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Influenza, a communicable disease, affects thousands of people worldwide. Young

children, elderly, immunocompromised individuals and pregnant women are at higher

risk for being infected by the influenza virus. Our study aims to highlight differentially

expressed genes in influenza disease compared to influenza vaccination, including

variability due to age and sex. To accomplish our goals, we conducted a meta-analysis

using publicly available microarray expression data. Our inclusion criteria included

subjects with influenza, subjects who received the influenza vaccine and healthy controls.

We curated 18 microarray datasets for a total of 3,481 samples (1,277 controls, 297

influenza infection, 1,907 influenza vaccination). We pre-processed the raw microarray

expression data in R using packages available to pre-process Affymetrix and Illumina

microarray platforms. We used a Box-Cox power transformation of the data prior to

our down-stream analysis to identify differentially expressed genes. Statistical analyses

were based on linear mixed effects model with all study factors and successive likelihood

ratio tests (LRT) to identify differentially-expressed genes. We filtered LRT results by

disease (Bonferroni adjusted p < 0.05) and used a two-tailed 10% quantile cutoff to

identify biologically significant genes. Furthermore, we assessed age and sex effects

on the disease genes by filtering for genes with a statistically significant (Bonferroni

adjusted p < 0.05) interaction between disease and age, and disease and sex. We

identified 4,889 statistically significant genes when we filtered the LRT results by disease

factor, and gene enrichment analysis (gene ontology and pathways) included innate

immune response, viral process, defense response to virus, Hematopoietic cell lineage

and NF-kappa B signaling pathway. Our quantile filtered gene lists comprised of 978

genes each associated with influenza infection and vaccination. We also identified 907

and 48 genes with statistically significant (Bonferroni adjusted p< 0.05) disease-age and

disease-sex interactions, respectively. Our meta-analysis approach highlights key gene

signatures and their associated pathways for both influenza infection and vaccination.

We also were able to identify genes with an age and sex effect. This gives potential for

improving current vaccines and exploring genes that are expressed equally across ages

when considering universal vaccinations for influenza.
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1. INTRODUCTION

The influenza virus, a respiratory pathogen, is responsible for
seasonal influenza (also known as the flu), influenza pandemics
and high rates of morbidity and mortality worldwide (1). The
influenza virus infects the upper respiratory tract by invading
the epithelial cells, releasing viral RNA, replicating and spreading
throughout the respiratory tract while also causing inflammation
(2). Influenza is a highly contagious disease and spreads easily
via contact with an infected person’s nasal discharges and cough
droplets (3). Themain virulence factors are haemagglutinin (HA)
and neuraminidase (NA) (2). These surface glycoproteins are also
important for determining the sub-type of the influenza virus.
The influenza virus can also reduce host gene expression through
their viral proteins (4, 5). The viral proteins affect transcription
and translation in the host which reduces the production of host
proteins and promotes immune system evasion for the virus
(4, 5). The virus interferes with host gene expression to promote
viral gene expression, and this affects the immune system of
the host by reducing the expression of immune components
such as the major histocompatibility (MHC) molecules antigen
presentation, and interferon and cytokine signaling pathways
(4, 6).

Influenza is a global health burden, and as a preventative
method vaccinations are offered annually. Vaccines are modified
annually because the influenza virus strains change and mutate
every season (7). The influenza vaccinations target the viral
strains and sub-types that researchers predict would be most
prevalent each flu season (3, 8). Furthermore, there are groups
in the population who are considered at a higher risk for
influenza infection, and they include young children, elderly,
individuals who are immunocompromised, and females who are
pregnant (3). The Centers for Disease Control and Prevention
(CDC) has estimated, for the 2017–2018 season for influenza,
959,000 hospitalizations and over 79,000 deaths (3). 90% of
the deaths during the 2017–2018 flu season were within the
elderly population, while about 48,000 of the hospitalizations
were in children (3). These estimates highlight that young
children and especially the elderly are at higher risks for influenza
and severe infections that can lead to hospitalization or death.
Additionally, the CDC has recommended varying dosages for
each vaccine for different age groups due to age-dependent
immune responses (3, 9). Due to a decrease in efficacy of
the influenza vaccines in the 65 and older population, they
receive different dosages compared to younger age groups, in
order to elicit a beneficial immune response (3, 9). Contrasting
between changes in gene expression due to immunosenescence
in healthy subjects and the age-dependent immune responses
to diseases such as influenza can help our understanding of
how responses to different diseases vary with age. Due to
the influenza virus constantly changing and the efficacy of
the vaccine being dependent on one’s age, researchers have
started efforts to develop a universal vaccine (10–12). The
goal is for such a universal vaccine to provide protection
to all influenza strains (13). One approach, is to implement
the use of highly conserved influenza peptides in vaccine
formulations (12, 13).

Previous studies have investigated global blood gene
expression to compare influenza disease to other respiratory
diseases to assess severity and pathogenesis (14). For example,
influenza has been shown to induce a stronger immune
response than respiratory syncytial virus by producing more
respiratory cytokines (14, 15). Studies also explored responses to
vaccinations to highlight gene signatures. In our meta-analysis,
our aim was to combine publicly available influenza microarray
data to identify the effects of disease state (control, influenza
infection, and vaccination), age and sex on gene expression.
We explored gene expression variation in blood for 3,481
samples (1,277 controls, 297 influenza infected, 1,907 influenza
vaccinated) to identify genes and their pathways in influenza
(Figures 1, 2). This is to the best of our knowledge, the largest
meta-analysis (18 datasets) to explore blood expression changes
in influenza infection and vaccination. Our results provide
gene signatures and pathways that can be targeted to improve
influenza treatment and vaccinations. We also highlight disease
associated genes that have interactions with age and sex, that
can be used to further explore improving vaccinations, and aid
efforts in identifying potential gene targets toward developing
universal vaccinations to help reduce the burden of influenza.

2. METHODS

We curated 18 influenza-related microarray datasets from
public database repositories (Table 1) to investigate changes
in gene expression due to disease status, sex, and age. The
18 datasets were from Affymetrix and Illumina microarray
platforms (Table 1). We modified and implemented the
data-analysis pipeline outlined by Brooks et al. (29). To
achieve our goal, after curating the datasets, we used the
R programming language (30) to pre-process the raw gene
expression data and to fit linear mixed effects models to
determine statistically significant differentially expressed
genes by factor (Figure 1). In addition, we identified
genes that varied in expression due to disease status, sex,
and age, and we also determined which gene ontology
(GO) terms and pathways enrichment based on these gene
sets (Figure 1).

2.1. Data Curation: Gene Expression
Omnibus
For our meta-analysis, we focused on influenza infection and
vaccination. We searched public database repositories such
as Gene Expression Omnibus (GEO) (31), Array Express
(AE) (32), and Immune Space (IS) (33, 34) (Figure 2). To
begin our data search, we found datasets with the keyword
“influenza” and filtered for /textitHomo sapiens (Figure 2).
Following this filter, we then removed duplicate records.
For example, there were 15 duplicate records on GEO
and 16 datasets on IS overlapped with our GEO records
(Figure 2). We further filtered the results for datasets that were
published, had non-ambiguous annotation, reported the age
and sex of all subjects, and used blood or peripheral blood
mononuclear cells (PBMCs) as the tissue type (Figure 2). Based
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FIGURE 1 | Meta-analysis workflow to assess gene expression variation in influenza disease and vaccination. (A) Main steps. (B) Data pre-processing in R. (C)

Downstream analysis. (D) post-hoc analysis.

on our inclusion criteria, we identified 18 datasets on GEO
to use for our meta-analysis (Table 1 and SDF1 of online
supplementary data files). For datasets such as GSE29614 (SDY64
on IS), GSE29615 (SDY269 on IS), GSE74811 (SDY270 on
IS), GSE59654 (SDY404 on IS), GSE74816 (SDY1119 on IS),
GSE48023 (SDY1276 on IS), 48018 (SDY1276 on IS) that did
not have the ages of the subjects reported on GEO, we used the
annotation from IS to gather age and sex characteristics of the
samples. Additionally, we excluded 4 duplicates in GSE34205:
GSM844139, GSM844141, GSM844143, and GSM844196 (which
are duplicates of GSM844138, GSM844140, GSM844142, and
GSM844195 datasets, respectively).

After filtering through and selecting the datasets to use in

our meta-analysis, we downloaded the raw gene expression

data for each dataset, and created a file per study with sample
characteristics (Table 1 and SDF1 of online supplementary
data files). Our selected datasets were further filtered to
remove samples that did not fit our criteria. For instance,
GSE38900 and GSE34205 have samples with respiratory
syncytial virus (RSV), GSE48762 contains samples who
received the pneumococcal vaccine, GSE50628 has samples
with rota-virus infection and patients who experience
seizures, and GSE97485 has samples with acute myeloid
leukemia who received the influenza vaccine. Due to this, we
excluded all subjects that had a pre-existing health condition,
infections other than influenza and received vaccinations other
than the influenza vaccine (SDF1 of online supplementary
data files).

2.2. Data Pre-processing in R and
Mathematica
All raw expression files were downloaded directly from the GEO
website and pre-processed in R using appropriate packages based
on the type of microarray platform (Table 1). We carried out
background correction and annotated and summarized all probes
(Figure 1B). We used the affy package (35) to pre-process
all of the data files for the expression data from Affymetrix
Human Genome Plus 2.0 and the Affymetrix HT Human
Genome U133 Plus PM. Specifically, we used the expresso
function to pre-process the files using robust multi-array analysis
(RMA) for background correction, conduct perfect-match probe
correction, and to calculate expression values using “avdiff”
(35). To summarize and remove replicate probes we used the
avereps function from limma (36). For the Affymetrix HT
Human Genome U133 Plus PM, we created our own annotation
package in R using the annotation obtained from GEO (37). For
the raw expression data from the Affymetrix Human Gene 1.1 ST
microarray platform, we pre-processed the data using the oligo
(38) and affycoretools (39) packages. To background
correct the Affymetrix Human Gene 1.1 ST microarray data
files we also used RMA and summarized and removed replicate
probes using avereps function from limma.Our Illumina data
files were pre-processed with the limma package. We used
the NormExp Background Correction (nec) function from the
limma package to remove the background of data files that
reported the detection p-values. The (nec) function using the
detection p-values when background correcting. Probes were
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FIGURE 2 | Preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist.

annotated and summarized using the aggregate function
from the stats package in base R (30, 36).

Following pre-processing, we merged expression data for
the 18 datasets (Table 1 and SDF1 of online supplementary
data files) by matching gene symbols that were common
across all datasets. We conducted a Box-Cox power
transformation (40) and standardized the expression values
using the functions ApplyBoxCoxTransformExtended
and StandardizeExtended from the MathIOmica
(version 1.2.0) package in Mathematica (41, 42)

(Figure 1B and SDF2 of online supplementary
data files).

2.3. Linear Mixed Effects Modeling
We fitted a sequence of mixed-effects models to identify genes
whose expression levels were affected by disease status (3 levels:
control, influenza, vaccine) and those for which the effect of
disease was modulated by either age or sex. Models were fitted
using the lmer function of the lme4 R-package (43). Separate
models were fitted to each of the genes. Our baseline model (M0)
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TABLE 1 | Demographics of curated influenza microarray datasets.

Accession number Controls Influenza disease Influenza vaccine Sex (M/F) Age range Platform References

GSE38900 31 16 0 20/27 0.025–1.57 Illumina HumanHT-12 V4.0 expression beadchip (14)

GSE107990 171 0 500 238/433 23–89 Illumina HumanHT-12 V4.0 expression beadchip (16)

GSE111368 130 229 0 177/182 18–71 Illumina HumanHT-12 V4.0 expression beadchip (17)

GSE27131 7 14 0 16/5 25–59 Affymetrix Human Gene 1.0 ST Array (18)

GSE29614 9 0 18 12/15 22–46 Affymetrix Human Genome U133 Plus 2.0 Array (19)

GSE29615 28 0 55 38/45 21–46 Affymetrix HT HG-U133+ PM Array Plate (19)

GSE47353 117 0 175 122/170 21–62 Affymetrix Human Gene 1.0 ST Array (20)

GSE48762 274 0 150 202/222 22–49 Illumina HumanHT-12 V3.0 expression beadchip (21)

GSE50628 0 10 0 2//8 4–9 Affymetrix Human Genome U133 Plus 2.0 Array (22)

GSE52005 34 0 102 62/74 0.68–14.68 Illumina HumanHT-12 V4.0 expression beadchip (23)

GSE74816 72 0 105 59/118 21–80 Affymetrix HT HG-U133+ PM Array Plate (24)

GSE97485 10 0 0 6/4 27–72 Affymetrix Human Gene 1.0 ST Array (25)

GSE34205 18 28 0 24/22 0.0416–11 Affymetrix Human Genome U133 Plus 2.0 Array (15)

GSE41080 91 0 0 37/54 20–93 Illumina HumanHT-12 V3.0 expression beadchip (26)

GSE74811 28 0 55 23/60 21–47 Affymetrix HT HG-U133+ PM Array Plate (24)

GSE59654 39 0 117 68/88 22–90 Illumina HumanHT-12 V4.0 expression beadchip (27)

GSE48018 111 0 320 431/0 18.2–32.1 Illumina HumanHT-12 V3.0 expression beadchip (28)

GSE48023 107 0 310 0/417 18.5–40.2 Illumina HumanHT-12 V4.0 expression beadchip (28)

included the (fixed) effects of sex (M/F), age (a factor with 4
levels, (–1,3], (3,19], (19,65] and (65,100]), ethnicity (a factor
with 7 levels, African-American, Caucasian, Asian, Hispanic,
Middle Eastern, Other, Unclassified) and tissue (2 levels, blood
and PBMCs) plus the random effects of study (18 levels, see
Table 1 for accession numbers) and of the subject (we included
the subject effect because some studies had repeated measures).
We first expanded this model by adding the (fixed) main effect
of disease status (a factor with three levels, M1). Our next model
expanded M1 by adding interactions between disease status and
age (M2-DxA) and disease status by sex (M2-DxS). P-values for
the main effects of diseases as for disease-by-sex and disease-
by-age were obtained using likelihood ratio tests (LRT) between
the models described above (SDF3 of online supplementary data
files). LRTs were implemented using the anova function from
base R to pairs of models. We used a sequential testing approach
where: (i) we first identified genes with significant main effect
of disease (this was based on a LRT between M1 and M0), (ii)
among genes with significant main effect of diseases we tested the
significance of DxA and DxS using a likelihood ratio test that had
M1 as null hypothesis and the interaction models as alternative
hypotheses. P-values were adjusted using Bonferroni adjustment,
where for the first test (i) the number of tests was equal to the
number of genes, and for the second one (ii) the number of tests
was equal to the number of genes that passed the first test.

The filtering of genes based on Bonferroni-adjusted p-values
for the main effect of disease (comparison of M1 to M0)
allowed us to identify differentially expressed genes with respect
to disease states (Figure 1). Using this gene list, we then
conducted GO enrichment analysis (GOAnalysis function in
MathIOmica package) and pathway enrichment analysis using
Kyoto Encyclopedia of Genes and Genomes (KEGG, using the
KEGGAnalysis functions in MathIOmica), and Reactome

pathway enrichment analysis [enrichPathway function from
the ReactomePA package in R (44)].

2.4. Determining Gene Expression
Variability Between Influenza Infection and
Vaccination
We took a sequential testing approach to further analyze the
identified statistically significant disease genes (SDF5 of online
supplementary data files). Using this gene list, we further
filtered for biological effect by using calculated estimates (which
compared influenza and vaccine expression to controls) (SDF4
of online supplementary data files) and performed a two-tailed
10% quantile filter (i.e., 0.1 and 0.9 quantiles) to determine
genes that were biologically significant in subjects who were
vaccinated with influenza vaccinated and subjects infected with
influenza disease. The biologically significant gene lists for the
vaccinated and influenza subjects were further examined to
identify genes in common, and genes only in the influenza list,
and only in the vaccinated list (Figure 1). We performed GO
and pathway enrichment analysis on these genes. Lastly, we
filtered the disease (see SDF1 of online supplementary data files)
statistically significant gene list for interacting genes between
disease and age (age groups: (−1,3], (3,19], (19,65], (65,100]) and
disease and sex.

3. RESULTS

Our data curation criteria resulted in 3,481 samples
(1,277 controls, 297 influenza infection, 1,907 influenza
vaccinated, 1,537 males and 1,944 females) (see SDF1 of online
supplementary data files). Our 3,481 samples are from 1,147
individuals. Some studies include repeated measures (in the
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FIGURE 3 | Flowchart of gene filtering steps for influenza meta-analysis.

curated studies individuals were followed for several days after
vaccination or infection and varying timepoints were reported
as a different samples for the same subject). We included all
repeated measures in our downstream analysis and accounted
for them in our model. The main results are summarized below,
and further discussed in the section 4.

3.1. Differentially Expressed Genes in
Influenza Disease and Vaccination
Filtering our LRT analysis results by disease factor (see SDF3
of online supplementary data files) for Bonferroni adjusted
p-values (< 0.05), we identified 4,889 statistically significant
disease genes (see SDF5 of online supplementary data files and
Figure 3 for downstream analysis details). We performed GO
enrichment analysis using BINGO in Cytoscape (version 3.7)
(45, 46) and pathway enrichment analysis on the 4,889 genes
(Supplementary Figures 1–5 and see SDF6-SDF8 of online
supplementary data files). We identified enriched GO terms such
as: cell cycle checkpoint (51 genes), response to stimulus (987
genes), immune response (243 genes), transcription (122 genes),
regulation of T-cell activation (62 genes), regulation of defense
response to virus by host (8 genes) and immune system process
(379 genes) (see SDF8 of online supplementary data files for
full table). We found 75 enriched KEGG pathways (SDF6 of
online supplementary data files). The enriched KEGG pathways
include: Cell cycle (68 gene hits), Hematopoietic cell lineage
(45 genes), NF-kappa B signaling pathway (46 genes), Metabolic
pathways (341 genes), Primary immunodeficiency (23 genes),
T cell receptor signaling pathway (44 genes), B cell receptor
signaling pathway (29 genes) and also Influenza A (52 genes).
We also highlighted the NF-kappa B signaling pathway and the
Influenza A KEGG pathways that are relevant to disease with
our calculated estimates which compared influenza infection and
vaccination expression to that of healthy controls (Figures 4–7).

In addition, we filtered the 4,889 genes for effect size to
determine biological significance of the genes (SDF4 of online
supplementary data files). We used a two-tailed 10 and 90%
quantile filter on the 4,889 genes to: (i)analyze the influenza
disease estimates (compared expression to control) list to
identify genes that are biologically significant and statistically

significant (Bonferroni-adjusted p <0.05) in influenza infection
(ii) analyze the influenza vaccination estimates with the same
filtering approach to also identify significant genes for influenza
vaccination. For influenza infection our 10 and 90% quantile
cut-offs for biological significance were ≤ −0.6724464 and ≥

0.5949655, respectively. For influenza vaccination, the 10% and
90% quantile cut-offs were ≤ -0.07157763 and ≥0.06719048,
respectively. For influenza infection we identified 978 genes of
the 4,889 to be biologically significant (Table 2 and SDF9 of
online supplementary data files), and we also identified 978
genes to be biologically significant for influenza vaccination
(Table 2 and SDF10 of online supplementary data files). We
then compared the two gene lists to identify the intersection
(genes in common), genes only in the influenza disease list,
and genes only in the influenza vaccination list (Figure 1D
and SDF11-SDF13 of online supplementary data files). There
were 334 genes in common across both lists (influenza disease
and vaccination) (SDF17 of online supplementary data files)
that resulted in enriched Reactome pathways such as Interferon
alpha/beta signaling (14 genes), Interferon gamma signaling
(12 genes), Antiviral mechanism by IFN-stimulated genes (9
genes), and Cell Cycle Checkpoints (17 genes) (SDF20 of online
supplementary data files). There were 644 genes that were only
in influenza infection list (SDF18 of online supplementary data
files) that resulted in enriched Reactome pathways including:
Neutrophil degranulation (45 genes), Cell Cycle Checkpoints
(27 genes), Amplification of signal from the kinetochores (13
genes), Amplification of signal from unattached kinetochores
via a MAD2 inhibitory signal (13 genes) and Mitotic Spindle
Checkpoint (14 genes) (SDF21 of online supplementary data
files). Also, we identified another 644 genes that were only
in the biologically significant list for the vaccinated subjects
(SDF19 of online supplementary data files). Enriched Reactome
pathway analysis on these genes resulted in pathways such
as Interferon Signaling (24 genes), Antigen processing-Cross
presentation (14 genes), ER-Phagosome pathway (12 genes),
Binding and Uptake of Ligands by Scavenger Receptors
(8 genes) and Class I MHC mediated antigen processing
& presentation (30 gene) (SDF22 of online supplementary
data files).
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FIGURE 4 | Highlighted NF-Kappa B Signaling KEGG Pathway (hsa04040) with Enriched Genes from the LRT Analysis (Bonferroni-adjusted p < 0.05) for Influenza

Infected Subjects (47–49). Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza Infected Subjects.

We also explored the 4,889 genes to identify how many
genes were different in gene expression when looking at
influenza infected subjects compared to influenza vaccinated
subjects. Of the 4,889 genes, 4,261 genes showed statistically
significant differences between vaccination and infection
with influenza (Figure 3 and SDF25–SDF27 of online
Supplementary Data Files).

3.2. Age and Sex Effect on Gene
Expression in Influenza
Using the 4,889 genes disease significant genes from above,
we Bonferroni-adjusted the p-values for both the age and sex
factors. We then further filtered the 4,889 list by the age factor
p-values (Bonferroni-adjusted p < 0.05) to identify statistically
significant interacting genes between disease state and age (DxA).

We also repeated this approach for the sex factor interaction with
disease (DxS). Of the 4,889 statistically significant (Bonferroni-

adjusted p <0.05) disease genes, 907 of them had a statistically

significant interaction with disease and age (SDF28 of online

supplementary data files). KEGG enrichment, our results include:
Cytokine-cytokine receptor interaction (34 genes), T cell receptor
signaling pathway (19 genes), Natural killer cell mediated
cytotoxicity (19 genes), Intestinal immune network for IgA
production (11 gene hits), Hematopoietic cell lineage (14 genes),
Primary immunodeficiency (8 genes), NF-kappa B signaling
pathway (13 genes), and Influenza A (16 genes) (SDF30 of
online supplementary data files, Table 3). We also looked at
the biologically significant gene lists for influenza infection and
vaccination (based on effect as discussed above) to determine
which of these genes also had a significant interaction with
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FIGURE 5 | Highlighted NF-Kappa B Signaling KEGG Pathway (hsa04040) with Enriched Genes from the LRT Analysis (Bonferroni-adjusted p < 0.05) for Influenza

Vaccinated Subjects (47–49). Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza Vaccinated Subjects.

disease and age. Of the 978 in the influenza infection biologically
significant list, 432 had a statistically significant (Bonferroni-
adjusted p < 0.05 for disease and age factor) interaction with
disease and age (Figure 3 and SDF32 of online Supplementary
Data Files). In the biologically significant gene list for influenza
vaccinated subjects 335 genes also had a statistically significant
(Bonferroni-adjusted p < 0.05 for disease and age factor)
interaction with disease and age (Figure 3 and SDF35 of online
Supplementary Data Files).

Furthermore, we explored differences in gene expression
(based on mean differences across groups) in subjects with
influenza infection, influenza vaccination and controls across
the 4 age groups: (−1,3], (3,19], (19,65], (65,100] using the
gene lists of identified disease:age interacting genes. First we
calculated the mean expression for control subjects younger

than 3 (age group: (−1,3]). This served as our baseline for
all comparisons to influenza infection and vaccination. We
calculated the difference in means for the subjects within the
other age groups only focusing on the healthy subjects and used
the younger than 3 as our baseline to find the difference in means
(Figure 8). We also calculated the difference in mean expression
for all influenza infected subjects and used the influenza infected
subjects younger than 3 as the baseline for comparisons of
relative expression (Figure 9A). In addition, we calculated the
difference in means by comparing influenza infected samples
to the control baseline (younger than 3) (Figure 9B). We
repeated the above steps with our vaccinated subjects to
explore how expression changes with age and disease state
(Figure 10). We also plotted the difference in means comparing
influenza vaccinated subjects to influenza infected subjects to
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FIGURE 6 | Highlighted Influenza A KEGG Pathway (hsa05164) with Enriched Genes from the LRT analysis (Bonferroni-adjusted p < 0.05) for Influenza Infected

Subjects (47–49). Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza Infected Subjects.

highlight temporal patterns of the 907 interacting (disease:age)
genes (Figure 11).

We also filtered our gene lists (statistically significant disease
genes and the biologically significant for influenza disease and
vaccination gene lists) for genes with a statistically significant

disease interaction with sex (Figure 3). We identified 48 of the
4,889 disease genes (Bonferroni-adjusted p < 0.05 for disease
and sex factor) that interacted with disease and sex (Figure 3
and SDF29 of online supplementary data files). In the influenza
infected biologically significant gene list there were 17 genes
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FIGURE 7 | Highlighted Influenza A KEGG Pathway (hsa05164) with Enriched Genes from the LRT Analysis (Bonferroni-adjusted p < 0.05) for Influenza Vaccinated

Subjects (47–49). Yellow-colored genes are up-regulated and blue-colored genes are down-regulated in Influenza Vaccinated Subjects.

that interacted with disease and sex (Bonferroni-adjusted p <

0.05 for disease and sex factor), and 7 genes had an interaction
with disease, sex and age (Bonferroni-adjusted p < 0.05 for
disease, sex and age factor) (Figure 3 and see also SDF33 and

SDF34 of online supplementary data files). We did not find any
statistically significant enrichment in pathways for these genes.
As for the biologically significant influenza vaccination genes,
37 of them were associated with disease and sex interactions
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TABLE 2 | Top 10 up- and down- regulated differentially expressed genes from

the influenza infected and influenza vaccination biologically significant gene lists

(based on estimates).

INFLUENZA INFECTION

Down-regulated Up-regulated

Gene Difference of means Gene Difference of means

NELL2 −1.687 UGCG 2.005

UBASH3A −1.583 CD177 1.875

ABCB1 −1.513 OTOF 1.844

PID1 −1.457 HP 1.625

CACNA2D3 −1.428 SSH1 1.491

PTGDR −1.423 DTL 1.431

CD40LG −1.392 GPR84 1.428

PTGDR2 −1.390 HJURP 1.420

TLE2 −1.379 CDC45 1.395

NCR3 −1.357 SLC1A3 1.390

INFLUENZA VACCINATION

Down-regulated Up-regulated

Gene Difference of means Gene Difference of means

TOP1MT −0.179 GBP1 0.354

ARNTL −0.176 MYOF 0.347

DIDO1 −0.172 STAT1 0.284

PDE4D −0.169 PSTPIP2 0.281

TMX4 −0.168 SAMD9L 0.276

ZNF589 −0.166 OAS3 0.269

SLC37A3 −0.165 WARS 0.263

GNB5 −0.165 BATF2 0.263

ENO2 −0.162 ANKRD22 0.256

AP3M2 −0.159 C1QB 0.255

(Bonferroni-adjusted p < 0.05 for disease and sex factor), and
13 genes had associated interactions with disease, sex and age
(Bonferroni-adjusted p < 0.05 for disease, sex and age factor)
(Figure 3 and see also SDF36 and SDF37 of online supplementary
data files). We also did not find any enriched pathways for
these genes.

4. DISCUSSION

Every year there is a new vaccine available to reduce the amount
of influenza cases worldwide. The influenza virus is constantly
changing and researchers have to predict the most common
strains that will affect the population each season. During the
flu season, the majority of hospitalizations and deaths from
influenza are within the elderly population (3). Young children
are also at high risk for severe infections of influenza due
to their underdeveloped immune system (50). Current vaccine
development methods, though effective are also flawed. In some
cases, the influenza strains can mutate after the strains for the
vaccine have been selected for the upcoming flu season, which
then reduces the effectiveness of the vaccine (51). Exploring

how gene expression varies in influenza infection, vaccination,
and comparison of the differences may highlight prospective
biomarkers/gene signatures for improving vaccinations. In
addition, because of the observed age-dependency in influenza
infection, investigating gene expression temporal patterns across
various ages can also provide insight on how genes change due to
underdevelopment and immunosenescence.

We identified 18 microarray expression datasets that passed
our inclusion criteria for a meta-analysis on influenza (Table 1).
We collected the raw expression microarray data for all datasets,
pre-processed them and combined by common gene names.
With 3,481 samples (including repeated measures) we modeled
the pre-processed expression data with a mixed effects model
and carried out LRT analysis. Our LRT analyses resulted in 4,889
statistically significant (Bonferroni-adjusted p <0.05) disease
genes (see SDF5 of online supplementary data files). These results
include CD177 which plays a role in innate immune response
by regulating chemotaxis of neutrophils (52, 53), BCL11B which
regulates T-cell differentiation (53, 54), HMGB1 protein has been
shown to promote viral replication (55) and plays a role in
inflammation (53), TPP2 plays a role in major histocompatibility
complex (MHC) presentation and TANK is involved in NF-
kappa B signaling.

We highlighted the KEGG NF-kappa B signaling pathway
using the estimates from influenza infection and vaccination
(Figures 4, 5). The NF-kappa B pathway is activated during
influenza infection which up-regulates antiviral genes (56) and
can regulate viral synthesis (57). Previous studies have also
reported that the influenza virus is capable of regulating antiviral
activity by NF-kappa B and promote replication in hosts (57).
In the NF-kappa B pathway, we observed similar expression
patterns between disease and vaccinated subjects, including down
regulation of genes involved in MHC/Antigen presentation for
both physiological states. There are also some differences in gene
expression observed such as CD40 and PARP1 up-regulated in
vaccinated samples. CD40 has previously been shown to regulate
immune response and promotes protection against the virus
(58, 59) while PARP1 has been highlighted as a host factor
that can regulate the polymerase activity of influenza (60). In
Figure 5, the genes in our vaccine list in the RIG-I-like receptor
signaling pathway are down-regulated, compared to influenza
infected subjects (Figure 4). The RIG-I-like receptors have been
previously shown to be involved in sensing viral RNA and
regulating an antiviral immune response (61). Other genes such
as ICAM which is involved in lymphocyte adhesion and T-cell
costimulation, and BLC and ELC involved in lymphoid tissue
homing are all down-regulated in vaccinated subjects compared
to infected subjects (Figures 4, 5).We also highlighted expression
of genes in the Influenza A KEGG pathway for influenza infected
and influenza vaccinated (Figures 6, 7). Although there are
similarities in both figures, some key differences in expression
are observed in genes connected with high fever (IL-1 and IL-6).
Studies have shown elevated levels of IL-1β and IL-6 following
infection with influenza A (17, 62).

Additionally, we compared our biologically significant gene
list for influenza infection (978 genes) to Dunning et al. who
identified whole blood RNA signatures in hospitalized adults
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TABLE 3 | Enriched KEGG pathways from statistically significant genes with an interaction between disease status and age.

KEGG ID KEGG pathway Gene count p-value adjusted p-value

path:hsa04060 Cytokine-cytokine receptor interaction 34 5.5E-09 1.4E-06

path:hsa04660 T cell receptor signaling pathway 19 6.9E-08 8.7E-06

path:hsa04650 Natural killer cell mediated cytotoxicity 19 3.8E-06 3.2E-04

path:hsa04672 Intestinal immune network for IgA production 11 5.9E-06 3.8E-04

path:hsa04640 Hematopoietic cell lineage 14 1.8E-05 9.1E-04

path:hsa05340 Primary immunodeficiency 8 1.3E-04 4.8E-03

path:hsa04064 NF-kappa B signaling pathway 13 1.4E-04 4.8E-03

path:hsa04622 RIG-I-like receptor signaling pathway 11 1.6E-04 4.8E-03

path:hsa04068 FoxO signaling pathway 16 1.7E-04 4.8E-03

path:hsa05166 HTLV-I infection 23 6.4E-04 1.5E-02

path:hsa05162 Measles 15 6.4E-04 1.5E-02

path:hsa04062 Chemokine signaling pathway 18 9.8E-04 2.1E-02

path:hsa05330 Allograft rejection 7 1.1E-03 2.2E-02

path:hsa04380 Osteoclast differentiation 14 1.4E-03 2.6E-02

path:hsa05320 Autoimmune thyroid disease 8 1.9E-03 3.2E-02

path:hsa04110 Cell cycle 13 2.3E-03 3.6E-02

path:hsa04010 MAPK signaling pathway 21 2.8E-03 4.1E-02

path:hsa04630 Jak-STAT signaling pathway 15 2.9E-03 4.1E-02

path:hsa05164 Influenza A 16 3.3E-03 4.4E-02

FIGURE 8 | Heatmap of Statistically Significant (Bonferroni-adjusted p < 0.05) Genes with an Interaction Between Disease State and Age for Healthy Controls.

Difference in means calculated by comparing control subjects in age groups 2–4 to control subjects in age group 1 (baseline).
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FIGURE 9 | Heatmap of Statistically Significant (Bonferroni-adjusted p < 0.05) Genes with an Interaction Between Disease State and Age for Influenza Infected

Subjects. (A) Difference in means calculated by comparing influenza infected subjects in age groups 2–4 to influenza infected subjects in age group 1 (baseline). (B)

Comparison of influenza infected subjects to control subjects in the different age groups by calculating the difference between the baseline-adjusted means for

influenza infected subjects (A) and control subjects (Figure 8).
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FIGURE 10 | Heatmap of Statistically Significant (Bonferroni-adjusted p < 0.05) Genes with an Interaction Between Disease State and Age for Influenza Vaccinated

Subjects. (A) Difference in means calculated by comparing influenza vaccinated subjects in age groups 2–4 to influenza vaccinated subjects in age group 1 (baseline).

(B) Comparison of influenza vaccinated subjects to control subjects in the different age groups by calculating the difference between the baseline-adjusted means for

influenza vaccinated subjects (A) and control subjects (Figure 8).
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FIGURE 11 | Heatmap of Statistically Significant (Bonferroni-adjusted p < 0.05) Genes with an Interaction Between Disease State and Age for Influenza Vaccinated

Subjects Compared to Influenza Infected Subjects. Comparison of baseline-adjusted means for influenza vaccinated subjects (Figure 10A) and influenza infected

subjects (Figure 9A).

with influenza. Their findings indicated that genes involved in
interferon-related pathways were activated at the start of the
infection and by day 4 had started to decrease with a shift in
inflammatory and neutrophil related pathways (17). Our findings
also indicate enrichment for neutrophil related pathways in the
case of influenza infection. Dunning et al. list a top 25 gene set
(controls vs. influenza subjects), from which 22 genes overlap
with our findings (978 genes, see SDF9 of online supplementary
data files). 5 of our top 10 up-regulated gene list overlap with
the Dunning et al. 25-gene set (Table 2), namely UGCG, CD177,
OTOF, HP and SSH1.

The mechanistic role of host expressed genes in influenza
has been investigated using knockdown experiments including
genes such as IRF7, LAMP3, and DPF2 which in our study
were differentially expressed in either influenza, vaccine or both.
IRF7 and LAMP3 are members of our influenza and vaccination
biologically significant gene lists, while DPF2 was statistically
significant with respect to disease state. IRF7 is involved in
regulation of type 1 interferon immune responses to DNA and
RNA viruses (53, 63). Deletion of IRF7 in mice resulted in
increased host susceptibility to H1N1 and in mortality compared
to wild type mice (64). The knockdown of IRF7 in canine
kidney cells also resulted in increased viral load compared to
the wild type (65). Furthermore, a study by Ciancanell et al.
(66) reported compound heterozygous null mutations in IRF7
in a single healthy child that had life-threatening influenza
infection, and whose cells had low expression of type I and III

IFNs. LAMP3 knockdown on the other hand led to reduced
production of viral nuceloproteins and inhibited viral replication
(67). Through a knockdown study, DPF2 was identified as a
host factor that promotes expression of viral proteins and host
immune system evasion (68). Knocking down DPF2 caused a
decrease in the expression of viral proteins (68). Animal models
that further explore the mechanisms of the gene lists reported
here via knockdown experiments may help to fully characterize
the mechanistic role that individual genes play in influenza
infection. This in turn will help identify gene targets for the
design of more effective vaccines.

Furthermore, our identified biologically significant gene
lists for influenza infection and vaccination (using a 2-tailed
10% quantile filter on expression estimates of effect size
compared to healthy control) have 334 genes in common,
with 644 genes being unique to influenza infection and 644
being unique to influenza vaccination (SDF17-SDF19 of online
supplementary data files). Following pathway enrichment, we
observed that the genes that are unique to each disease
state (influenza infected and vaccinated) are involved in
different processes. For example, the biologically significant
genes only in influenza infected samples were enriched in
pathways such as neutrophil degranulation and cell cycle
checkpoints (SDF21 of online supplementary data files).
Neutrophil degranulation is a defensive process neutrophils
undergo to protect the host against invading pathogens. On
the other hand, pathways involved in interferon signaling
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and antigen processing were enriched for the genes only in
the vaccinated gene list (SDF22 of online supplementary data
files). This indicates that with the actual infection the body
undergoes different processes to that induced by vaccination
(Supplementary Figures 3, 4 and see SDF23 and SDF24 of
online supplementary data files).

The 48 genes for which we identified a statistically significant
interaction between disease and sex are highlighted in SDF29 of
the online supplementary data files. Sex-specific gene expression
has been previously observed in influenza. Studies have observed
females exhibited a stronger immune response to influenza
vaccine compared to males within the first day (69). Another
study suggested that males have a stronger immune response to
influenza infection (70). These findings indicate sex and influenza
effects are still to be explored and our gene list may offer new
candidates to be investigated for their role in influenza.

With regards to aging and influenza, the statistics of the
disease burden indicates specific age groups are at higher risk for
infection (3). This is in part due to immune system development
and deterioration. For example, B and T cell function diminishes
with age (50, 71). In our analysis, we identified 907 disease-
associated genes with a statistically significant interaction with
age that were also enriched in immune related KEGG pathways
(SDF30 of online supplementary data files). Figure 8 compares
the mean differences of healthy subjects to the baseline (healthy
children younger than 3). There are 4 major groups (Figure 8
and see SDF47 of online supplementary data files): with reference
to Figure 8, genes in Cluster 1 were up-regulated compared
to the baseline for all age comparisons, Cluster 2 and 3 genes
were generally down-regulated compared to the baseline, and
Cluster 4 genes are up-regulated and increase with age. Genes
in Cluster 1 and 2 are involved in Reactome pathways such as
cytokine signaling, interferon signaling and the immune system.
Cluster 3 genes are involved in Reactome pathways such as
interferon signaling and cell cycle while Cluster 4 genes are
involved in cellular senescence, signaling by interleukins and
immune system.

In Figure 9, we further explored changes in gene expression
across age groups due to influenza infection of our 907
disease:age interacting genes. Figure 9A is compares influenza
infected subjects in age groups 2,3 and 4 to the baseline (infection
subjects under 3). In Figure 9A there are three major groups
(cluster numbering with respect to Figure 9A): Cluster 1 (gradual
decrease with age), 2 (genes up-regulated with increase in age),
and 3 (gradual down-regulation with age). Genes in Cluster 1
are in Reactome pathways such as cytokine signaling, interferon
signaling, antiviral mechanism by IFN-stimulated genes and
chemokine receptors. Cluster 2 genes are involved in regulatory
T lymphocytes, transcription, protein repair, and interleukin-2
signaling while Cluster 3 genes are involved in gene transcription
(see SDF48 of online supplementary data files). Figure 9B instead
compares influenza infected subjects to controls by looking
at difference in means. There are three groups of expression
patterns (cluster numbering with respect to Figure 9B): Cluster
1 shows a gradual increase with age, in Cluster 2 expression
intensifies with age and in Cluster 3 genes are down-regulated
compared to the control subjects younger than 3 (see SDF49 of

online supplementary data files). Genes in Clusters 1 and 2 were
not in any enriched Reactome pathways but are associated with
transcription and signaling pathways. Genes in Cluster 3 were in
Reactome pathways that include cytokine signaling, interferon
signaling, antiviral mechanism by IFN-stimulated genes and
chemokine receptors.

As for the vaccinated subjects with respect to Figure 10A, we
observe a gradual decrease in gene expression for gene Cluster
2 and a gradual increase in expression for genes in Cluster 1
and 3 compared to the baseline (young vaccinated subjects under
age 3) (SDF50 of online supplementary data files). Genes in
Cluster 1 were not enriched in pathways while genes in Cluster
2 were enriched in Reactome pathways that include interferon
and cytokine signaling, antiviral mechanism and response.
Genes in Cluster 3 were enriched in Reactome pathways that
include interferon and cytokine signaling, cellular senescence
and immune system. When we compared vaccinated subjects
to control subjects across ages we observed 3 main trends, with
respect to Figure 10B: Cluster 1 (pathways include antiviral
mechanisms, interferon and cytokine signaling) 2 (pathways such
as immune response and cell migration, immunological synapse
and chemokine receptors) and 4 (mitochondrial translation)
genes are all up-regulated in vaccinated subjects with Cluster 3
(pathways include interferon and cytokine signaling and immune
system) genes being down-regulated (Figure 10B and SDF51 of
online supplementary data files).

We also compared influenza vaccinated subjects to influenza
infected subjects to explore changes in expression with age.
There are 3 major groups (cluster numbering with respect
to Figure: Cluster 1 and 3 genes show a gradual decrease
in expression with age in vaccinated subjects compared to
influenza infected subjects. Genes in Cluster 2 show a gradual
increase in expression with age in influenza vaccinated subjects.
Supplementary Figures 6–8 also explore temporal patterns
with age.

Our heatmaps display temporal patterns with age in response
to influenza infection and vaccination. These genes that are
associated with disease and age interactions, are all involved
in immune-related pathways. Exploring how gene expression
changes with age in immune related genes can help further
characterize the disease and improve treatments. For example,
age, preexisting health conditions and influenza history (previous
infection or vaccination) are all factors that can affect the
efficacy of the vaccine (72). There is an on-going effort to
improve efficacy of vaccination in the elderly population. Studies
have suggested that antibody titers decline drastically in older
adults from seroconversion to day 180 after vaccination (72).
The decay of antibody titers also highlight the importance
of determining the right time and how many times one
should be vaccinated. Vaccines for the elderly population
have been modified to increase the dosage and use adjuvants
to increase immunogenicity (73). and Ramsay et al., also
showed that vaccination during the current influenza season
provides stronger protection than vaccinations from previous
seasons (74).

The vaccine type also plays a role in immunogenicity
within hosts. For example, Nakaya et al., were able to detect
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larger antibody titers and plasmblasts generated in the trivalent
inactivated vaccine (TIV) compared to the live attenuated vaccine
(LAIV), and differentially expressed genes mostly related to
interferon signaling (19). LAIV responses in young children
are higher than in adults. For instance, LAIV when compared
to inactivated vaccines induced smaller concentrations of
antibodies in response to HA in adults (75). Previous findings
have shown the benefit of taking a systems biology approach
to assess gene expression responses to vaccinations (24, 72, 76).
Our findings not only identify genes that are different between
controls compared to infected and vaccinated subjects, but
with our methodology we were also able to assess differences
between the influenza infected and vaccinated subjects while still
investigating disease genes that interact with age and sex. Our
temporal patterns with age for each disease state helps to clarify
how age might be playing a role.

Understanding how a vaccine affects the host is a critical step
toward the design of more effective vaccines (3, 77). Our list of
differentially expressed genes with respect to disease included
activation of interferon pathways, NFκB, cell cycle pathways, as
well as T and B cell receptor pathways that can inform on the
adaptive response both in vaccine and disease. The observed
differences in gene expression can be the consequence of both
immune cell responses as well as changes in the composition of
the immune cell sub populations present in the blood. Knowledge
of what pathways are affected by vaccination can also help to
identify targets for evaluating both the efficacy of the vaccine,
and the variability in symptom severity, since the gene changes
detected correspond to host immune responses to challenge (78).

In our study we were able to differentiate between genes
activated in either influenza vaccination, disease or both. 334
genes changed in both influenza vaccine and disease response.
Many of these genes are part of pathways involved in interferon
responses and in cell cycle, and associated with host-pathogen
interactions. Thus, these genes may have a role in symptom
severity. However, we also identified 644 genes (involved in
neutrophil degranulation and cell cycle processes) with changing
expression only in influenza infection, but not in the vaccinated
cohorts, thus providing evidence of differences in vaccine
and disease responses. Genes which are not activated under
vaccination but are differentially expressed under influenza may
provide new vaccine targets that could improve efficacy, and
may address variability in responses to disease post vaccination.
Likewise, 644 genes were only activated in the vaccinated cohort,
but not in influenza disease. Many of these genes (and the
involved pathways) may also affect vaccine efficacy (including
interferon signaling and antigen processing-cross presentation).
While in this study we cannot infer whether the effects to efficacy
are negative or positive, the different responses in vaccination
should be monitored further, both for efficacy considerations, as
well as for minimizing potential adverse effects.

Finally, our study identified genes that had a statistically
significant interaction between disease state and age. The
immune response pathways involving these genes should be
considered when evaluating vaccine efficacy with respect to
age, including not only for dosage, but also formulations (e.g.,
different gene targets by age or, conversely, formulations focused

on targets with constant levels of expression, regardless of age
that may provide a better baseline universal vaccine response).

Newer technologies such as RNA-sequencing (RNA-seq)
can provide a more comprehensive view of gene expression
as compared to gene expression microarrays (that have fixed
gene targets). However, the number of available RNA-seq data
matching our curation criteria was limited. Several recent
investigations are now utilizing RNA-seq to investigate influenza
infection and vaccination. For instance, Henn et al. identified
742 differentially expressed genes common in three of the five
subjects they profiled, showing large variability of response
across subjects 10 days following vaccination in B cell enriched
cell expression following vaccination. Though the sample sizes
are rather different for comparisons, this list overlaps 84 of
our 978 vaccination results (79). Using purified individual cell
types to assess post vaccination immune responses to trivalent
inactivated influenza vaccine Hoek et al. identified 36 genes
differentially expressed in PBMCs common in the subjects 7
days post vaccination (with 5 overlapping our findings)(80).
New single-cell RNA-seq approaches may further probe such
variability to deconvolve the cell-type-specific gene expression
changes in influenza.

Several recent studies investigated a cohort (or subsets
thereof) of 159 older adults post influenza A/H1N1 vaccination,
including combined analysis of the various findings from the
different analyses on this cohort (81–86): (i) Haralambieva
et al. identified associations with influenza A/H1N1-specific
memory B cell ELISPOT response after vaccination, where
they estimated association of transcriptional changes with peak
memory B cell ELISPOT response [Day 28 Day 0 with respect to
vaccination (Table S2 therein)], overlapping with 232 of our 978
vaccination biologically significant findings for blood (82). (ii)
Ovsyannikova et al. evaluated hemagglutination inhibition (HAI)
titer as vaccine response associations to gene expression levels
post vaccination, and although they identified various genes
related to HAI response in comparisons of responders/non-
responders, these were at FDR> 0.9. (83). However, a “biology-
to-gene” analysis by Ovsyannikova et al. did identify 13 gene-
sets that may explain the odds of HAI response with models.
(iii) Kennedy et al. evaluated immununosenescent signatures,
identifying ROBO1 expression correlation with age, which in
our results did not have a statistically significant age-disease
interaction following Bonferroni correction (p < 2 × 10−5)(81).
(iv) Zimmermann et al. followed up analyzing the same
cohort, to identify how transcriptomic and other omics changes
related to the dependence on immune cell subpopulations,
and reported correlation of PBMC composition with overall
variability in gene expression (84). (v) Voigt et al. (85) used
a data driven approach to identify different clusters enriched
for genes involved in specific immune cell types (85). (vi)
Voigt et al. (86) also identified sex-specific signatures in B-
cell ELISPOT responses, overlapping 10 genes in our findings
(p < 0.01) (86). In such comparisons, we should note that
the scope of these studies was different than the current
investigation, which aimed to increase power substantially
through pooling multiple studies with smaller sample sizes, and
allowing the detection of multiple gene signatures following
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strict multiple hypothesis correction. We anticipate that as more
RNA-seq data are generated a more direct comparison will
be possible.

Other RNA-seq work has included cellular culture in vitro
applications: Cao et al. studied global transcriptome of H5N1
in A549 and 293 T cells (87). Tan et al. identified global
transcriptome changes in human nasal epithelial cells (in
vitro model with cells from seven donors) due to H3N2
influenza infection (88). Zhang et al. compared host mRNA
and miRNA transcriptomes induced by influenza A H5N1 in
human monocyte-derived macrophages post infection (89). In
single-cell RNA-seq investigations, Russel et al. studied single-
cell influenza transcriptomics for innate immunity using IFN
reporter variants of the A549 human lung epithelial cell line
(90). In a recent single cell sequencing investigation, Steuerman
et al. profiled cells derived from lungs from in vivo influenza
in C57BL/6J mice, to characterize host and viral transcritpomes
simultaneously, and identify various immune cell types involved
that had cell-specific transcriptional responses in influenza
(91). While several RNA-seq studies have been carried out,
sample sizes have been small, making comparisons with previous
microarray work limited. The potential of single-cell work cannot
be understated as it has the ability to differentiate cell-specific
responses, instead of the aggregate blood/PBMC approaches.
We anticipate that the rapid reduction in cost and further
development of single-cell RNA-seq technology to lead to larger
influenza disease and vaccination studies becoming available,
that will help elucidate the variability in host gene expression
observed in influenza.

As we have previously observed (29), meta-analyses using
microarray expression data have multiple limitations: Our
findings are limited to only genes that have been annotated and
are existing probes on the arrays, and also have to be consistently
utilized across array platforms. Hence, we are unable to probe
global gene expression, and are limited to mRNA profiling. These
can be expanded in future studies using RNA-seq data, and
the newer single-cell sequencing approaches that would allow
cell-specific information to be discerned, which is important in
evaluating immune responses and the interplay between various
cell types. Taking a similar approach to our microarray dataset
analysis using RNA-seq data will promote the discovery of
novel genes by being able to explore the entire transcriptome.
Additionally, we are limited by the varying annotations of the
available public datasets, and can only explore characteristics that
are uniformly reported. For example, we did not have virus strain
information for all samples or vaccine details so we were unable
to include such info in our analysis. In addition to this, our
study is unbalanced (particularly with respect to disease state,

where a limited number of influenza infection samples were
available: 3,481 samples (1,277 controls, 297 influenza infection,
1,907 influenza vaccinated, 1,537 males and 1,944 female). We
additionally used repeated measures, which we accounted for in
our mixed effects model.

Despite the limitations introduced by using microarray data,
our study identified gene candidates by factor (disease status,
age, and sex) that can be examined further to understand
their role in influenza infection and vaccination. We also
highlighted 907 genes that have an age-effect on gene expression.
These genes can be further explored to determine their
role in influenza infection and how they can be further
analyzed for their role in implementing effective universal
vaccines regardless of age. All these considerations are of
paramount importance in designing the next generation of
vaccines, as we move forward toward a universal influenza
vaccine.
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