ1, for k in {0.500, 0.800, 0.900, 0.950, 0.990, 1.01, 
1.05, 1.10, 1.20, 2.00}; the bin width δ was set to be 50. 
We generated 1,000 data sets of 50 photons for each of 
the 30 configurations. For each data set we estimated 
the lifetime parameter values by fitting the biexponen-
tial directly and also by using our proposed approach. 
In both cases optimization was performed by using the 
Nelder–Mead algorithm, setting the maximum num-
ber of iterations to be 10,000 and the relative conver-
gence tolerance to be 1× 10−8. In the former case, we 
attempted to fit the data using 25 different starting values 
of c and initializing τ2 to be equal to the mean of the bin 
counts (i.e., 

∑
j(jyj)/

∑
ℓ yℓ). In the latter case we initial-

ized α = 0.5, and τγ was initialized similarly to τ2 when 
fitting the biexponential directly. We note here that to 
find good solutions from the optimization algorithm it 
was necessary to use multiple starting points for fitting 

(13)

H(f , h) ∝
{∫ (

f
1
2 − h

1
2

)2} 1
2

∝
√

2− 2

∫
(fh)

1
2

∫
(fh)

1
2 =

∫ √
f

h
h = Eh

(√
f

h

)

(14)H(f , h) ≈

√√√√2− 2

N

N∑

i=1

(√
f (zi)

h(zi)

)
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the biexponential directly whereas this was not necessary 
with our method; in particular, without using multiple 
initialization points for fitting the biexponential distri-
bution directly we would often fail to converge or obtain 
poor estimates. Out of the 30,000 simulated data sets, 
attempting to fit the biexponential model directly failed 
to converge in 14,272 instances even while using multi-
ple starting points, as opposed to 2,160 instances when 
using the proposed gamma method using only one start-
ing point.

To compare the performance of the methods, we focus 
on the data sets in which both methods converged and 
use the quantity log(τ̂2/τ2) (base e) as a benchmark. 
Figure 1 shows the 2-dimensional histogram of these 
estimates, obtained both from directly fitting the biex-
ponential distribution (vertical axis) and from using 
the gamma conversion method (horizontal axis). It can 
be seen from this plot that when fitting the biexponen-
tial directly, even among the data sets in which conver-
gence was reached, there are a large number of occasions 
where the estimated values of τ2 are physically unreason-
able, yet the gamma conversion method provides rea-
sonable answers. This can be further seen by looking at, 
e.g., the 5th and 95th quantiles of τ̂2/τ2, which were 0.23 
and 202,000 respectively when fitting the biexponential 
directly and 0.35 and 5.2 respectively when applying the 
gamma conversion method. These numbers suggest the 
estimates obtained from directly fitting biexponential 

distribution are numerically instable compared to those 
obtained from gamma conversion method.

In reality, many of these results yielding extremely 
large estimates simply would not be accepted in practice. 
Instead, an artificial ceiling may be put on the lifetime 
estimates. When we do this in our simulation study, using 
a cap of 100 ns, our results lead to the same conclusions. 
To give a brief summary of these slightly modified results, 
we computed the mean square error (MSE), which is the 
average of (τ̂2 − τ2)

2, for the direct fitting of the biexpo-
nential (1,500 ns2) and for our proposed gamma conver-
sion method (55 ns2); clearly even with this truncation of 
extremely high estimates, our proposed method is per-
forming much better.

To evaluate the overfitting problem, we compute the 
Hellinger Distance and Pearson’s χ2 statistics. For each 
of the simulated data sets in which both methods con-
verged, these two values were computed by fitting the 
biexponential distribution directly and also by using 
the gamma conversion method. Figure 2 gives the two-
dimensional histogram of these values, where the plot on 
the left corresponds to fitting the biexponential directly 
and the plot on the right corresponds to using the gamma 
conversion method. We see that fitting the biexponen-
tial directly, in a large number of the data sets, yields 
estimates which fit the data quite well, as evidenced by a 
small χ2 value, but are far from the truth, as evidenced by 
a large Hellinger Distance. Using the gamma conversion 
method eliminates this overfitting problem, as evidenced 
by the observations that all the Hellinger Distance values 
are small.

Figures 1 and 2 broken down by simulation configura-
tion are given in the Additional files 1, 2, 3 and 4. What is 
evident is that while the problems of numerical instability 
and overfitting which arise from fitting the biexponential 
distribution directly are milder in some configurations 
than others, these problems do in fact exist for each con-
figuration, while our proposed approach greatly amelio-
rates these issues. When τ1 was treated as unknown we 
obtained similar results. See Additional files 1, 2, 3 and 4 
for these results.

Fluorophore Cy3 results
Single molecule fluorescence lifetime was measured as 
follows. We used a confocal microscope setup to mini-
mize the detection volume. A DNA strand labeled with 
Cy3

(5′-Cy3-TATTATATAAGTAATAAATA-3′) was excited 
by 532 nm quasi-continuous pulsed laser (Vanguard 
VGND2000-76-HM532, Spectra-Physics), which has 12 
ps pulse width. These make a broadening of about 5% of 
the lifetime we are measuring. While there exist meth-
ods to deconvolute the IRF and our software is capable 

Figure 1  Parameter estimates from simulated data. Two-dimensional 
histogram of log(τ̂2/τ2), where τ̂2 us the estimate from either using 
the biexponential pdf directly (vertical axis) or the gamma conver-
sion method (horizontal axis); the estimates are aggregated over 30 
varying true values of c and τ2. Intensity is graded from blue (lowest) 
to yellow (highest), white indicating no counts.
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of doing it, we did not do it for this study as the broad-
ening is negligible compared to the broadening that 
we are dealing with, coming from the small number of 
photons. Further, we considered only the time window 
after the peak of the lifetime decay in order that our fit-
ting would not be seriously affected by the IRF broaden-
ing. The emitted photons passed through the objective 
lens, dichroic mirror, emission filter, and focusing lens, 
and then were collected at the avalanche photodiode 
(PD5CTC, Micro Photon Devices). Out-of-focus signal 
was rejected by use of the pinhole pair in this confocal 
setup (see Figure 3).

The excitation pulses were branched to a photodiode 
for synchronization. Time delay between the signals 
from the avalanche and sync photodiodes was measured 
by the time correlated single photon counter (SPC630, 
Becker&Hickl GmbH). Figure 3 shows a schematic of 
that described above. We used 2 nM of fluorophores for 
detecting fluorescence from diffusing molecules. We set 
it up such that it gives the APD counting rate smaller 
than 105/s. Considering that the excitation pulse repeats 
at 80 MHz (i.e. 12.5 ns), this corresponds to detecting less 
than one photon every 800 pulses on average. The prob-
ability of detecting more than two photons (from two dif-
ferent molecules) from a single pulse is less than 1/800. 
As we used only 50 photons per histogram and also the 
pulse interval of 12.5 ns much longer than the decay time, 
there will be practically no photon that is not coming 

from the latest excitation pulse. Thus we confirm that we 
are measuring tightly correlated photon emission from 
excited single molecules. The data from SPC630 were 
collected until desired number of photons were detected 
and then plotted as a lifetime histogram with appropriate 
bin sizes. See [1] for more details.

Figure 2  Evidence of overfitting from simulated data. Two-dimensional histogram for Hellinger Distance (vertical axis) and Pearson’s χ2 statistic 
(horizontal axis) for simulated data, where the plotted values have been aggregated over varying true values of c and τ2. Fitting the biexponential 
directly gives the plot on the left, and using gamma conversion method gives the plot on the right. Intensity is graded from blue (lowest) to yellow 
(highest), white indicating no counts.

Figure 3  Experimental schematic. Schematic of the confocal-TCSPC 
setup.



Page 7 of 9Sewell et al. BMC Res Notes  (2015) 8:230 

One large data set (≈1.2 million photons) was obtained 
from the above experiment. The bin width used was 
12.5  ns/256 = 48.8  ps; the maximum amount of time 
in the observation window is 10,101.6  ps (207 bins). 
The biexponential distribution was fit directly to obtain 
τ1 = 927.4 ps, τ2 = 2739 ps, and c = 0.6171. These com-
ponents are comparable to those found by [21], who 
obtained the estimates τ1 = 530  ps, τ2 = 2000  ps, and 
c = 0.51. The main component here was τ1, and for the 
remainder of the analysis we assumed this value known, 
while c and τ2 remained to be estimated, treating the esti-
mates of 2,739 ps and 0.6171 as the “true” values for the 
rest of the analysis. Figure 4 gives the histogram of the 
large data set, with the estimated biexponential curve 
superimposed. Next we sampled without replacement 
from the large data set to obtain 2,586 small data sets 
of sample size 50. Photon decay curves were estimated 
from these small data sets using both the biexponential 
pdf directly and the gamma conversion method, and the 
results were compared to the true values. The intializa-
tion of the optimization algorithms was the same as that 
done for the simulated data.

Attempting to fit the biexponential pdf directly led to 
364 instances of failure to converge, as opposed to just 
one using the gamma conversion method. For each of 
the small data sets where both methods converged, the 
quantity log(τ̂2/τ2) was computed for τ̂2, which was esti-
mated by fitting the biexponential directly and also by 
the gamma conversion method. Figure 5 is a two-dimen-
sional histogram of these values, where the vertical axis 

corresponds to fitting the biexponential directly and the 
horizontal axis corresponds to the gamma conversion 
method. From this figure, it is clear that there are a large 
number of data sets in which the estimates of τ2, obtained 
directly by fitting the biexponential distribution, are 
physically unreasonable values, yet the gamma conver-
sion method provides reasonable answers. The 5th and 
95th quantiles of τ̂2/τ2 were 0.55 and 67,000 from fitting 
the biexponential directly and 0.49 and 1.1 when using 
the gamma conversion method. These numbers suggest 
that the gamma conversion method is giving more stable 
results than that obtained from fitting the biexponential 
distribution directly.

As with the simulation study, we again applied a ceil-
ing of 100 ns to the extremely high estimates of τ2. Again 
the conclusions were the same for these modified results. 
The MSE for directly fitting the biexponential was 725 ns2 
and for the gamma conversion method was 0.89 ns2.

We also computed, for each of the small data sets, 
the Hellinger Distance and χ2 statistic for both meth-
ods. Figure 6 is the two-dimensional histogram of Hell-
inger Distances vs. χ2 statistics, where the plot on the 
left corresponds to those values computed when fitting 
the model to the biexponential distribution directly and 
the plot on the right is when using the gamma conver-
sion method. We observe, just as in the simulations, that 
when fitting the biexponential directly, in a large num-
ber of the smaller data sets, we have estimates that fit the 

Figure 4  Cy3 data. Histogram of Cy3 fluorophore data on log scale, 
with estimated biexponential distribution superimposed.

Figure 5  Parameter estimates from Cy3 data. Two-dimensional 
histogram of log(τ̂2/τ2), where τ̂2 us the estimate from either using 
the biexponential pdf directly (vertical axis) or the gamma conversion 
method (horizontal axis); the estimates are obtained by fitting the 
fluorophore Cy3 data. Intensity is graded from blue (lowest) to yellow 
(highest), white indicating no counts.
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data quite well, as evidenced by small χ2 values, but the 
estimated decay curve is far from the truth, as evidenced 
by a large Hellinger Distance. Using the gamma conver-
sion eliminates this overfitting problem, as evidenced by 
the fact that all the Hellinger Distance values are small.

Similar results were obtained for the fluorophore Cy3 
data when τ1 was assumed to be unknown. See Addi-
tional files 1, 2, 3 and 4 for these results.

Conclusion
In the single-molecule fluorescence lifetime experi-
ments, it is of great interest to study the photon delay 
time. In particular, we are interested in fitting a mixture 
of exponential model to the photon count data. However, 
directly fitting a mixture of exponential model may lead 
to numerical optimization problems, whether that be 
failure to converge or convergence to local optima result-
ing in physically unreasonable values or overfitting. In 
this paper, we proposed the gamma conversion method, 
where we first fit a gamma distribution to the data and 
then, via moment matching, estimate biexponential 
parameters. In this manner both the numerical instability 
and the overfitting problems are avoided.

The proposed method was evaluated using Pearson’s 
χ2 statistic and the Hellinger Distance. As an alter-
native to Pearson’s χ2 statistic and the Hellinger Dis-
tance, we could have compared the MSE, just as we did 
when we applied the ceiling to the lifetime estimates. 

Calculating the ratio of MSEs obtained from fitting the 
biexponentials directly and from our proposed method 
yielded a value of 5.6e10 for the real data example, and 
similar ratios were consistently found in all 30 simula-
tion configurations. These observations suggest that 
the estimates obtained from gamma conversion signifi-
cantly outperform those obtained from directly fitting 
biexponenetials.

Although the method was designed to analyze photon 
counts in single-molecule fluorescence lifetime experi-
ments, the method may be applied to other problems 
involving fitting mixture of exponential distributions. 
Most FLIM measurements, however, have rather large 
number of photons (∼ 1,000) for each pixel, and thus do 
not suffer from the overfitting or numerical instability 
issues highlighted here when discussing single molecule 
fluorescence lifetime data.
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Figure 6  Evidence of overfitting the Cy3 data. Two-dimensional histogram for Hellinger Distance (vertical axis) and Pearson’s χ2 statistic (horizontal 
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