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Summary

Previous attempts to crystallize mammalian γS-crystallin were unsuccessful. Native L16 chicken 

γS crystallized avidly while the Q16 mutant did not. The x-ray structure for chicken γS at 2.3Å 

resolution shows the canonical structure of the superfamily plus a well-ordered N-arm aligned 

with a β-sheet of a neighboring N-domain. L16 is also in a lattice contact, partially shielded from 

solvent. Unexpectedly, the major lattice contact matches a conserved interface (QR) in the 

multimeric β-crystallins. QR shows little conservation of residue contacts, except for one between 

symmetry-related tyrosines, but molecular dipoles for the proteins with QR show striking 

similarities while other γ-crystallins differ. In γS, QR has few hydrophobic contacts and features a 

thin layer of tightly bound water. The free energy of QR is slightly repulsive and AUC confirms no 

dimerization in solution. The lattice contacts suggest how γcrystallins allow close packing without 

aggregation in the crowded environment of the lens.

eTOC

The crystal structure of γS-crystallin shows how proteins in the eye lens can form non-binding 

contacts with low hydration without aggregation. Monomeric γS also forms an intermolecular 

interface very similar to one in dimeric β-crystallins: few contacts are conserved but molecular 

dipoles have similarities.

This manuscript version is made available under the CC BY-NC-ND 4.0 license.
*To whom correspondence should be addressed: Lead Contact. Graeme Wistow, Ph.D., Section on Molecular Structure and Functional 
Genomics, National Eye Institute, Building 6 Room 106, National Institutes of Health, Bethesda, MD, USA., Tel: 301-402-3452; 
graeme@helix.nih.gov. 

Author Contributions
VS performed crystallographic experiments and VS and GW analyzed the structure data. SKC performed AUC experiments and SKC 
and PS analyzed the data. All authors discussed results and approved the manuscript, which was mainly written by GW and VS.

Supplemental Information
Supplemental Table S1
Supplemental Table S2

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Structure. Author manuscript; available in PMC 2018 July 05.

Published in final edited form as:
Structure. 2017 July 05; 25(7): 1068–1078.e2. doi:10.1016/j.str.2017.05.015.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Crystallin; lens; non-bonding interfaces; dimerization; molecular dipoles

Introduction

γ-Crystallins are major structural proteins of the vertebrate eye lens (Slingsby and Wistow, 

2014; Slingsby et al., 2013). They are particularly abundant in lenses of fish and rodents, 

those with the highest protein concentrations, hence the sharpest refractive index gradients, 

and in the central, densest, nuclear regions of lenses in other mammalian species. They are 

thought to be evolutionarily adapted for the conditions of high molecular crowding 

necessary for the refractive properties of the lens and for a role in maintaining the short 

range order of lens cytoplasm required for transparency (Delaye and Tardieu, 1983; Zhao et 

al., 2011b). Indeed, we have previously shown that these monomeric proteins are highly 

compact, with very low frictional ratios in solution (Chen et al., 2014; Zhao et al., 2014).

The γ-crystallin family includes members that are specific to different taxa, such as fish and 

mammals, and some that are represented throughout vertebrates (Wistow et al., 2005). 

Prominent among the latter class is γS-crystallin. Indeed, although it had long been thought 

that γ-crystallins were absent from the relatively soft, flexible lenses of birds, we have 

shown that birds do express γS, albeit at a lower level than in many other groups (Chen et 

al., 2016). Although chicken γS is a well-conserved member of the family, we noticed one 

unusual residue substitution which replaced a glutamine in the first of the four repeated 

Greek key motifs of the protein with leucine (L16 in the chicken sequence and all other 

predicted avian sequences, from falcon to hummingbird). The Greek key motif found in γ-

crystallins and in the related β-crystallins has a sequence signature with conservation of 

some key residues. However, little attention has been paid to the conserved glutamine and 

the reason for its conservation throughout βγ-crystallins is unknown.
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The surface properties of γ-crystallins are very important for solubility and substitutions of 

single residues can have major effects, as for example in the case of the P23T mutation in 

human γD (Evans et al., 2004). However, we found no evidence for any differences in 

solubility or stability for chicken γS with the native (non-conservative) L16 or with 

substituted Q16 (Chen et al., 2016). However, we reasoned that L16 could still have effects 

on protein interactions.

While many β- and γ-crystallins have been crystallized, γS has proved recalcitrant. Previous 

efforts to crystallize human and mouse γS did not succeed and when separate N- and C-

terminal domains of human γS were used, only the isolated C domain crystallized (Purkiss 

et al., 2002). However, it was possible to determine the monomer structure of intact mouse 

γS by NMR (Wu et al., 2005). Here we report that, in contrast to other orthologs that have 

been tested, wild type chicken γS crystallizes avidly, while the Q16 mutant does not, 

allowing the first determination of a crystal structure for a γS and the examination of some 

informative crystal lattice contacts.

Results

Crystal structure

Both L16 (wild type) and Q16 chicken γS were purified and screened over 288 

crystallization conditions. No crystals were obtained for Q16. In contrast, L16 produced 

crystals in 45/288 (16%) of the conditions tested (Table S1) over a wide range of pH (5.5–

9.5), salts and precipitants, even including 72% w/v glycerol, and at a protein concentration 

of only 0.125 mg/ml. (Some of these conditions produced needles and space groups were 

not determined for all conditions). After optimization, diffraction quality crystals were 

grown in 0.2 M Ammonium acetate pH 7.1 and 16% PEG 3350 at room temperature over 4 

days, although most of these were twinned. Crystals were large enough to collect a 2.3Å 

data set using a rotating anode x-ray generator (Table 1).

The structure of native chicken γS was solved by molecular replacement using the 

coordinates of mouse γS derived from solution NMR (Wu et al., 2005), substituting Gly for 

non-matching side chains. (Fig 1a). There was one molecule in the asymmetric unit. It has 

the familiar canonical structure, with two similar domains each formed from a pair of similar 

modified Greek Key motifs (consisting of four β-strands: a-d), connected by a linker 

peptide. The refined structure matched the mouse γS solution structure (1ZWAO) with 

RMSD of 2.1Å for 1311 atoms excluding the N-terminal arms, and had a slightly closer 

match to the crystal structure of human γD crystallin (1HKO) with RMSD of 1.9Å for 1172 

atoms. These differences likely reflect the constraints of a crystal, as opposed to a free 

solution structure. One difference in chicken γS is A128, at the start of the d strand of the 

third motif, which replaces a well-conserved serine residue involved in the characteristic 

folded structure of the strand a-b hairpin found in each repeated motif of the βγ-crystallin 

superfamily. This S/A substitution has no obvious effect on local structure in chicken γS and 

does not seem to have any noticeable destabilizing effect on the protein (Chen et al., 2016); 

furthermore the same substitution is also found in γN-crystallins (Wistow et al., 2005).
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L16 is located at the tip of the folded strand a-b hairpin of motif 1 (Fig 1a). The presence of 

L16 instead of the glutamine which is conserved in other members of the family had no 

effect on the local conformation of the protein backbone in chicken γS compared with that 

in mouse γS, and the side chains of the equivalent L/Q16 residues have very similar 

orientations, even though one is polar and the other is non-polar (Fig 1b).

Lattice contacts

Crystal lattice contacts for chicken γS as defined by PISA (Krissinel and Henrick, 2007) are 

shown in Table 2. L16 participates in one of these contacts with an area of 390Å2. This 

includes several intermolecular polar interactions between the N-domain of one monomer 

and a neighboring C-domain (Fig 2). L16 inserts between the folded β-hairpin of the a and b 
strands of motif 3 and the c-d loop of motif 4 in the neighboring monomer. L16 itself does 

not make a direct hydrophobic contact, but is significantly shielded (69%) from solvent in 

the crystal lattice (solvent accessible area for L16 in isolated monomer =107Å2, reduced to 

33Å2 in the crystal lattice) which presumably contributes to crystallization in this space 

group.

Another lattice contact involves the N-arm which (in contrast with that of the mouse γS 

NMR structure which exhibits a high degree of structural freedom) is relatively well-defined 

in the crystal structure (Fig 3A), with low to moderate B-factors for residues 2–4 (all below 

50 Å2). The 4 residues of the N-arm extend away from the N-domain and residues 2–4 line 

up with the edge of the outer β-sheet of a neighboring N-domain (strand b of the first motif), 

almost forming a fifth strand of the sheet (Fig 3A, B). There is one main chain backbone 

hydrogen bond interaction, between the peptide carbonyl of R2 and the peptide nitrogen of 

the adjacent Q21′ while a second interaction between G4 and R19′ is bridged by water. 

The side chain of R2 forms an ion-pair with D23′of the other monomer and is within 

hydrogen bonding distance of Y20′. While the N-arm of γS in solution may be relatively 

disordered, the crystal structure shows that in crowded conditions this structure can adopt a 

much more ordered conformation, aligned with a β-sheet.

In addition to typical lattice contacts with limited interaction areas, the crystal also contains 

a very large lattice contact between adjacent monomers (Fig 4A, B). The contact area 

defined by PISA is 852Å2, 9.3% of the monomer surface area. For comparison, this is ~50% 

larger than the largest lattice contacts in human γD (PDB: 1HKO) or γB crystals (PDB: 

2JDF). Despite this, the free energy of the interaction is positive, ΔG = 4.7kcal/mol, 

inconsistent with dimerization. This can be explained by a lack of hydrophobic contacts 

between monomers. Most of the contact area consists of surface polar side chains which 

have extensive intramolecular contacts, some direct intermolecular contacts and other 

contacts, both intra- and inter-molecular, involving water bridges (Fig 4). Thus, the interface, 

although extensive, involves little attractive interaction between monomers.

The networking of surface polar side chains with intramolecular hydrogen bond and charged 

interactions is a general feature of γ-crystallins and was noticed in the first such structure to 

be examined (Blundell et al., 1981; Wistow et al., 1983). This internalization of polar 

bonding potential is thought to reduce the requirement for solvation by bulk water. Chicken 

γS, follows the same general pattern, with most of the solvent-exposed side chains outside 
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the lattice contacts forming intramolecular interactions. In the large lattice contact, polar side 

chains are also oriented towards each other in a similar kind of network, but the structure 

also shows well-defined water molecules apparently coordinated between surface side 

chains, while others are coordinated by side chains across the lattice contact, forming 

intermolecular bridges (Fig 4B, C). This has the effect of producing a thin layer of bound 

water between the monomers, satisfying solvation without the formation of tight 

intermolecular binding.

Unexpectedly, the lattice dimer of chicken γS is very similar to a dimer interface found in 

all crystal structures determined for the related, multimeric β-crystallins (Slingsby and 

Wistow, 2014; Van Montfort et al., 2003) in which it was designated QR, (based on the 

symmetry in the original βB2 structure (Bax et al., 1990) (Fig 5). For the multiple structure 

alignment shown in figure 5F, G, the RMSD from chicken γS is 4.9Å for 2338 atoms for 

βB1 (PDB: 1OKl), 5.8Å for 977 atoms for βB2 (PDB: 1YTQ) and 4.2Å for 2196 atoms for 

βA4 (PDB:3LWK). The orientation of this interface is highly conserved, but its extent and 

predicted free energies vary: in some structures, it appears to be a true dimer interface while 

in others it is a lattice contact only. In the crystal structure for βB1, truncated through 

deletion of N-arm and C-terminal extension (Van Montfort et al., 2003), the QR interface 

has an area of 1571 Å2 and ΔG = −5.6 kcal/mol and is responsible for solution dimerization 

(Bateman et al., 2001). In the crystal structure of βB2, dimerization occurs through domain-

swapping (Bax et al., 1990; Lapatto et al., 1991), but in the crystal lattice, dimers interact 

through the common QR interface to form a non-bonded lattice tetramer (Bax et al., 1990; 

Lapatto et al., 1991; Smith et al., 2007) (Fig 5). Surprisingly, a very recent study has 

suggested that, in solution, human βB2 forms a compact dimer thought to be a QR-based 

dimer without domain swapping (Xi et al., 2017). As yet, there are no coordinates for this 

structure. We built a simple QR dimer model, using the QR interaction from the βB2 crystal 

lattice tetramer and substituting the connecting peptide conformation of βB1. However, the 

PISA predicted energy of dimerization for the model was slightly positive, ΔG = 1.7 

kcal/mol while the predicted energy of dissociation (ΔGdiss) was −9.5 kcal/mol. This 

suggests that our model does not correspond to the compact dimer thus making it difficult to 

draw any conclusions. In truncated βB3, a somewhat modified version of the interface is 

involved in trimer formation (Fig 5C). In truncated βA4, it is again involved in dimerization 

and formation of octamer complexes.

Figure 6 shows a sequence alignment for chicken γS compared with those for human βB1, 

βB2 and βA4 for which crystal structures show the presence of QR interfaces (βB3 is 

omitted to limit the comparison to the most similar QR interfaces in monomer-monomer or 

dimer-dimer structures). Residues of the QR interface defined by the Contact program are 

shown. In chicken γS, the contacts of the QR interface are found in two stretches of 

sequence located in motifs 2 and 4. These are the most highly conserved motifs and are the 

main contributors to the interdomain contact in the monomer: the residues involved in QR 

are distinct from the interdomain contact. Figure 6 indicates the residues with side-chain 

interactions in the interface (rather than only main chain interactions). These are residues: 

R62, Y66, H70, H71, M73 and L75 in the strand c-d region of the second motif; H141, 

N143, Y144 and R145 in the strand a region of the fourth motif. A single residue in the d 
strand of motif 4, R173, also forms a contact (to N143). The equivalent regions in the β-
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crystallins are also involved in the QR interface, but include additional residue contacts. The 

β-crystallins also have additional contact side chains in the strand c-d region of motif 3 and 

strand d of motif 4. Some of these residues are also conserved in chicken γS, but do not 

form contacts, while some of residues in the robust β-crystallin interfaces, such as W174 in 

βB1, which have significant hydrophobic contacts are lacking in γS (Fig 6A).

We looked for a minimal set of conserved interactions that might define the QR contact in 

the crystal lattice. However, comparison of the crystal structures showed that even some 

conserved residues in in the contact regions form different interactions in different 

structures. For example, the conserved residues R145 in γS and R201 in βB1 are both 

involved in the QR interface, however the side chains have different conformations so that 

R145 interacts with the side chain of H71 and the main chain of E65, while R201 interacts 

with main chain atoms of W126 and I114 (Fig 6B). Remarkably, only one residue appears to 

be conserved and to form the same interaction among all the structures for the QR interface: 

Y144 (in γS) and its equivalents form a well-conserved side-by-side Van der Waals contact 

in all structures along the two-fold axis of the interface (Fig 6C). This residue is part of the 

conserved folded β-hairpin between a and b strands of the fourth motif of these proteins. 

Flanking residues are involved in the interface, but the specific interactions vary among the 

proteins.

Since the conservation of the QR interface does not involve well-conserved side chain 

interactions, we considered the idea that some overall property, such as molecular dipoles, 

might play a role in the association of monomers. Differences in molecular dipoles for γ-

crystallins have been noticed previously (Norledge et al., 1997; Purkiss et al., 2007) and the 

general role of dipoles in protein homodimer formation has been discussed (Campbell et al., 

2014). As shown in Fig 7, monomers of chicken γS and βB1 have dipoles of similar 

magnitude, oriented from the interdomain interface at a similar angle through the N-domain. 

In the crystal dimer, these dipoles add to create a larger magnitude dipole through the QR 

interface. βA4 has a different monomer dipole but in the dimer, this too produces a larger 

molecular dipole through the QR interface, although opposite in direction to that in the other 

two proteins. Since the domain swap in the crystal structure of βB2 complicates the 

calculation of monomer and dimer dipoles (because N- and C-domains of the QR interface 

are not parts of the same polypeptide chain) this was not considered. No coordinates are 

available for the recently described compact solution dimer for this protein (Xi et al., 2017).

We then used modelling to place other crystallographically determined γ-crystallin 

structures in the same positions as the γS QR dimer. Monomer dipoles for mouse γC, 

human γD and bovine γE and γF had different orientations from γS and in the modelled 

dimer configuration did not produce the increased molecular dipole along the same axis 

through QR. This correlation is consistent with the idea that additive molecular dipoles 

might indeed contribute to the alignment of γ and β monomers to form QR. The same 

modelling exercise for human γB did produce an increased, similarly aligned dipole in the 

modelled dimer; however, the dipoles of isolated monomers did not follow the QR pattern 

and were aligned toward each other in the model, which might prevent approach of the 

monomers in this QR configuration
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Although the calculated free energy of the QR interaction in chicken γS is not by itself 

consistent with dimer formation, recent results have described solution dimer formation for 

human γS-crystallin, including involvement for the N-arm (Ray et al., 2016) while another 

study described a small fraction of the protein associating into clusters (Mohr et al., 2013). 

We investigated the behavior of chicken γS in solution using analytical ultracentrifugation.

Analytical Ultracentrifugation

Sedimentation equilibrium experiments were carried out at concentrations between 2.3 – 17 

μM at 4 °C. A single species model described the data well within the noise of data 

acquisition (Figure 8A). The best-fit molar mass of 20.2 kDa is within typical errors in the 

partial-specific volume consistent with the monomer sequence molar mass.

To assess dimerization at higher concentrations, sedimentation velocity (SV) experiments 

were carried out (Figure 8B, C, D). At moderate concentrations the sedimentation coefficient 

distributions distribution showed a single peak with s20w,0 of 2.31S, indicating a highly 

compact monomer with a frictional ratio of 1.24, slightly above the previously measured 

value of 1.21 for mouse γS (Zhao et al., 2014). Even at the highest concentration studied, 

only a single peak in the sedimentation coefficient distribution was observed. This 

concentration, 24mg/ml, exceeds the likely effective concentration of γS in the chicken lens, 

where it is a minor component of the total crystallin (Chen et al., 2016). The s-value slightly 

decreased with concentration, which is a signature of obligate hydrodynamic non-ideality 

(Figure 8C). Dimerization with KD in the mM range or weaker could be masked by this 

decrease, but unfortunately, its estimate is confounded by correlation with the assumptions 

on the magnitude of hydrodynamic repulsive interactions, and the dimer s-value. Using 

theoretical values for the non-ideality of a non-interacting hydrodynamically equivalent 

sphere, and the constraint of the dimer s-value to fall within 1.4 – 1.6-fold the monomer s-

value, a best-fit Kd of 4.6 mM (95% CI from 2.6 – 10.2 mM) was estimated (Figure 8D). 

However, an alternative interpretation of the data can be made without any dimerization but 

allowing for slightly attractive interactions modulating the protein distance distributions in 

solution.

These results confirm that despite its ability to form an extensive intermolecular interaction 

in the crystal lattice, chicken γS shows no clear evidence for multimerization even at high 

concentration and that the presence of L16 does not contribute to enhanced non-covalent 

interactions in solution.

Discussion

Crystallins are highly specialized for their role in creating a transparent, refractive lens for 

the vertebrate eye (Slingsby and Wistow, 2014; Slingsby et al., 2013). In particular, γ-

crystallins seem to be highly adapted for the lens role, with very compact, monomeric 

structures, allowing for tight packing, (Chen et al., 2014; Zhao et al., 2014), good 

thermodynamic stability, allowing for extreme longevity, and even unusual amino acid 

compositions, selected for their contributions to refractive index (Mahendiran et al., 2014; 

Zhao et al., 2011a). While γ-crystallins are monomers, the structurally related β-crystallins 

form dimers and higher multimers both in vitro and in vivo (Slingsby et al., 2013). 
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Intermolecular interactions of crystallins are important for their functions, but the 

determinants of these interactions in the lens cytoplasm are still not well-understood.

Several γ-crystallins have been crystallized, allowing for detailed structural studies, however 

previous attempts to crystallize mammalian γS were unsuccessful and led only to the 

crystallization of the isolated C-domain of human γS while the complete protein and 

isolated N-domain did not crystallize (Basak et al., 1998). This failure to crystallize has been 

attributed to repulsive interactions in γS (Pande et al., 2015; Tardieu et al., 1992).

Although birds were long thought to lack all γ-crystallins, we recently showed that γS is 

present in birds, and found that chicken γS is expressed in the lens, although at relatively 

low levels (Chen et al., 2016). The primary sequence of avian γS is well conserved with that 

seen in other vertebrates. However, we noticed that throughout the birds there is a 

substitution of a residue that is highly conserved in both β- and γ-crystallins throughout the 

other vertebrates. This is at position 16 in the chicken γS sequence, where the residue is 

leucine instead of the otherwise conserved glutamine. The reason for the conservation of 

Q16 and its equivalent positions in other members of the family is not known. We also found 

no evidence for any structure, solubility or stability differences between native L16 chicken 

γS and the engineered Q16 version. However, as shown here, we found a remarkable 

difference in the crystallization of the two proteins, with L16 crystallizing easily under many 

conditions while Q16, like its mammalian orthologs, failed to produce crystals. The crystal 

structure for chicken γS shows that L16 is significantly shielded from water by a lattice 

contact in the crystal. This provides some rationale for crystallization of the native protein.

Crystal lattice contacts also provide some insight into ways in which γS may interact with 

other crystallins in the crowded conditions of the lens. The short N-arm, which shows high 

mobility in the solution NMR structure of mouse γS (Wu et al., 2005) is well defined in the 

crystal and is involved in a lattice contact in which it at least partially aligns with the edge of 

a β-sheet of another N-domain. γA-F crystallins lack N-arms, but short N-arms are present 

in γS and γN while in the related β-crystallins they can be much longer (Slingsby et al., 

2013; Wistow et al., 2005). The role of N-arms in βγ-crystallins is not clear; they could 

participate in formation of multimers, they could also provide an entropic contribution to 

solubility by freely moving in solution. The chicken γS structure shows that under crowded 

conditions extensions can also be involved in well-ordered interactions between crystallins.

The γS crystal structure also contains a large lattice contact (about 50% larger than in other 

γcrystallin crystal structures). This contact region contains few hydrophobic contacts and a 

small number of direct intermolecular contacts between polar side chains. Indeed, the 

calculated free energy of the interaction is slightly repulsive. Within the contact region, 

surface polar side chains participate in intramolecular contacts that include tightly bound 

waters, coordinated between one or more side chains. often forming intermolecular bridges. 

The overall effect is of relatively limited direct interaction between the protein monomers 

while polar interactions are satisfied by a layer of tightly bound waters.

This suggests a model for the way in which γ-crystallins may associate with other 

crystallins (Slingsby and Wistow, 2014; Slingsby et al., 2013) and other components of the 
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lens (Fan et al., 2012) in an environment with low water content and a high degree of 

molecular crowding. Similar packing to that seen in the γS-crystal would allow very close 

contact without multimerization or aggregation and with the involvement of little water to 

satisfy polar interactions. Indeed, AUC measurements confirm that chicken γS shows little 

tendency to multimerize, even at high concentrations. The data are consistent with slightly 

attractive interactions, but with values very similar to those previously reported for mouse 

γS (Zhao et al., 2014).

Although the large γS lattice contact illustrates ways in which γ-crystallins can interact 

without multimerizing, it is remarkably similar to a conserved interface involved in the 

multimerization of the β-crystallins in solution or in crystals. All the crystal structures for β-

crystallins contain this interface, called QR, which is more or less robustly involved in same-

protein interactions in different members of the family (Van Montfort et al., 2003; Xi et al., 

2017). Its prevalence suggests that the QR interface is an ancestral feature of the β-

crystallins and so might also be ancestral for the related γ-crystallins. The idea that γ-

crystallins evolved from the structurally related β-crystallins is supported by gene structures 

in the two families (Kappe et al., 2010; Wistow, 2012). In the genes for β-crystallins, each of 

the four repeated Greek Key motifs is encoded in a single exon and the same pattern is seen 

in the genes of the AIM1 family, vertebrate members of the βγ-crystallin superfamily with 

non-lens roles (Ray et al., 1997; Teichmann et al., 1998; Wistow, 2012). In contrast, the 

genes for γS and for other γ-crystallins, such as the γA-F family in mammals, have lost the 

introns that separate the motif-encoding exons of each domain, while the gene structure for 

the intermediate γN-crystallin has one domain encoded like a β-crystallin and one like a γ-

crystallin (Kappe et al., 2010; Wistow et al., 2005), suggesting a transition in exon structure 

from β- to γ-crystallin families. Interestingly, γS itself was originally designated as βs (for 

electrophoretically “slow”) when isolated from cow lens extracts (Quax-Jeuken et al., 1985).

This suggests that the evolution of monomeric γ-crystallins from multimeric β-crystallins 

may have occurred at least partly through modifications of the QR interface which reduced 

the potential for dimerization. Even so, γS retains the ability to form the same 

intermolecular alignment, at least in the crystal lattice. The QR contact depends on residues 

in the second and fourth motifs of the structure, so that the interface brings the interdomain 

contact regions, and thus the centers of gravity of two monomers, close together. 

Surprisingly only one residue, Y144, part of the folded β-hairpin structure of the fourth 

motif, is completely conserved in identity and conformation in QR in γS and the β-

crystallins. Other residues have changed identity or, if conserved, form different interactions. 

With so little conservation, it is hard to determine why γS forms the QR interface. One 

possibility is that β- and γ-monomers align in this configuration because of some overall 

characteristic, such as their molecular dipoles. Indeed, we found that the proteins known to 

form the QR interface crystallographically have monomeric molecular dipoles that align in 

the dimer to give rise to a larger dipole oriented perpendicular to the QR interface. This 

seems to fit general observations for homodimer formation (Campbell et al., 2014). In 

contrast, some other γ-crystallins have molecular dipoles which do not add in the same way 

when modelled into the QR interface and which may be oriented towards each other in this 

configuration which could inhibit even transient monomer- monomer association.
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While β-crystallins and chicken γS share characteristics compatible with aligning 

monomers in the QR configuration, the strength of the interaction depends on other factors: 

thus, some QR interfaces are clearly non-covalently bonded dimers while others are non-

bonded contacts that would be transient in solution. Indeed, AUC confirms that chicken γS 

shows little evidence for dimer formation in solution.

Thus, it seems that γ-crystallins in general, and γS in particular, have evolved from the β-

crystallin template to give monomeric proteins with a molecular surface that confers high 

solubility without the need for high hydration and allows close molecular contact without 

multimer formation or aggregation. This suggests a role for γ-crystallins as intermolecular 

spacers or substitutes for bulk solvent in the crowded lens cytoplasm, helping to maintain 

both the short-range order necessary for transparency and density of packing necessary for 

refraction.

Star Methods

Contact for Reagent and Resource Sharing

Further information and requests for reagents should be directed to and will be fulfilled by 

the Lead Contact, Graeme Wistow (graeme@helix.nih.gov)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Expression plasmids (pET17b: EMD Millipore, Darmstadt, Germany) in E. coli Bl21 Star-

DE3 (Thermo Fisher Scientific, Waltham MA) were grown in LB broth (Thermo Fisher 

Scientific) culture containing 100 μg/ml ampicillin at 37 °C

Methods Details

Protein Expression—Both L16 and Q16 versions of full-length chicken γS crystallin, 

cloned into the pET17b vector (EMD Millipore, Darmstadt, Germany) (Chen et al., 2016), 

were expressed in E. coli Bl21 Star-DE3 (Thermo Fisher Scientific, Waltham MA). Starter 

cultures were inoculated into LB broth (Thermo Fisher Scientific) culture containing 100 

μg/ml ampicillin at 37 °C, grown to OD600 0.8 and induced with 1 mM IPTG for overnight 

expression at 20°C. The cells were collected by centrifugation at 5,000 rpm. for 30 min and 

stored frozen at −80 °C. Frozen pellets were resuspended in buffer A (50 mM imidazole, pH 

6.0, 1mM EDTA, 1mM DTT). After resuspension, 0.1 mg of lysozyme/ml was added and 

incubated at 4 °C for 30 min. The cell suspension was sonicated and the lysate was 

centrifuged at 16,000 rpm. for 1 h. The supernatant was filtered through a Corning 0.22 μm 

bottle top filter (Thermo Fisher Scientific), then passed over a 5mL HiTrap SP FFTM (GE 

Healthcare Life Sciences, Marlborough, MA) pre-equilibrated with Buffer A. Buffer B (50 

mM imidazole pH 6.0, 1mM DTT, 1mM EDTA) was used to elute the protein. Protein 

fractions were pooled and concentrated, then loaded onto a HiLoad 16/60 Superdex 75 pg 

(GE Healthcare Life Sciences) gel filtration column equilibrated with Buffer C (50mM Tris, 

pH 7.5, 1mM DTT). Peak fractions were pooled and concentrated for crystallization.

Crystallization—Purified recombinant proteins were crystallized by the sitting-drop 

vapor-diffusion method. The chicken γS crystallin protein samples were screened for 
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crystallization conditions using commercially available crystal screens: Index (Hampton 

Research, Aliso Viejo, CA), PEG/Ion:PEG/Ion 2 (Hampton Research), and Pi-minimal 

Screen (Jena Bioscience, Ann Arbor MI). A total of 288 conditions were tested in 2μl drops. 

Screens were incubated at 20°C. The condition producing the largest, most uniform crystal 

for L16 was selected for optimization. Diffraction quality crystals were obtained initially in 

0.2 M Ammonium acetate, pH 7.1, 20% (w/v) PEG 3350. In optimized conditions, (0.2 M 

Ammonium acetate pH 7.1 and 16% PEG 3350), crystals grew large enough for X-ray 

diffraction studies after 4–5 days at 20°C.

X-ray analysis—Chicken γS crystals were flash-frozen in mother liquor containing 20% 

ethylene glycol. Diffraction data were collected at 100K with a rotating copper anode 

MicroMax 007HF generator equipped with a Saturn A200 CCD detector (Rigaku Americas, 

The Woodlands, TX) at NIDDK, National Institutes of Health. X-ray data collection and 

refinement statistics are shown in Table 1. Data were collected out to 2.1 Å, however, 

because of detector geometry, shells were only complete up to 2.3 Å. Data were collected 

for 360° with 0.5° oscillation, and gave mosaicity of 0.964. The data were integrated and 

merged using XDS (Kabsch, 2010). The structure of chicken γS crystallin was solved by 

molecular replacement using the NMR structure of mouse γS crystallin (PDB ID 1ZWO). 

The first of the NMR ensemble structures was used, with non-identical residues substituted 

with glycine. Molecular replacement was performed using the Phaser MR program (McCoy 

et al., 2007) from the Phenix crystallography software suite 36 (Adams et al., 2010). Rfree 

was monitored by using 5% of the reflections as a test set. The Z-scores were RFZ=4.7; 

LLG=94; TFZ=10.1. Structure was refined with TLS with one monomer using Phenix.refine 

(Adams et al., 2010). The structure is deposited as PDB ID 5VH1.

Informatics—Figures were created using PyMOL (Schrödinger LLC, Cambridge MA). 

Structure alignments were performed using Align in PyMOL. Surface accessible areas were 

calculated using NACESS V2.1.1 [http://www.bioinf.manchester.ac.uk/naccess/]. Sequence 

alignments were performed using Clustal Omega [http://www.ebi.ac.uk/Tools/msa/clustalo/]. 

Lattice interactions were determined using PISA (Krissinel and Henrick, 2007) and contact 

residue lists using Contact in CCP4 (Winn et al., 2011). For calculation of molecule dipoles, 

any missing peptides in β-crystallin structures were model built into x-ray crystal structures 

using similar regions of other crystallin structures. PDB to PQR in Chimera (Pettersen et al., 

2004) was used to generate a PQR file using an Amber force field and a pH of 7.0. The net 

dipole vector was calculated using Chimera’s dipole.py program.

Analytical Ultracentrifugation—Sedimentation velocity (SV) experiments were 

performed using an Optima XLI/A analytical ultracentrifugation (Beckman Coulter, 

Indianapolis, IN), following previously described standard protocols (Schuck, 2016; Schuck 

et al., 2015). Briefly, 100 μL of chromatographically purified protein samples in 50 mM 

Tris-HCl and 1 mM DTT, pH 8.5, at concentrations between 2.9 and 24 mg/ml were inserted 

in cell assemblies with 3 mm Epon double-sector centerpieces and sapphire windows, and 

sedimented at 50,000 rpm in an An50 Ti rotor at 20.3 °C. Interference data were fitted using 

the c(s) continuous sedimentation coefficient distribution with the software SEDFIT 

(Schuck, 2000, 2016). The distributions were integrated to determine weight-average 
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sedimentation coefficients sw, and the isotherm sw as a function of protein concentration 

was modeled in SEDPHAT with monomer-dimer models including hydrodynamic non-

ideality (Patel et al., 2007; Schuck, 2003). In this model, the sedimentation coefficient of the 

dimer was constrained to between 1.4 – 1.6fold that of the monomer, and the hydrodynamic 

non-ideality coefficient ks was fixed to the 0.0083 ml/mg on the basis of the hydrodynamic 

theory for the hydrodynamically equivalent sphere (Batchelor, 1972).

Sedimentation equilibrium (SE) experiments were carried out at rotor speeds of 12,000, 

16,000, and 25,000 rpm at a temperature of 4 °C using a time-optimized over speeding 

protocol (Ma et al., 2015). Absorbance data at 278 nm were acquired for 3 samples at 

loading concentrations between 2.3 – 17 μM. Solution density was calculated using 

SEDNTERP (Laue et al., 1992), and the partial-specific volume was based on amino acid 

composition in SEDFIT using the Cohn-Edsall tables (Cohn and Edsall, 1943). SE profiles 

were globally fit in SEDPHAT to a single-species model with implicit mass conservation 

(Vistica et al., 2004).

Data and Software Availability

Atomic coordinates and structure factors for chicken γS-crystallin are deposited in the 

Protein Data Bank under the accession code 5VH1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Crystal structure of γS-crystallin sheds light on contacts in the crowded eye 

lens

• Monomeric γS forms a non-bonding lattice contact like dimeric β-crystallins

• Common interface conserves orientation but only one conserved side-chain 

contact

• Common interface is associated with similar patterns of molecular dipoles
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Figure 1. Structure of Chicken γS-crystallin
A: Main chain trace and secondary structure elements. Repeated motif and domain 

structures are labelled.

B: Alignment of residues around position 16 in the chicken crystal structure and the mouse 

NMR structure for γS. The Q>L substitution has little effect on local structure.
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Figure 2. Lattice contact involving L16
A: Overview of monomer to monomer contact in the crystal lattice centered on L16.

B: Detailed view of contact. L16 makes no direct hydrophobic contact but is substantially 

shielded from water by the neighboring monomer. Several intermolecular hydrogen bonds 

are shown between monomers in blue and green.
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Figure 3. Lattice contact involving the N-arm
A: The N-arm aligns with the edge of a β-sheet of the N-domain of another monomer. The 

well-defined electron density for the N-arm is shown.

B: A closer view of the lattice contact shows hydrogen bonding between monomers. There is 

one main chain backbone hydrogen bond interaction, between the peptide carbonyl of R2 

and the peptide nitrogen of the adjacent Q21′ while a second interaction between G4 and 

R19′ is bridged by water. The side chain of R2 forms an ion-pair with D23′of the other 

monomer and is within hydrogen bonding distance of Y20′.
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Figure 4. A large lattice contact between γS monomers contains tightly coordinated water
A, B: Two views of the monomer- monomer (red and green) contact are shown in secondary 

structure trace, with residues in the contact region shown as stick models. The contact 

involves two groups of residues from interdomain motifs 2 and 4 of the symmetry related 

neighbors. Contact residues are indicated with arrows in view B. C: Surface polar side 

chains in the lattice contact form networks including a thin layer of tightly bound water (red 

spheres). There are direct side chain interactions, such as His71-Arg145 and water bridges 

such as Arg63-Ser116. D: Another region showing tightly bound waters and water bridges. 

Hydrogen bonds are shown as dotted lines.
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Figure 5. Conserved dimer-like interaction among β-crystallins and γS-crystallin
A–E show ribbon traces to illustrate different arrangements of monomeric γ-crystallins and 

multimeric β-crystallins in crystal structures. A: chicken γS monomer. B: human βB1 dimer 

with QR interface. C: human βB3 trimer. D: human βB2 domain-swapped dimer. E: The 

non-bonded crystal lattice tetramer of human βB2. F and G: Two views of a structural 

alignment of crystal dimeric or monomer-monomer interactions about the QR interface for 

γS (red), βB1 (green), βB2 (yellow) and βA4 (blue).
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Figure 6. Residues of the QR interface
Top: Sequence alignment of β- and γ-crystallins exhibiting the QR interface. Human βB1 

(GenBank: AAC50383.1); Human βB2 (GenBank: AB25691.1); Human βA4 (GenBank: 

AAC50970.1) Chicken γS (GenBank: ACX94083.1). Initiator methionines are not included 

in alignment or numbering. Protein sequences are aligned to emphasize the common four 

motif structure with the important G and S residues in blue. General positions of β-strands 

are indicated with a, b, c, d indicating the four strands of each motif. Residues involved in 

the QR interface, as defined by Contact are shown colored. Sequence positions are given for 

βB1 (above) and γS (below). Details of contacts are listed in Table S2. Below: Only one 

residue is completely conserved in the different QR interfaces. A: An example of a non-

polar contact in the βB1 dimer (green) that is not present in the chicken γS QR interface 
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(red). B: Arg145 of γS (red) and Arg201 of βB1 (green) are conserved, but adopt different 

conformations in the two proteins. C: Tyr144 (of γS) is completely conserved in all QR 

interfaces. A multiple alignment of γS and β-crystallin structures with the QR interface 

shows the close superposition of the conserved tyrosine equivalent to Y144 in γS (Y). 

Colors are as in fig 5.
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Figure 7. Proteins which adopt QR have similar aligned and additive molecular dipoles
QR interactions for crystal and modelled structures for β- and γ-crystallins are shown in the 

same orientation. Calculated molecular dipole moments for monomers are shown as white 

vectors; dipoles for the dimer are shown in red. Magnitudes (in Debye units) are indicated 

by length and by the associated values.
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Figure 8. AUC measurements show no evidence for multimer formation by chicken γS
A: Representative sedimentation equilibrium distributions of 7 μM γS at 12,000 (purple), 

16,000 (blue) and 25,000 rpm (green). For clarity, only every third data point is shown 

(symbols). The solid lines are the global fit (including data at other concentrations, not 

shown) with a single-species model with best-fit molar mass of 20.2 kDa.

B: Sedimentation velocity profiles of 2.9 mg/ml chicken γS at 50,000 rpm (symbols; for 

clarity, only every 10th data point is shown, and later scans are indicated by higher color 

temperature), fitted with a c(s) distribution (solid lines). Residuals are shown in the lower 

panel.

C: Best-fit c(s) distributions obtained from the analysis of sedimentation velocity profiles of 

chicken γS at different concentrations.

D: Isotherm of experimental weighted-average s-values as a function of concentration 

(symbols), fitted by using monomer dimer self-association model (solid line) including 

repulsive hydrodynamic non-ideality, leading to a best-fit KD value of 4.2 mM.
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Table 1

Crystallographic Data.

Data collection

Space group C2

Cell dimensions

a, b, c (Å) 86.91, 41.01, 49.46

 α, β, γ (°) 90.00, 113.204, 90.00a

 Resolution (Å) 45.5–2.31 (2.35–2.31)b

Rsym 0.053(0.088)b

I/σI 27 (4.8)b

Completeness (%) 98.5 (86.9)b

Redundancy 3.4 (2.1)

Refinement

Resolution (Å) 34.5–2.30 (2.63–2.30)

No. reflections 19,451 (1,942)

Rwork/Rfree 13.2/20.2 (16.0/27.3)b

No. atoms 1,679

 Protein 1,472

 Ligand/ion 0

 Water 154

B factors (average; Å2) 25.9

 Protein 25.3

 Water 31.6

R.m.s. deviations

 Bond lengths (Å) 0.007

 Bond angles (°) 0.94

a
One crystal was used for each data set.

b
Values in parentheses are for highest-resolution shell.
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