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Abstract The susceptibility for various diseases as well

as the response to treatments differ considerably between

men and women. As a basis for a gender-specific person-

alized healthcare, an extensive characterization of the

molecular differences between the two genders is required.

In the present study, we conducted a large-scale metabo-

lomics analysis of 507 metabolic markers measured in

serum of 1756 participants from the German KORA F4

study (903 females and 853 males). One-third of the

metabolites show significant differences between males

and females. A pathway analysis revealed strong differ-

ences in steroid metabolism, fatty acids and further lipids, a

large fraction of amino acids, oxidative phosphorylation,

purine metabolism and gamma-glutamyl dipeptides. We

then extended this analysis by a network-based clustering

approach. Metabolite interactions were estimated using

Gaussian graphical models to get an unbiased, fully data-

driven metabolic network representation. This approach is

not limited to possibly arbitrary pathway boundaries and

can even include poorly or uncharacterized metabolites.

The network analysis revealed several strongly gender-

regulated submodules across different pathways. Finally, a

gender-stratified genome-wide association study was per-

formed to determine whether the observed gender differ-

ences are caused by dimorphisms in the effects of genetic
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polymorphisms on the metabolome. With only a single

genome-wide significant hit, our results suggest that this

scenario is not the case. In summary, we report an exten-

sive characterization and interpretation of gender-specific

differences of the human serum metabolome, providing a

broad basis for future analyses.

Keywords Epidemiology � Metabolic networks �
Metabolomics � Gender differences � Systems biology

1 Introduction

As pointed out in recent studies, gender bias represents a

considerable issue in biomedical research (Kim et al. 2010;

Liu et al. 2012; Regitz-Zagrosek 2012). For example,

besides gender-specific disease susceptibility, sexual

dimorphisms play a substantial role for pharmacokinetics

and—dynamics (Gandhi et al. 2004). Thus, differential

treatment of females and males would constitute one of the

simplest forms of personalized medicine (Redekop and

Mladsi 2013). However, this requires an extensive under-

standing of the intrinsic molecular differences between the

two gender.

Several studies investigated molecular differences

between the two genders in blood or urine on small sets of

healthy individuals (Kochhar et al. 2006; Slupsky et al.

2007). Only few high-powered studies reported gender-

differentiated results. For example, Dunn et al. (2014)

investigated gender-specific changes of the metabolome

(n = 1200), and Jansen et al. (2014) found gender-biased

gene expression profiles in a Caucasian population

(n = 5241). In (Mittelstrass et al. 2011) we showed sig-

nificant gender-specific differences in amino acid, lipid and

sugar serum concentrations in around 3000 subjects. Fur-

thermore, there are several reports of sexual dimorphisms

in the genetic effects of common polymorphisms on

metabolism (Kolz et al. 2009; Mittelstrass et al. 2011).

Aiming at a more comprehensive picture of metabolic

differences between the two genders on a broad range of

different metabolic pathways, we extended our previous

study by applying a non-targeted metabolomics approach

covering metabolites from all major parts of human

metabolism. To identify systematic gender differences at

the pathway level, we pursued two routes of bioinformatics

analyses. First, we performed a classical pathway analysis

(Fig. 1, top) using both a coarse level of metabolic pathway

assignment (e.g. lipid, amino acid) and a more fine-grained

level (e.g. branched-chain amino acids (BCAAs), short-

chain fatty acids).

Second, we introduce a network-based clustering algo-

rithm to identify affected pathway regions in a fully data-

driven fashion (Fig. 1, bottom). Predefined metabolic

pathway annotations are usually biased and rather strictly

defined (Gagneur et al. 2003). For example, the often-used

pathway classification into ‘‘glycolysis’’ and ‘‘citric acid

cycle’’ is only reasonable to a certain extent, since obvi-

ously those two processes are strongly intertwined. More-

over, untargeted metabolomics measurements contain a

substantial fraction of poorly characterized metabolites

with little or no functional annotations. Such metabolites

necessarily have to be ignored by a classical pathway

analysis, neglecting a large portion of the measured data.

As an alternative, we generated a data-based metabolic

network using Gaussian graphical models (Krumsiek et al.

2011, 2012; Shin et al. 2014). Those networks represent an

intrinsic footprint of metabolic associations between

metabolites, without arbitrary borders, and are able to

include even uncharacterized metabolites.

Metabolic changes between genders are then mapped

onto this metabolic network. This approach has previously

been used in a series of papers with different phenotypes,

for example with asthma (Ried et al. 2013), dietary and

physical parameters (Floegel et al. 2014), and our previous

gender study (Mittelstrass et al. 2011). While in those

studies the network was merely used for visualization

purposes, we extend the approach here by adding an

additional layer of clustering and cluster enrichment. The

goal is to computationally identify network regions affec-

ted by gender. Intuitively, we first identify strongly con-

nected regions in the network without taking into account

gender effects, in order to get intrinsic, data-defined

metabolic modules. For each cluster, we then evaluate

whether it carries a statistically significant gender effect,

i.e. coordinated up- or down-regulation of all metabolites

in the cluster. The general approach of evaluating pheno-

typic effects on interaction networks has recently been

described as the new field of ‘‘differential network biol-

ogy’’ (Ideker and Krogan 2012).

To test whether the observed gender differences in

metabolite levels are caused by dimorphisms in genotype–

metabolite interactions, we performed a stratified genome-

wide association study (GWAS) with metabolites as phe-

notypic traits. That is, we searched for cases where the

effect of a SNP on serum concentrations of a metabolite is

different between males and females. In our previous study

(Mittelstrass et al. 2011), only a single metabolite-gene

association (glycine to CPS1) reached genome-wide
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significance. With the larger and broader set of metabolites

and the extended SNP panel, this analysis can be revised to

identify possible further dimorphisms in the genetic

architecture of the metabolome.

2 Results

2.1 Gender-specific metabolite differences

We investigated 1756 fasting serum samples of the KORA

F4 discovery cohort, subdivided into 903 females and 853

males. The dataset contains untargeted measurements of

507 metabolites, thereof 318 with known identity and 189

unidentified metabolites (unknowns). Replication samples

originate from the German SHIP population cohort mea-

sured on the same metabolomics platform, containing 1000

fasting plasma samples, thereof 561 females and 439 males

(see Sect. 4). The set of measured metabolites was similar,

but not identical. Metabolite concentrations were loga-

rithmized, since a test of normality showed that log-

transformed concentrations were substantially closer to a

normal distribution than untransformed values (see Sect.

4).Gender differences were assessed using standard linear

regression, corresponding to a pairwise t test due to the

dichotomic outcome variable, corrected against age and

BMI as cofactors. An overview of the metabolite panels,

the replication cohort and overall statistics can be found in

Supplementary material 1. Full association result tables

including replication data are available in Supplementary

material 2.

The results of the primary analysis sorted by general

pathways are displayed in Table 1 and Fig. 2. Out of the

507 measured metabolites, 180 (35.0 %) showed signifi-

cant gender differences after Bonferroni correction. Nota-

bly, we find extremely low p values in our analysis, down

to values around 10-193. These values should not be

interpreted in its original meaning, i.e. the probability of

the effect occurring by chance, but rather as a variance-

normalized measure of the effect size. A total of 114 of

these 180 were also measured in the validation cohort,

where 88 out of these 114 metabolite differences (77.2 %)

could be replicated.

We performed a comparison of the overlapping

metabolites between this study and our previous study

(Mittelstrass et al. 2011), which was conducted on a larger

subset of the cohort but with a targeted lipid-focused

metabolomics panel of only 131 metabolites. Out of the 41

metabolites which overlap between the two metabolomics

platforms, 22 metabolites showed significant gender dif-

ferences in the same direction in both studies and 5

metabolites were consistently not significant in both

metabolite network clustered network gender associations

pathway assignments gender associations
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Metabolite 1
Metabolite 3
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...
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Fig. 1 Study approach. Gender differences for each measured

metabolite are calculated and evaluated at a pathway level. In

parallel, a data-driven, unbiased metabolite interaction network is

computed based on Gaussian graphical models. Differential changes

are then mapped to this network and analyzed as clusters
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Table 1 Gender-specific concentration differences on single-metabolite level

Metabolite b r2 N p value Repl. p value Repl. direction Replicated?

Amino acids (72 total, 42 significant)

Pyroglutamine -1.127 ± 0.039 0.349 1746 6.21E-152 1.92E-95 Same Yes

Isoleucine -1.005 ± 0.038 0.358 1746 4.54E-127 2.40E-61 Same Yes

Leucine -1.004 ± 0.039 0.337 1744 2.79E-123 1.90E-60 Same Yes

3-Methyl-2-oxovalerate -1.000 ± 0.040 0.303 1747 1.04E-117 2.94E-62 Same Yes

4-Methyl-2-oxopentanoate -0.946 ± 0.041 0.264 1748 3.21E-102 8.96E-58 Same Yes

Carbohydrates (14 total, 6 significant)

1,5-Anhydroglucitol -0.397 ± 0.047 0.049 1731 6.72E-17 1.87E-20 Same Yes

Mannose -0.352 ± 0.043 0.190 1737 8.57E-16 – – –

Glucose -0.319 ± 0.045 0.143 1737 1.25E-12 – – –

Arabitol -0.308 ± 0.047 0.047 1727 8.33E-11 – – –

Lactate -0.287 ± 0.046 0.097 1743 4.03E-10 – – –

Cofactors and vitamins (15 total, 7 significant)

Threonate 0.440 ± 0.047 0.057 1741 1.52E-20 – – –

Pyridoxate -0.341 ± 0.047 0.065 1697 7.09E-13 4.57E-01 Same No

Biliverdin -0.337 ± 0.059 0.032 1162 1.08E-08 8.38E-17 Same Yes

Ascorbate 0.280 ± 0.050 0.021 1550 3.39E-08 – – –

Bilirubin (Z; Z) -0.249 ± 0.048 0.024 1702 2.61E-07 6.40E-01 Same No

Bilirubin (E; E) -0.230 ± 0.047 0.023 1750 1.31E-06 3.04E-02 Same No

Energy (6 total, 4 significant)

Phosphate 0.654 ± 0.045 0.119 1746 4.46E-45 1.83E-19 Same Yes

Acetylphosphate 0.470 ± 0.047 0.063 1744 2.38E-23 – – –

Succinylcarnitine -0.231 ± 0.048 0.120 1518 1.92E-06 9.23E-05 Same Yes

Malate -0.207 ± 0.050 0.048 1561 3.29E-05 5.72E-05 Different No

Lipids (128 total, 49 significant)

5a-Androstan-3b, 17b-diol disulfate -1.257 ± 0.037 0.411 1727 1.71E-193 8.54E-72 Same Yes

4-Androsten-3b, 17b-diol disulfate 1 -0.955 ± 0.041 0.281 1745 8.38E-106 6.45E-43 Same Yes

4-Androsten-3b, 17b-diol disulfate 2 -0.883 ± 0.042 0.244 1741 2.92E-88 6.99E-48 Same Yes

Glycerol 0.798 ± 0.042 0.244 1739 1.01E-73 – – –

Myristoleate 0.811 ± 0.044 0.168 1750 3.64E-70 7.30E-46 Same Yes

Nucleotides (13 total, 5 significant)

Urate -0.954 ± 0.039 0.340 1749 7.04E-114 1.08E-52 Same Yes

Allantoin -0.395 ± 0.072 0.068 728 6.84E-08 – – –

Inosine 0.257 ± 0.048 0.036 1715 7.47E-08 – – –

Hypoxanthine 0.198 ± 0.048 0.018 1727 3.54E-05 9.98E-01 Same No

Pseudouridine -0.175 ± 0.044 0.150 1741 8.47E-05 2.61E-01 Same No

Peptides (25 total, 10 significant)

c-glutamylleucine -0.925 ± 0.041 0.273 1745 3.92E-99 5.78E-86 Same Yes

c-glutamylvaline -0.681 ± 0.042 0.253 1728 7.56E-56 3.22E-50 Same Yes

c-glutamylphenylalanine -0.449 ± 0.045 0.123 1731 1.20E-22 8.00E-28 Same Yes

c-glutamylisoleucine -0.553 ± 0.060 0.106 1008 2.44E-19 1.60E-48 Same Yes

c-glutamyltyrosine -0.353 ± 0.046 0.131 1650 2.93E-14 3.97E-26 Same Yes

Xenobiotics (39 total, 3 significant)

4-Vinylphenol sulfate -0.584 ± 0.046 0.091 1708 6.43E-35 1.00E-04 Same Yes

Piperine -0.319 ± 0.047 0.062 1720 1.46E-11 2.14E-02 Same No

2-Hydroxyisobutyrate -0.204 ± 0.048 0.068 1604 2.56E-05 – – –

1818 J. Krumsiek et al.

123



analyses. 14 significantly different metabolites from the

previous study could not be replicated in the present study.

We assume that this effect is due to the more accurate

measurements obtained from a targeted metabolomics

platform in contrast to the possibly higher experimental

variations for some metabolites on an untargeted platform.

This is corroborated by the fact that the non-replicating

lipids have substantially higher measurement coefficients

of variation (CV) than the replicating ones (Supplementary

material 2).

Moreover, we compared our findings to a metabolic

profiling study in a UK population recently published in

Metabolomics by (Dunn et al. 2014). Out of the metabo-

lites reported to be significant in that study, 34 were also

detectable with our platform. In general, we observe a

substantial agreement between the two cohorts. For 21

metabolites, we find significant effects in the same direc-

tion, for 10 metabolites we could not observe a significant

signal in our data. Since the power was slightly higher in

the present study (1756 vs. 1200 individuals), we believe

the non-significant findings either to be due to measure-

ment platform differences, or true differences between the

two cohorts. Three metabolites showed opposite directions

between the two studies. Dunn et al. reported higher con-

centrations in females for tyrosine and creatinine, whereas

previous studies (Kochhar et al. 2006; Marescau et al.

1997) and our analysis found higher concentrations in

males for both metabolites. Moreover, there is a disagree-

ment for myo-inositol, which we attribute to the fact that

their study measured a mixture of myo-inositol and scyllo-

inositol. In our data, we detect significant differences in

opposite directions for those two metabolites. Detailed

replication and comparison results can be found in Sup-

plementary material 2.

In addition to the analysis of concentration differences

of single metabolites, we performed a pathway-based sta-

tistical analysis in order to provide more interpretable,

systematic insights. We decided to follow a simple statis-

tical approach based on mean pathway activity.

Specifically, for each group of metabolites (i.e. a ‘‘path-

way’’) we compute the mean z-score over all samples as a

measure of average expression (see Sect. 4). The averaged

z-scores are then subjected to the same linear regression

analysis used for single metabolites. A similar approach

has been used in a study by Lee et al. (2008), but in a

permutation-based framework. In contrast to classical set

enrichment methods (like e.g. GSEA (Subramanian et al.

2005) and MSEA (Persicke et al. 2011), the approach

allows to specifically detect up- or down-regulation of

concentrations with respect to the given grouping. We

performed analyses for two layers of pathway annotations.

First, we have ‘‘super-pathway’’ annotations including

‘Lipid’, ‘Carbohydrate’, ‘Amino acid’, ‘Xenobiotics’,

‘Nucleotide’, ‘Energy’, ‘Peptide’, ‘Cofactors and vita-

mins’. Each super-pathway is further subdivided into two

or more ‘‘sub-pathways’’ like ‘Oxidative phosphorylation’,

‘Carnitine metabolism’ or ‘Valine, leucine and isoleucine

metabolism’. All pathway annotations are listed in Sup-

plementary material 2. The overall gender effects for both

super- and sub-pathways are visualized in Fig. 3. Detailed

boxplots of metabolite differences and pathway associa-

tions can be found in Supplementary material 3.

Interestingly, we observed substantially more metabo-

lites being higher in males than in females (130 signifi-

cantly higher in males compared to 50 metabolites higher

in females). At this point, we believe that this is not nec-

essarily a general feature of the human metabolome, but

rather a bias towards classes of measured metabolites that

tend to be higher in males, such as amino acids. A dis-

cussion of single metabolite and pathway associations

ordered by the eight super-pathways is given in the fol-

lowing. Note that also a plethora of unknown metabolites

(names starting with ‘‘X-‘‘) showed high concentration

differences between males and females. Due to the obvious

lack of functional annotations, however, we initially con-

ducted an analysis of known metabolites. Unknowns were

then added to the network analysis and are described later

in the manuscript.

Table 1 continued

Metabolite b r2 N p value Repl. p value Repl. direction Replicated?

Unknowns (189 total, 54 significant)

X-12244 -1.096 ± 0.039 0.327 1747 3.44E-141 – – –

X-04495 -0.954 ± 0.043 0.231 1653 1.15E-94 – – –

X-11440 -0.900 ± 0.042 0.220 1743 7.46E-89 1.21E-44 Same Yes

X-10510 0.677 ± 0.044 0.146 1742 3.29E-49 – – –

X-12680 -0.657 ± 0.051 0.112 1365 1.68E-35 – – –

Top metabolite associations and replication information for each metabolic class. Negative b values indicate higher concentrations in males,

positive values represent higher concentrations in females. r2 = explained variance, N = number of valid measurements of analysis. p values

originate from a linear regression model further corrected for BMI and age

Gender-specific pathway differences in the human serum metabolome 1819
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2.1.1 Amino acids

In the amino acid class, the strongest differences

were observed for pyroglutamine (p = 6.21 9 10-152)

and several BCAA metabolites including isoleucine

(p = 4.54-127), leucine (p = 2.79 9 10-123), 3-methyl-2-

oxovalerate (p = 1.04 9 10-117) and 4-methyl-2-oxopen-

tanoate (p = 3.21 9 10-102). All metabolites show higher

concentrations in males and could be replicated in the

validation cohort. Note that valine (p = 7.28 9 10-65) and

3-methyl-2-oxobutyrate (p = 1.41 9 10-32) are signifi-

cantly higher in males as well, completing the list of

BCAAs and their first-step degradation products. Previous

studies have already described differences in BCCA cata-

bolism of rats (Kobayashi et al. 1997) and humans during

exercise (Lamont et al. 2001). To the best of our knowl-

edge, gender differences of pyroglutamine, a cyclic

derivative of glutamine, have not been described in liter-

ature before. We also confirmed the well-known (Perrone

et al. 1992) dimorphisms for creatine (p = 3.65 9 10-87,

higher in females) and creatinine (p = 4.97 9 10-47,

higher in males).

At the pathway level, we detect strong differences for

the entire class of amino acids (p = 3.26 9 10-73), with
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Fig. 2 Overview of gender

differences at a single

metabolite level. a Volcano plot

visualizing p values of pairwise

t tests and the log2 fold changes.

We observe remarkably low p

values down to 10-190. 180 of

507 metabolites in the discovery

cohort (35.5 %) were

significantly different after

Bonferroni correction, with 50

metabolites showing higher

concentrations in females and

130 metabolites with higher

concentrations in males.

b Three exemplary boxplots of

strongly differential

metabolites. The steroid

derivative 5a-androstan-
3b,17b-diol disulfate and the

BCAA isoleucine showed

elevated levels in males,

whereas creatine was higher in

females
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higher concentrations in males. This is an extension of the

findings from our previous study (Mittelstrass et al. 2011).

At the more fine-grained sub-pathway level, the strongest

differences are constituted by BCAAs (Valine, leucine and

isoleucine metabolism, p = 3.16 9 10-128), glutamate

metabolism (1.02 9 10-99) and lysine metabolism

(p = 2.77 9 10-27). All pathway results replicated in the

validation cohort. Enrichment of the BCAA class was

obviously expected due to the strong associations of single

metabolites. Further amino acid pathways occur among the

remaining top hits at the sub-pathway level (e.g. the lysine,

phenylalanine, cysteine and tryptophan pathways, all

higher in males).

2.1.2 Carbohydrates

Several carbohydrates showed differences between males

and females, albeit not as profound as for the amino acids

and lipids, for example. The strongest difference was

detected for 1,5-anhydroglucitol (p = 6.72 9 10-17), a

Peptide (25)
Dipeptide (11)
Polypeptide (2)
Fibrinogen cleavage peptide (3)
gamma−glutamyl (9)

Lipid (128)

Eicosanoid
Monoacylglycerol (4)
Fatty acid, ester (1)

Essential fatty acid (7)

Inositol metabolism (4)
Fatty acid, monohydroxy (2)
Lysolipid (24)
Ketone bodies (1)
Fatty acid, amide (3)

Long chain fatty  (17)

Short chain fatty acid (1)
Carnitine (13)
Glycerolipid (4)
Fatty acid, dicarboxylate (7)

Bile acid metabolism (11)
Medium chain fatty acid (9)
Fatty acid metabolism, also BCAA (2)
Sphingolipid (1)
Fatty acid, branched (1)
Fatty acid (1)
Sterol/Steroid (13)

Energy (6) Krebs cycle (4)
Oxidative phosphorylation (2)

Cofactors and vitamins (15)

Pantothenate and CoA (1)
Riboflavin (1)
Nicotinate and nicotinamide (1)
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Fig. 3 Pathway enrichment.

The left-hand panel shows

association -log10 p values for

eight super-pathways, the right-

hand panel contains results for

66 sub-pathways. p values are

plotted directionally, i.e.

pathways which are higher in

females are left of the zero line,

and pathways up-regulated in

males point to the right. The

log10 p values can be interpreted

as a variance-normalized

measure of effect size. A

detailed discussion of the

enrichment results can be found

in the main text
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well-known marker for short-term glycemic control

(Dungan 2008). We detect higher levels in males, which is

in accordance with a previous report of non-diabetic indi-

viduals (Li et al. 2008). Moreover, the two hexoses man-

nose (p = 8.57 9 10-16) and glucose (p = 1.25 9 10-12)

showed higher levels in males. While higher glucose

(=blood sugar) concentrations in males are well described

and have been attributed to physiological differences

(Faerch et al. 2010), the actual source of blood mannose

is yet to be fully clarified (Sharma and Freeze 2011).

Two further affected carbohydrates are arabitol

(p = 8.33 9 10-11, higher in males) for which gender

differences have not been described yet, and lactate

(p = 4.03 9 10-10, higher in males), which has been

reported to show a gender effect in Chinese type 2 diabetes

patients (Shen et al. 2012). The 1,5-anhydroglucitol hit

replicated, whereas the other four sugars were not mea-

sured in the replication cohort (which can be attributed to

the missing GC–MS run, see Sect. 4).

The entire super-pathway of carbohydrates was signifi-

cantly higher in males (p = 1.43 9 10-23). At the sub-

pathway level, ‘Glycolysis, gluconeogenesis, pyruvate

metabolism’ and ‘Fructose, mannose, galactose, starch, and

sucrose metabolism’ showed the strongest differences

(p = 5.96 9 10-18 and p = 6.31 9 10-13, respectively),

both with higher activity in males. All pathway results

replicate, however only with a modest p value for the

fructose pathway (p = 0.002).

2.1.3 Cofactors and vitamins

Among the top hits in the class of cofactors and vitamins,

we observed several substances related to vitamin C,

vitamin B6 and heme metabolism. First, we detected higher

levels of vitamin C (p = 3.38 9 10-8) and, showing an

even stronger difference, its degradation product threonate

(p = 1.52 9 10-20) in females. This sexual dimorphism

has already been described three decades ago (Garry et al.

1982). Both metabolites were not measured in the repli-

cation cohort. Vitamin B6 (pyridoxine), in contrast, is

known to be higher in males (Driskell et al. 2000). While

pyridoxine is not contained in our panel of measured

metabolites, we could detect elevated levels of its degra-

dation product pyridoxate in males in the discovery cohort

(p = 3.67 9 10-13), but not in the replication cohort. In

addition to the vitamins, we detected higher concentrations

of heme (p = 3.32 9 10-05) and its degradation products

biliverdin (p = 1.08 9 10-08) and bilirubin (p = 2.61 9

10-07 and p = 1.31 9 10-06 for two different isoforms) in

males. The bilirubin and biliverdin hits did not replicate,

but the heme association was considerably stronger in the

replication cohort despite the smaller sample size

(p = 4.60 9 10-22). Gender-specific concentration differ-

ences in the heme degradation substance bilirubin have

already been described in previous studies (Rosenthal et al.

1984).

The entire super-pathway of cofactors and vitamins was

not significantly different between genders (p = 2.41 9

10-2). The three sub-pathways ‘Ascorbate and aldarate

metabolism’ (p = 6.02 9 10-16, higher in females),

‘Pyridoxal metabolism’ (p = 7.09 9 10-13, higher in

males) and ‘Hemoglobin and porphyrin metabolism’

(p = 2.56 9 10-9, higher in males), however, showed

strong gender differences. This is an interesting scenario

where the super-pathway grouping is too coarse to detect

changes, but still a smaller group of specific molecules in a

sub-pathway is coordinately changed between males and

females.

2.1.4 Energy metabolism

Four metabolites associated to energy metabolism showed

significant differences between genders. Phosphate was

detected to be considerably higher in females (p =

4.46 9 10-45) which is in accordance with previous results

from a coronary heart disease (CHD), study (Tonelli et al.

2005). Similarly, acetylphosphate also appeared higher in

women (p = 2.38 9 10-23). This association has, to the

best of our knowledge, not been described in literature yet.

Two merely significant associations are furthermore con-

ferred by succinylcarnitine (p = 1.92 9 10-6) and malate

(p = 3.29 9 10-5), both with slightly higher concentra-

tions in males. The phosphate, succinylcarnitine and malate

signals replicated in the validation cohort, while

acetylphosphate was not measured in that study. The entire

class of energy-related metabolites was significantly higher

in females (p = 4.12 9 10-8). This signal was mostly

dominated by the ‘Oxidative phosphorylation’ sub-path-

way (p = 1.69 9 10-39), which consists of the above-

mentioned two metabolites, phosphate and acetylphos-

phate. The pathway results were confirmed in the valida-

tion cohort.

2.1.5 Lipids

The strongest associations in the ‘Lipid’ class were con-

stituted by three androsterone sulfate derivatives, with

elevated levels in males. 5alpha-androstan-3beta, 17beta-

diol disulfate represented the highest gender difference in

the entire analysis (p = 1.71 9 10-193). These metabolites

are degradation variants of androsterone, a steroid sex

hormone related to testosterone. Different levels of sex

hormones between males and females are amongst the

most obvious and expected findings, and thus can be seen
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as a ‘proof of principle’ for our metabolomics dataset. All

steroid signals replicated in the validation cohort. Inter-

estingly, we detected these differences despite the fact that

most women in this study are considered to be post-

menopausal (age range 60.51 ± 8.77 for females).

In addition to steroid hormones, we observed elevated

levels of glycerol (p = 1.01 9 10-73) and myristoleate

(p = 3.64 9 10-70) in females amongst the top list of

lipids. Plasma glycerol levels have previously been

described to show sexual dimorphisms during fasting

(Mittendorfer et al. 2001) and exercise (Hellström et al.

1996). Monounsaturated fatty acids (like myristoleate) also

have been reported to be higher in females (Rogiers 1981).

More generally, all significantly affected fatty acids in the

dataset show higher concentrations in females, which is

confirmed in the validation cohort (glycerol was not mea-

sured in that study).

In accordance with the single metabolite findings, the

pathway group of steroids was systematically higher in

males (p = 4.34 9 10-78). Other lipid classes, especially

around fatty acid metabolism, also display strong differ-

ences. For example, ‘‘fatty acid metabolism’’ showed ele-

vated activity (p = 1.25 9 10-30) in males and ‘‘fatty

acid, branched’’ (p = 2.27 9 10-29), ‘‘Sphingolipid’’

(p = 6.76 9 10-23) and ‘‘Medium chain fatty acid’’

(p = 3.01 9 10-15) were higher in females. Similar to the

nucleotide case, the entire class of lipids was not coordi-

nately affected in one or the other direction (p = 0.18).

The results for fatty acids and sphingolipids are in general

accordance with our previous study on the same cohort

(Mittelstrass et al. 2011).

Interestingly, the phospholipid pathways signals were

rather weak (p = 3.26 9 10-8), which is in contrast to our

previous findings for lysophosphatidylcholines (lyso-PCs).

The majority of discrepancies in single metabolite associ-

ations between the present and the previous study are for

lyso-PC metabolites. As outlined at the beginning of this

section, we expect differences in the precision of mea-

surements between the targeted and non-targeted mea-

surements. Moreover, the non-targeted metabolomics

platform applied in this study distinguishes between sn-1

and sn-2 lysophosphatidylcholines (i.e. the binding position

of the fatty acid side chain at the glycerol backbone),

whereas the platform from the previous study always

measures total sums of side chains.

2.1.6 Nucleotides

For the class of nucleotides, urate showed a highly sig-

nificant difference with higher concentrations in males

(p = 7.04 9 10-114). This association is well known and

manifests in a substantially higher prevalence of gout in

males (So and Thorens 2010). The association was

investigated in detail in a recent study published by our

group, which was based on the same dataset as in the

present study (Albrecht et al. 2013). A similar, but con-

siderably weaker association was detected for the urate

metabolite allantoin (p = 6.84 9 10-8). The sources of

blood allantoin are not fully understood. The metabolite is

believed to originate either from non-enzymatic oxidation

of urate (Sautin and Johnson 2008) or external sources such

as vegetables (Todd et al. 2006). Interestingly, a previous

study with 134 individuals also reported higher concen-

trations of allantoin in men (Pavitt et al. 2002). Finally, we

observed weak but significant differences for inosine

(p = 7.47 9 10-8, higher in females), hypoxanthine

(p = 3.54x10-5, higher in females) and pseudouridine

(p = 8.47x10-5, higher in males), all of which do not

appear to have been described in literature before. The

urate association could be replicated, while the hypoxan-

thine and pseudouridine signals did not replicate, probably

due to lack of power. Allantoin and inosine were not

measured in the validation cohort.

At pathway level, we observed strong gender differences

for the sub-pathway purine/urate metabolism (p =

5.85x10-97), also with higher concentrations in males, but

virtually no differences for the entire group of nucleotides

(p = 2.16 9 10-4). This is another example where the

super-pathway is too coarse to identify gender-specific

signals, but single sub-pathways are affected. The major

contribution to the purine/urate pathway was by urate itself,

which we already described among the most strongly

changed metabolites above.

2.1.7 Peptides

A series of peptides showed profound differences between

males and females. Interestingly, the top 5 peptide hits are

gamma-glutamyl dipeptides (p = 3.92 9 10-99 to

p = 2.93 9 10-14, all higher in males). All five associa-

tions could be replicated. GGT1, gamma-glutamyl trans-

ferase 1, is an enzyme that generates gamma-glutamyl

dipeptides by transferring the glutamyl moiety from glu-

tathione to amino acids. Sexual dimorphisms for this

enzyme have been previously reported in rats (Fujiwara

et al. 1982) and humans (Skurtveit and Tverdal 2002).

Moreover, genetic variation in the GGT1 enzyme induces

concentration changes in the gamma-glutamyl dipeptides

(Krumsiek et al. 2012). In this study, we could show for the

first time that also the substrates of the enzyme GGT1

showed substantial gender differences, but could not detect

a dimorphism for the genetic GGT1-dipeptide effects (see

Sect. 5.2 below).

Analogously to these single-metabolite findings, the

class of gamma-glutamyl peptides was elevated in males

(p = 9.34 9 10-60). We observed a modest elevation in
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males for the entire class of peptides (p = 6.47 9 10-15)

and no differences for other dipeptides (p = 0.25).

2.1.8 Xenobiotics

Three metabolites classified as xenobiotics, i.e. substances

that are neither produced nor naturally occur in the human

body, showed significant differences. These include

4-vinylphenol sulfate (p = 6.43 9 10-35), piperine (p =

1.46 9 10-11) and 2-hydroxyisobutyrate (p = 2.56 9

10-5), all of which were higher in males. There might be

different explanations for these observed gender-specific

levels of xenobiotics. For example, piperine is a component

of black pepper (Srinivasan 2007). The association might

be either due to different dietary habits between the gen-

ders or might represent differential metabolization effi-

ciencies caused by known dimorphisms in cytochrome C

expression (Nicolson et al. 2010). As another example,

derivatives of the plant metabolite 4-vinylphenol occur,

among others, in wine, beer and tobacco (Etievant 1981;

Rodgman and Perfetti 2013). Again, the observed differ-

ences might be caused by life-style factors or intrinsic

differences in degradation of xenobiotics. Only the

4-vinylphenol sulfate hit replicated, 2-hydroxybutyrate was

not measured in the validation cohort.

At the pathway level, gender-specific signals were rather

weak. The entire group of xenobiotics was detected to be

slightly higher in males (p = 6.47 9 10-4), but none of

the sub-pathways was significantly different.

2.2 A network view of gender differences

In the next step, we generated a network view of interac-

tions between the measured metabolites to get an unbiased

description of the underlying metabolic pathways. To this

end, we generated a Gaussian graphical model (GGM), a

correlation-based model which statistically extracts path-

way relationships from large-scale metabolomics data and

thereby groups biochemically related molecules (Krumsiek

et al. 2011, 2012; Shin et al. 2014) (see Sect. 4). The

advantage of such a data-driven network approach is the

lack of necessity for precise annotations of each metabo-

lite. We can even incorporate unknown metabolites, which

had to be excluded for the analyses above, into these net-

works. In a previous study we demonstrated that GGMs

place unknown metabolites into the correct biochemical

context (Krumsiek et al. 2012).

We mapped the -log10 p values from the single

metabolite statistical analysis to this network (full network

in Supplementary material 4), followed by a systematic

clustering and enrichment approach (Figs. 1, 4). A detailed

description of the procedure can be found in the Methods

section and Supplementary material 5. Briefly, we first

used the partial correlation matrix underlying the GGM to

cluster groups of highly connected metabolites, and then

determined whether this group is coordinately affected by

gender differences. For this dataset, we chose an ad-hoc

number of k = 75 clusters. In a separate analysis we ver-

ified that the clustering does not depend on the choice of

k (Methods, Supplementary material 6). Furthermore, we

assigned a quality score to each cluster, measuring the

strength of network connections of the metabolites within

the cluster.

The resulting clusters along with their significance

regarding gender are shown in Fig. 5. Replication was

performed by analyzing phenotypic effects of the same

clusters in the replication data (not by repeating the entire

clustering process). A full list of results can be found in

Supplementary material 7. In the following, we present six

exemplarily highlighted clusters from Fig. 5 and specifi-

cally stress the additional benefit gained from the network

method.

The first cluster TYROSINE contains metabolites from

four different sub-pathways and two different super-path-

ways according to the predefined pathways used in the

previous section. Specifically, tyrosine and 3-(4-hydrox-

yphenyl)lactate are from the ‘‘Phenylalanine & tyrosine’’

pathway, tryptophan is from the ‘‘Tryptophan’’ pathway,

methionine is from the ‘‘Cysteine, methionine, SAM, tau-

rine’’ pathway, and gamma-glutamyltyrosine belongs to the

‘‘gamma-glutamyl’’ peptide pathway. This pathway is

significantly higher in males (p = 6.16 9 10-62) and also

replicates in the validation cohort (p = 1.16 9 10-25).

Importantly, the cluster contains connections across the

borders of predefined pathway annotations. Thus the

dimorphism in this biochemical module could not have

been detected without the network approach.

Cluster XENO contains the xenobiotic substance

piperine, the vitamin metabolite O-methylascorbate and

four unknown metabolites. The cluster had a high quality

score (q = 0.36), was up-regulated in males (p =

6.47 9 10-24), and also replicated in the validation cohort

(p = 7.25 9 10-5). While the annotation of the unknown

metabolites is still missing, the data-driven network is able

to put all compounds into a metabolic context. Similar to

the TYROSINE cluster, this module is affected by sexual

dimorphisms and could not have been found with common

methods since they completely omit unknown metabolites.

In contrast, cluster BCAA is an example of how the

network method also recovered signals that were detected

by the common pathway analysis above. It represents a

cluster of three BCAAs and their direct degradation prod-

ucts, and showed higher concentrations in males. Similarly,

the sexual dimorphisms in clusters STEROIDS and

FATTY ACIDS were also already detected in the pathway

analysis.
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However, for several clusters we get additional infor-

mation on the biochemical associations between metabo-

lites using the network approach. For example, while

several androsterone-based and one pregnan-based

metabolites are strongly connected in the STEROID cluster

(which is biochemically plausible), they show substantially

different associations to gender. The entire cluster is

up-regulated in males (p = 1.75 9 10-99), but 5a-preg-
nan-3b, 20a-diol disulfate appears almost unaffected

(p = 0.04). Pregnanes are precursors for both androgens

and estrogens and thus expected to be similar for both

genders. Similar scenarios of highly connected metabolites
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with differential effects can be found in the FATTY

ACIDS and XENO clusters.

Irrespective of sexual dimorphisms, cluster DIPEP-

TIDES demonstrates how the quality measure helps to

detect stable network clusters in the metabolome. The

cluster had a reasonably high quality (q = 0.29) but neg-

ligible gender differences (p = 0.23, p = 0.13 in the

replication cohort). Thus, this is an example of a highly

connected pathway region that appears to be stably regu-

lated between the two genders.

2.3 A gender-specific genome-wide association study

Up to this point, the analysis included metabolomics

measurements only. Previous studies have established

strong links between serum metabolite concentrations and

common genetic polymorphisms (Kettunen et al. 2012;

Nicholson et al. 2011; Rhee et al. 2013; Shin et al. 2014).

To check whether the observed gender differences are due

to differential influences of these polymorphisms in males

and females, we performed a gender-stratified GWAS with

metabolites as phenotypic traits. To this end, we deter-

mined for each SNP-metabolite combination whether the

effect of the SNP onto the metabolite is statistically dif-

ferent between the genders. We analyzed a subset of 1703

individuals from our study cohort for which both metabo-

lites and genome-wide SNP data were available. This

subset included 875 females and 828 males. The analysis

was limited to 277 known and 188 unknown metabolites

that had at least 250 valid measurements for females and

males. Genotyping information for a total of 9,277,001

SNPs was available after quality control and filtering (see

Sect. 4). This analysis represents an extension of our pre-

vious study (Mittelstrass et al. 2011) with the broader set of

metabolites used in this study and a more fine-grained set

of SNPs. The sample size is comparable to the previous

study (1703 here vs. 1809 previously).

Only two metabolite-SNP associations reached the

genome-wide significance level of 1.08 9 10-10: Glycine

associated with rs1047891 (p = 1.8 9 10-45) and rs715

(p = 1.6 9 10-43), both of which lie in the autoso-

mal CPS1 gene. This represents the same genetic associ-

ation described in our previous paper (Mittelstrass et al.

2011). CPS1 encodes a mitochondrial enzyme which plays

a role in protein and nitrogen metabolism of the hepatic

urea cycle. Interestingly, even with the much broader set of
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SNPs and metabolites analyzed here, the glycine-CPS1

association appears to be the only gender-specific genetic

effect on blood metabolites. Note that unknown metabo-

lites were included in this analysis, but did not yield any

further genome-wide significant results. A detailed list of

GWAS results including plots can be found in Supple-

mentary material 8.

3 Discussion

In this study, we systematically analyzed gender-specific

differences in the metabolism of 1756 participants from a

German cross-sectional cohort. Out of 507 blood metabo-

lites measured on a non-targeted metabolomics platform,

more than one-third (180) showed statistically significant

differences between males and females. 114 of the 180 hits

could be checked in an independent population cohort

comprising 1000 subjects, where 88 hits replicated

(77.2 %). Thus, a large fraction of the identified gender-

specific differences can be considered stable across popu-

lations. We found well-known metabolic dimorphisms, for

example for steroid hormones, BCAAs and creatine, but

also a series of previously unreported differences.

Pathway analysis based on eight major super-pathways

(‘‘Amino acids’’, ‘‘Carbohydrates’’, ‘‘Cofactors and vita-

mins’’, ‘‘Energy’’, ‘‘Lipids’’, ‘‘Nucleotides’’, ‘‘Peptides’’,

‘‘Xenobiotics’’) and their sub-pathways (e.g. ‘‘glycolysis’’,

‘‘BCAAs’’, ‘‘steroids’’) provided interesting insights into

gender-specific pathway activity on different levels. For

example, the entire set of amino acids was systematically

elevated in males, with different sub-pathways around

BCAAs, glutamate and lysine constituting the strongest

contributions. On the other hand, the class of lipids was not

changed in its entirety, while specific sub-pathways (e.g.

steroids or fatty acids) carry strong gender-specific effects

(Fig. 3).

In addition to the pathway analysis, which is limited to

predefined pathways and metabolites with known chemical

structure, we implemented a novel network clustering

approach (Fig. 4). This provides an unbiased, purely data-

driven view on the parts of metabolism with major gender-

specific differences. This approach has two major advan-

tages over classical pathway analysis. First, the method can

find biochemical modules across the borders of predefined

pathways. For example, we discovered a module containing

tyrosine-related metabolites from two different predefined

pathways. All five metabolites of the identified biochemical

module were coordinately higher in males. With most

common definitions, however, these metabolites would

belong to four different pathways, and thus the module could

not have been found without the network approach. Second,

the method readily incorporates unknown metabolites into

the network. In our dataset, 37 % of the measured metabo-

lites are unknown, which have to be completely omitted in

pathway analysis otherwise.

Both pathway approaches revealed gender-specific dif-

ferences in all major parts of metabolism. Besides more

obvious metabolic differences between men and women,

such as higher levels of the steroid androsterone and its

derivatives in males, we also observed systematically

higher blood concentrations of amino acids in males. In

particular, branched chain amino acids (BCAAs) and their

degradation products exhibited very clear gender differ-

ences (p = 6.29 9 10-127) with higher levels in males.

BCAAs play an important role in muscle metabolism and

have been shown to differ between genders both in their

basal levels as well as their oxidation kinetic during exer-

cise (Fujita et al. 2007; Lamont et al. 2001). In many

studies, BCAAs and their degradation metabolites have

been reported as early markers of insulin resistance and

diabetes (Lu et al. 2013; Newgard et al. 2009). Gender

differences in BCAA metabolism may thus have implica-

tions for the care of diabetes patients.

We also find significant effects for metabolites and

pathways related to CHD, which has a substantially higher

prevalence in men (Go et al. 2013). For example, there are

strong gender differences in lipid metabolism, especially

for medium- and long-chain free fatty acids (Fig. 5,

FATTY ACID cluster). The fatty acid myristate has pre-

viously been described to affect LDL and HDL lipoprotein

levels (Zock et al. 1994), which are strongly different

between genders (Wang et al. 2011) and represent well-

known risk markers for CHD (Arsenault et al. 2011). As

another example, we observed marked differences in

gamma-glutamyl dipeptides, which are products of the

GGT (gamma-glutamyl transferase) enzyme. Serum GGT

level in turn is a marker for alcohol consumption and

obesity (Puukka et al. 2006) and represents another risk

factor for CHD and overall mortality (Jiang et al. 2013).

Such pathway associations might represent starting points

to elucidate the molecular basis of sexual dimorphisms in a

complex disease such as CHD.

In order to test whether the gender differences are

conferred by gender-specific effects of genetic variants on

the metabolite levels, we performed a gender-stratified

GWAS. Although metabolite levels are strongly influenced

by genetic variance in general (Shin et al. 2014), we only

found a single gene-metabolite association (CPS1-glycine)

that was significantly different between genders. Our

observation that sexual dimorphisms in genetic influences

have no major impact on gender-specific metabolite levels

is similar to findings from gene expression studies. Jansen

et al. (2014) also report strong differences in gene

expression, which cannot be explained by major dimor-

phisms in genetic influences. A gender-specific association
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between urate and nine loci, detected in a substantially

larger cohort of almost 30,000 individuals (Kolz et al.

2009), could not be replicated in our dataset. An explana-

tion might be the power in the present study, which might

not be sufficient to detect all such dimorphisms. Moreover,

the statistically and genetically complicated analysis of

dimorphisms in X chromosomal effects has been omitted in

our study.

In addition to higher sample sizes and analysis of the X

chromosome, our study and methodology could be extended

in several directions. (1) The menstrual cycle should be

considered in a gender-specific analysis. In our present

cohort, this was not an issue since the dataset mainly

included women after menopause. Future studies spanning a

larger age range, however, should investigate this important

factor. (2) We only used after-night fasting serum samples

from Caucasian individuals for our analysis. It is to be

expected that under challenge conditions (e.g. diet, drugs or

exercise), further interesting pathways will emerge that are

not detectable under steady state conditions. Cohorts

including different ethnicities might reveal further metabo-

lites showing sexual dimorphisms, and would allow for a

comparison of ethnically stable or differentially regulated

parts of the metabolism. Furthermore, systematic con-

founders such as the composition of the gut micriobiome

should be taken into account wherever available. (3) An

important aspect in all gender-related research is the dif-

ferentiation between biologically originating sex differences

and socially influenced gender effects. There is a plethora of

differences in behavior, disease prevalence and treatment.

Since a randomized-controlled study design to separate

these factors is not realistically possible, other routes have to

be taken. For example, an extensive collection and analysis

of life-style and medical parameters could allow dissecting

biological and behavioral differences. (4) While various

previous studies have established links between blood

metabolites and intracellular and physiological processes,

e.g. (Krug et al. 2012; Newgard et al. 2009; Shin et al. 2014),

this body fluid is certainly not fully representing the entire

human metabolism. To complete the picture of sexual

dimorphisms in the metabolome, it will be interesting to

investigate other body fluids and, if available, tissue samples

in future studies. (5) When interpreting epidemiological

study results, such as the ones presented here, one must be

aware that statistical significance does not necessarily imply

biological relevance. Therefore, our study should be mainly

considered as hypothesis-generating. Dedicated follow-up

studies would be needed to establish the functional role of

specific metabolic dimorphisms we observed. (6) The

pathway analyses proposed in this study are generally

applicable and can directly be transferred to the analysis of

other phenotypes. (7) On the methodological side, the

pathway activity and clustering methods could be extended.

For example, our z-score approach only detects one-sided

effects, i.e. groups of metabolites that are either high in

males or females. For the present study, this was intentional,

but might be revised for the investigation of other

phenotypes.

Taken together, we report a wide range of gender-

specific differences in the human serum metabolome,

covering a variety of different pathways and processes.

This provides insights into the basic molecular differences

between the two genders. Moreover, many of the affected

pathways are known to be relevant in different diseases

with gender-specific susceptibility, such as CHD and gout.

Extensive knowledge of the underlying metabolic differ-

ences might lead to concrete starting points for further

research, in order to develop gender-specific personalized

health care.

4 Materials and Methods

4.1 Study cohorts and metabolomics measurements

Data from 1756 fasting serum samples of the German

KORA F4 population cohort (Holle et al. 2005) were used,

comprising 903 females and 853 males. Age distribution

was 60.51 ± 8.77 for females (mean ± standard devia-

tion) and 61.17 ± 8.79 for males. BMI distribution was

27.86 ± 5.25 for females and 28.47 ± 4.29 for males.

Metabolomics measurements were performed using ultra-

high-performance liquid-phase chromatography and gas-

chromatography separation, coupled with tandem mass

spectrometry by Metabolon, Inc. Metabolites were identi-

fied following the Metabolomics Standardization Initiatives

guidelines (Sansone et al. 2007). A detailed description of

the experimental procedures and metabolite identification

steps can be found in Supplementary material 9. Levels of

identification for each metabolite are provided in Supple-

mentary material 2. A total of 515 metabolites were

quantified, with 324 metabolites of known identity and 191

signals which are not annotated with a chemical structure

yet (‘‘unknowns’’). Eight metabolites with less than 10

valid measurements or zero variance were excluded,

leaving 507 total metabolites, including 318 knowns and

189 unknowns. Each known metabolite is classified into

one of the following eight major metabolic groups (‘‘super-

pathways’’): ‘‘Lipid’’, ‘‘Carbohydrate’’, ‘‘Amino acid’’,

‘‘Xenobiotics’’, ‘‘Nucleotide’’, ‘‘Energy’’, ‘‘Peptide’’,

‘‘Cofactors and vitamins’’. Each super-pathway is subdi-

vided into two or more ‘‘sub-pathways’’ like ‘‘Oxidative

phosphorylation’’, ‘‘Carnitine metabolism’’, and ‘‘Valine,

leucine and isoleucine metabolism’’.

Replication samples were contributed by the Study of

Health in Pomerania (SHIP-TREND) (Völzke et al. 2011),
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providing 1000 fasting plasma samples, thereof 561

females and 439 males. Metabolomics measurements were

performed on a similar platform as the discovery study,

however without the GC–MS runs, leading to a total of 662

measured metabolites in the replication cohort. Age dis-

tribution was 50.14 ± 13.17 for females (mean ± standard

deviation) and 50.08 ± 14.24 for males. BMI distribution

was 26.99 ± 5.12 for females and 27.85 ± 3.75 for males.

A detailed list of measured metabolites including path-

way annotations and coefficients of variation can be found

in Supplementary material 2.

5 Statistical analyses

Raw metabolite quantifications were median-scaled to one

for each run day to correct for day-to-day variance due to

instrument drift during runs. Subsequently, concentrations

were log2-transformed, since the log-transformed concen-

trations were closer to a normal distribution than the

untransformed values. To this end, the non-normality for

all log2-transformed and non-transformed metabolite was

assessed by Kolmogorov–Smirnov tests (Massey 1951) and

then systematically compared in the discovery cohort

(Supplementary material 10). Metabolite differences

between males and females were investigated by standard

linear regression analysis. Metabolite concentration was

used as the dependent variable, gender as explanatory

variable and age and BMI as covariates. In order to adjust

for multiple hypotheses testing, stringent Bonferroni cor-

rection was applied, leading to an adjusted significance

level of 0.05/507 = 9.86 9 10-5 in the KORA cohort. For

each regression analysis, missing values for the respective

metabolite were ignored, leading to varying sample sizes

for each metabolite association.

Pathway enrichment was calculated using aggregated

z-scores. First, metabolite concentrations over all samples

for each metabolite were transformed into z-scores. Posi-

tive values indicate higher metabolite concentration than

the population mean, whereas negative values represent

lower concentrations than the mean. For each super-path-

way and sub-pathway, average z-score over all metabolites

contained in that pathway were computed. This provides a

measure of average expression or activity in that pathway

for each sample. The aggregated pathway values were then

subjected to the standard linear regression analysis for

gender effects described above.

5.1 Network generation, clustering & cluster

enrichment

A GGM was calculated as described previously (Krum-

siek et al. 2011). Briefly, for each pair of metabolites,

partial correlations conditioned against all other metabo-

lites as well as age, gender and BMI were computed. The

calculation requires a full data matrix without missing

values, thus a series of preprocessing steps was necessary.

First, metabolites with more than 90 % missing values

were removed from the dataset, since no reasonable cor-

relation calculation is possible for those measurements.

This step reduced the number of metabolites for the

network analysis from 507 to 494, leaving 311 knowns

and 183 unknowns. Remaining missing values were then

imputed by drawing from a normal distribution with the

same mean and standard deviation as the non-missing

values from the respective metabolite. This approach

lowers correlation between metabolites rather than artifi-

cially increasing it, favoring false negative edges over

false positive edges.

The resulting GGM was then clustered with a k-means

clustering approach on a transformed correlation matrix.

Intuitively, nodes that are few steps apart in the network

should get a higher similarity value for the clustering

process than distant nodes. Since network distance is

strongly dependent on the cutoff chosen, a cutoff-inde-

pendent approach that utilizes the full partial correlation

matrix was developed. For each pair of metabolites, the

multiplicative strongest path was calculated. This repre-

sents the path from one metabolite to another metabolite

over zero or more other metabolites which maximizes the

product of edge weights. A visual description of the

approach can be found in Supplementary material 5. The

resulting strongest path matrix was then subjected to

standard k-means clustering. For the present paper, an ad-

hoc number of k = 75 clusters was chosen. We performed

three stability analysis approaches to evaluate the cluster-

ing as such as well as the choice of k: (1) We calculated

Silhouette coefficients (Rousseeuw 1987) to objectively

evaluate the number of obtained clusters. (2) Sample

bootstrapping (Efron 1979) was used to verify the stability

of clustering. (3) We assessed whether high-quality clusters

are preserved independent of the choice of k. Detailed

descriptions and results can be found in Supplementary

material 6.

To assess the quality of each cluster, a maximum

spanning tree-based approach was implemented. This

measure identifies the strongest possible connection of all

metabolites in a cluster, while visiting each metabolite just

once. The rationale for this approach is that simple mea-

sures, like the mean partial correlation over all pairs of

metabolites in a cluster, do not account for the inherent

sparsity of GGM. Again, a visual explanation of the

approach can be found in Supplementary material 5.

Gender enrichments for each cluster were calculated

analogously to the pathway enrichment approach (see

above). For each cluster, the mean z-score was calculated
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as a measure of mean activity. The resulting activity scores

were then subjected to standard regression analysis with

gender as explanatory variable and BMI and age as

cofactors.

5.2 Genome-wide association studies

Genotyping was performed with the Affymetrix Axiom

Genome-Wide Population-Optimized Human Array in all

available samples of the KORA F4 cohort. Samples with

less than 97 % call rate or differing genetic and phenotypic

gender were excluded. All samples that passed quality

control showed genetic European ancestry (PCA on

genotypes in comparison with HapMap3 samples, results

not shown). Before imputation SNPs with less than 98 %

call rate, minor allele frequency \0.01 or a p value for

deviation from Hardy–Weinberg equilibrium \5 9 10-6

were excluded. Pre-phasing of the genotypes was per-

formed with SHAPEIT v2 (Delaneau et al. 2013) and

imputation with IMPUTEv2.3.0 (Howie et al. 2009). The

1000 g phase1 all ethnicities (release v3, macGT1, August

2012) was used as reference panel. In total, 523,260

genotyped SNPs passed pre-imputation filtering and were

imputed to 30,067,091 SNPs. In this study, only SNPs with

minor allele frequency[0.01 and imputation quality (info)

[0.4 were analyzed, resulting in a final number of

9,277,001 SNPs.

Gender-specific genome-wide association studies

(GWAS) were then calculated from 1703 individuals for

which both metabolites and valid genome-wide SNP data

were available. Metabolites were filtered to 277 known and

188 unknown metabolites that had at least 250 valid

measurements (leaving 465 metabolites). The GWAS were

performed on residuals from a regression on age calculated

for the log transformed metabolites for males and females

separately without any further adjustment. Standard linear

regression was used to analyze additive SNP effects using

dosages with the package MixABEL (function GWFGLS)

of the GenABEL (Aulchenko et al. 2007) suite. Beta

estimates per SNP were then checked for gender-specific

differences using the following statistic:

betafemales � betamales
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2females � se2males

q

which is approximately normally distributed (Paternoster

et al. 1998). The Bonferroni-corrected p value for genome-

wide analyses 5 9 10-8 (Pe’er et al. 2008) had to be fur-

ther corrected for the number of metabolites. This led to a

significance threshold of 5 9 10-8/465 = 1.08 9 10-10

for genome-wide significance.

6 Data availability

?>Raw data from the KORA F4 study are available upon

request from KORA-gen (http://epi.helmholtz-muenchen.

de/kora-gen). Requests should be sent to kora-

gen@helmholtzmuenchen.de and are subject to approval

by the KORA board to ensure that appropriate conditions

are met to preserve patient privacy. Formal collaboration

and co-authorship with members of the KORA study is not

an automatic condition to obtain access to the data pub-

lished in the present paper. More general information about

KORA, including F4 study design and clinical variables,

can be found at http://epi.helmholtz-muenchen.de/kora-

gen/seiten/variablen_e.php and http://helmholtz-muench-

en.de/en/kora-en/information-for-scientists/current-kora-

studies.
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