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Secreted protein Sonic hedgehog (Shh) ventralizes the neural tube by modulating the
crucial balance between activating and repressing functions (GliA, GliR) of transcription
factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-
dependent and has been elucidated for the mouse spinal cord. The hypothalamus,
a forebrain region regulating vital functions like homeostasis and hormone secretion,
shows dynamic and intricate Shh expression as well as complex regional differentiation.
Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions
contribute to the variety of hypothalamic regions, i.e., we wanted to approach the
question of a possible hypothalamic version of the Shh-Gli code. Based on mouse
mutant analysis, we show that: (1) hypothalamic regional heterogeneity is based in part
on differentially stringent requirements for Gli2 or Gli3; (2) another source of diversity are
differential requirements for Shh of neural vs. non-neural origin; (3) the medial progenitor
domain known to depend on Gli2 for its development generates several essential
hypothalamic nuclei plus the pituitary and median eminence; (4) the suppression of
Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally,
we have mapped our results on a recent model which considers the hypothalamus as
a transverse region with alar and basal portions. Our data confirm the model and are
explained by it.

Keywords: embryo, Gli1, Gli2, Gli3, hypothalamus, mouse, mutant, Shh

Introduction

Sonic hedgehog (Shh) is a morphogen required for ventral neural tube specification (Echelard
et al., 1993; Ericson et al., 1995, 1997; Chiang et al., 1996). Shh acts through the Gli transcriptional
activators (GliAs) and repressors (GliRs); the balance between GliA and GliR specifies ventral dif-
ferentiation and proliferation (Lee et al., 1997; Ruiz i Altaba, 1997; Brewster et al., 1998). This
“Shh-Gli code” is known for the mouse spinal cord [reviewed in Ruiz i Altaba et al. (2003), Dessaud
et al. (2008), Ingham et al. (2011)] and brainstem (Wang et al., 1995; Blaess et al., 2006, 2011; Feijoo
et al., 2011).

The Shh expression domain in the forebrain is more extensive and elaborate than in the spinal
cord, has become more intricate and dynamic during phylogenesis and is considered a motor of
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brain evolution (Osorio et al., 2005). Work on thalamic devel-
opment supports the notion that regional variation of the Shh-
Gli code underlies forebrain complexity (Haddad-Tovolli et al.,
2012). In the same way, the canonical Shh-Gli code shows inter-
species variation (Ruiz i Altaba, 1997; Aberger and Ruiz, 2014).
On the basis of mutant phenotype analysis at different rostro-
caudal levels of the mouse spinal cord and the hindbrain it has
been proposed that Gli2 and Gli3 have partially overlapping roles
and that their relative contributions to ventral specification shows
regional variation (Motoyama et al., 2003; Lebel et al., 2007).

The hypothalamus regulates homeostasis, endocrine secre-
tion, and reproductive behavior (Saper, 2006; Puelles et al.,
2012; Sternson, 2013) and its alterations can cause conditions
like obesity and high blood pressure (Caqueret et al., 2005;
McMillen et al., 2008). Complex gene expression pattern combi-
nations underlie hypothalamic regional specification (Shimogori
et al., 2010; Puelles et al., 2012). On the basis of classical neu-
roanatomy studies, the adult hypothalamus has been traditionally
described as subdivided into four regions (preoptic, anterior,
tuberal, and mamillary) arranged rostro-caudally and ventrally
in the brain (Figure 1A) and flanked by the lateral hypothala-
mic area (LHA), a large region essential to regulate behavioral
state and arousal (Swanson, 1987). The modern view considers
the adult hypothalamus as part of a behavioral control column
(Swanson, 2000).

FIGURE 1 | Hypothalamic regions. (A) Conventional representation of the
hypothalamus (gray) as ventral region with four rostro-caudal regions, POA,
preoptic; ANT, anterior; TUB, tuberal; MAM, mamillary. (B) Model of the
hypothalamus considering Shh expression (pink) as basal (ventral) marker. The
POA is part of the telencephalon; the alar hypothalamus (yellow) corresponds
to the anterior region; the tuberal and mamillary regions are not “caudal” but
basal (ventral). ac, anterior commissure; hp, hypophysis; PTh, prethalamus;
ZLI, zona limitans.

Here we analyze the hypothalamic phenotypes of mouse
mutants to ascertain which combinations of GliA and GliR spec-
ify the mouse hypothalamic regions and which Gli genes perform
these functions. We examined embryos primarily after mid-
gestation so that we could assess which hypothalamic nuclei are
affected when the GliA/R code is affected. We have mapped our
results on a model of the developing hypothalamus (Puelles et al.,
2012; Figure 1B) built around the observation that, since Shh is
indispensable to ventralize the neural tube, and it is expressed in
a long domain stretching the entire length of it, it follows that
during development the Shh expression boundary separates dor-
sal (alar) from ventral (basal). The rostral end of the developing
neural tube is closed by a transverse structure called acroterminal
region, which does not share the typical characteristics of the floor
plate. Beyond mamillary level, the acroterminal region extends
all the way through the tuberal region, alar hypothalamus and
preoptic region and up to the anterior commissure, it is transver-
sally oriented (has alar and basal portions) and strongly patterned
(probably by the underlying prechordal plate) and would gen-
erate the median eminence, infundibulum, neurophypophysis,
preoptic terminal lamina, eyes, optic chiasma, and suprachias-
matic area. Two progenitor domains, medial and lateral, give
rise to the basal part of the hypothalamus: the medial domain
generates median eminence and neurohypophysis, medial por-
tions of the ventromedial and arcuate nuclei, and the mamillary
body; the lateral originates most of the ventromedial nucleus,
the dorsomedial nucleus and the LHA (Alvarez-Bolado et al.,
2012).

We show that, in the basal hypothalamus, the medial pro-
genitor domain requires non-neural Shh acting through Gli2A.
The lateral progenitor domain is patterned by neural Shh acting
through Gli3R and Gli2A or Gli3A. In the presence of Shh signal-
ing, the Gli3R function is not required for hypothalamus specifi-
cation. NeitherGli2 norGli3 are required for overall patterning of
the alar hypothalamus and preoptic area. These data confirm the
main tenets of the model (Puelles et al., 2012), since they strongly
support a subdivision of the developing hypothalamus into alar
and basal domains.

Materials and Methods

Mice and Mouse Lines
Animals were housed and handled in ways that minimize pain
and discomfort, in accordance with German animal welfare
regulations (TierSchG) and in agreement with the European
Communities Council Directive (2010/63/EU). The authoriza-
tion for the experiments was granted by the Regierungspräsidium
Karlsruhe (state authorities) and the experiments were performed
under surveillance of the Animal Welfare Officer responsible for
the Institute of Anatomy and Cell Biology. To obtain embryos,
timed-pregnant females were sacrificed by cervical dislocation;
the embryos were decapitated.

Gli2zfd/+ (Gli2 Zinc Finger-Deleted) Mutant Mice
This Gli2 null mutant mouse line was generated (Mo et al., 1997)
by replacing the exons encoding for zinc fingers 3–5. The deletion
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leads to an out-of-frame mutation causing disrupted transcrip-
tion from the deletion site to the 3 end of the Gli2 gene. This
results in translation of a truncated protein unable to bind to
DNA, since the zinc fingers 4 and 5 are essential for DNA bind-
ing (Pavletich and Pabo, 1993). The Gli2zfd/zdf are null mutants
for Gli2; the Gli2zfd/+ have normal phenotypes and are used as
controls.

Gli3Xt-J/+ (Extra-Toes) Mutant Mice
This line carries a 50 kb deletion that removes the exons encoding
zinc fingers 3–5 and the complete 3′ part of the Gli3 gene (Hui
and Joyner, 1993; Maynard et al., 2002; Genestine et al., 2007).
The Gli3Xt−J/Xt−J are null mutants for Gli3.

We have not been able to obtain double Gli2-Gli3 mutant
embryos (n = 4 litters, 1 at E9.5, 2 at E10.5, and 1 at E12.5).

Gli3-nlacZ Mutant Mice
The Gli3-nlacZ knock-in mouse line was generated by partially
replacing the first coding exon of Gli3 with the nlacZ cDNA.
Thus, expression of lacZ is controlled by the endogenous Gli3
promoter/enhancer elements and can be used to monitor the
expression pattern of Gli3 (Garcia et al., 2010).

Foxb1-Cre Mutant Mice
Express Cre in the thalamic and hypothalamic neuroepithelium
(Zhao et al., 2007, 2008). We used only heterozygous Foxb1-Cre
mice, which show a normal phenotype (Zhao et al., 2007, 2008),
Foxb1 Cre/Cre homozygotes were not used in this study.

Foxb1-Cre;Shhf/+ Mutant Mice
To obtain mice specifically deficient in Shh expressed in the neu-
ral tube (conditional knock-out for neural Shh), we crossed our
Foxb1-Cremice (Zhao et al., 2007, 2008) with Shhf /+ conditional
mutants in which exon 2 of the Shh gene was flanked by loxP
sites (Dassule et al., 2000; Lewis et al., 2001). The Shhf /+ condi-
tional mutants were generated in the laboratory of Dr. Andrew
McMahon (University of Harvard) and were obtained through
Jackson Labs (www.jax.org). The Foxb1-Cre;Shhf /f mutants lack
all Shh expression in the forebrain neuroepithelium (Szabo et al.,
2009a,b).

Foxb1-Cre;Shhf/+;Gli3Xt-J/+ Mutant Mice
The double homozygous mutants for Shh expressed in the neural
tube (neural Shh or nShh) and Gli3 were generated by cross-
ings between Foxb1Cre;Shhf /+ mice; and Gli3Xt−J/+ mice. The
double mutants (Foxb1-Cre;Shhf /f ;Gli3Xt−J/ Xt−J) do not survive
beyond birth.

In Situ Hybridization
Embryos or embryonic brains were dissected, fixed in 4%
paraformaldehyde, and embedded in paraffin. Non-radioactive
ISH was performed on paraffin sections (7 μm for E10.5, 10 μm
for E12.5, and 14 μm for E18.5 embryos) that were fixed in 4%
paraformaldehyde and acetylated after sectioning. RNA in situ
hybridization was performed as described (Blaess et al., 2011).

BrdU Labeling
Pregnant mice (E12.5) from appropriate crossings were injected
intraperitoneally with 5′-bromo-2′-deoxyuridine (BrdU; Sigma;
50 μg/g body weight) at 12:00 h. Three hours after the injec-
tion, embryos were collected and fixed overnight in 4% PFA in
PBS at 4◦C. Cell proliferation was detected by means of anti-
body (rat anti-BrdU; AbCam; 1:100) after epitope retrival in
Tris-EDTA buffer pH = 9.0 for 20 min in pressure cooker. The
nuclear marker 4′6-diamidino-2-phenylindole dihydrochloride
(DAPI; Invitrogen) was used as a counterstain. For cell count-
ing, 10 μm paraffin sections were analyzed under a confocal
microscope (LSM700 -Zeiss) and DAPI and BrdU-positive cells
were counted in 100-μm-wide bins encompassing the thickness
of the neuroepithelium (apical to basal side) at four hypotha-
lamic sites (preoptic area, alar hypothalamus and tuberal and
mamillary regions) on two histological sections per level in three
animals per age and genotype (WT, Gli2zfd/zfd, Gli3Xt−J/Xt−J ,
and Foxb1-Cre;Shhf /+;Gli3Xt−J/+ double mutants). The BrdU-
labeling index (BrdU-labeled cells as percentage of total cells)
was then calculated (Takahashi et al., 1993; Warren et al., 1999;
Ishibashi and McMahon, 2002).

Cloning of Constructs
In an expression vector driven by pCAGGS (Niwa et al., 1991) we
inserted either EmGFP (kind gift of Dr. Boris Fehse, University of
Hamburg;Weber et al., 2010) or tdTomato (kind gift of Dr. Roger
Y. Tsien, UCSD) as reporters. On vectors carrying the tdTomato
reporter we then inserted (upstream an internal ribosomal entry
site and the reporter) a mutated form of human PTCH1 in which
we deleted part (betweenMfeI andNsiI) of the second large extra-
cellular loop (PTCH1-�-loop2), as was done in Briscoe et al.
(2001).

In Utero Electroporation
This procedure was carried out as described (Saito and Nakatsuji,
2001; Saito, 2006; Haddad-Tovolli et al., 2012) with added
caveats for hypothalamus targeting (Haddad-Tovolli et al., 2013).
Pregnant mice at E12.5 were anesthetized with a mixture of
Halothane (Isoflurane, Baxter) and oxygen (0.5 l/min) adminis-
tered with a Komesaroff Anaesthetic Machine. The uterus was
exposed and the DNA solution (1 μg/μl) was injected with a
glass micropipette in the third ventricle of the embryo brain
through the uterine wall. Electric pulses were administered with
a CUY21 electroporator (Nepagene, Japan; 5 square-wave pulses,
50 V, 50 ms on/950 ms off) and a stainless steel needle electrode
(CUY550-10) used as positive pole and a round flat electrode
(CUY700P4L) as negative pole. After the surgery, the embryos
were allowed to develop in utero for 6 days and collected at E18.5
for analysis. The embryonic brains were dissected, fixed overnight
in 4% PFA in PBS at 4◦C and then protected with sucrose (20;
30%) and embedded in OCT mounting medium (Tissue Tek).
Blocks were sectioned into 20 μm thick sections in a cryostat
(Leica CM3050S) and observed and photographed with a Zeiss
LSM 700 confocal microscope. We used laser line 488 nm for the
green reporter EmGFP (excitation maximum 487 nm, emission
maximum 509 nm) and laser line 555 nm for the red reporter
tdTomato (excitation maximum 554, emission maximum 581).
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Since our readouts are based in the comparison between num-
bers of cells counted on confocal images (see next paragraph), it
was imperative to relie on strictly comparable data. To guaran-
tee comparability, the images of experimental and control brains
were obtained under the exact same conditions and with the exact
same confocal settings.

Experimental Design of In Utero
Electoporation Experiments
Because each in utero electroporation experiment results in a
different number of neuroepithelial cells being transfected, the
experiments are not directly comparable with each other. For
this reason we do “two-reporter-experiments” (Haddad-Tovolli
et al., 2012). The two reporters answer two problems. The green
reporter construct (GFP) is an internal control. It will label every
one of the transfected neuroepithelial cells and their progeny. In
this way, for each single electroporated mouse embryo we know
how many cells have been transfected. The second question is
the actual scientific question: “does Ptch1-delta-loop2 reduce pro-
liferation?” For this, we have a second construct expressing a
dominant loss-of-function version of the Ptch1 receptor (Ptch1-
delta-loop2, see above Cloning of constructs) and, in the same
construct, a red reporter (tandem dimer tomato, tdTomato).
We use a ratio of 2 (GFP):1 (Ptch1-delta-loop2+red) in order
to introduce some bias in the results, so that the readout of
the experiment is the ratio between green cells and red cells.
In principle there must be, after electroporation, a very few
cells which are only green: they happen to express only GFP
(not Ptch1-delta-loop2+red), proliferate normally and gener-
ate numerous green neurons, otherwise presumably normal. If
the cells coexpressing the green plus the red (= experimen-
tal) constructs proliferate less, we will see less green + red
neurons.

In parallel, we performed control experiments transfecting a
2:1 mixture of GFP construct and tdTomato construct (without
loss-of-function Ptch1 protein) in order to evaluate how many
only green and how many green-plus-red neurons we obtain
in normal circumstances (i.e., without introducing any domi-
nant loss-of-function). Those are the gray bars in Figure 10J.
Additionally, these control experiments remove a possible con-
cern related to the relative brightness of the green and the red
reporters. In principle, a green cell could have been transfected
also with some red (experimental) constructs in a number to
small to be detected (since EmGFP is brighter than tdTomato).
This possible source of imprecision can be disregarded since our
readout is not absolute but relative (comparison between gray
bars and black bars; Figure 10J).

Statistics
Statistical assessment of the BrdU and electroporation data was
performed with Prism 6 software (Graph Pad Software, San
Diego, CA, USA).

Morphological Interpretive Model
The results of mutant analysis were interpreted and mapped
using the updated prosomeric model (Puelles et al., 2012) and the
Allen Brain Atlas (Allen-Institute-for-Brain-Science, 2009).

Results

Developing Hypothalamic Expression of Shh
and Gli can be Broadly Subdivided into at
least Three Stages
Our purpose was to determine for each of the mouse hypothala-
mic regions which member of the Gli family performs the GliA
and which one the GliR function, and which combinations of
GliA and GliR specify these regions—in short, the hypothala-
mic Shh-Gli code. The expression of Gli1, Gli3, and Shh has been
assessed at several stages in the developing chick hypothalamus,
but in mouse the data are less comprehensive (Aoto et al., 2002;
Ohyama et al., 2008). Thus, the first requisite for our study was to
ascertain a detailed spatial-temporal expression map for the three
mammalian Gli genes and Shh in the developing hypothalamus
of the mouse (Figures 2 and 3). Although inactivation of Gli1
does not result in an abnormal phenotype (Park et al., 2000; Bai
et al., 2002), Gli1 expression is a readout for Shh signaling [see
references in Lewis et al. (2001)] and for this reason it was impor-
tant to analyze its expression domain too. It has been described
that, in the mouse neural plate, expression of Gli genes is first
detected at E7.5 (neural fold); in this early stage of Gli expression,
Gli1 is expressed only in the midline of the neural fold, while Gli2
and Gli3 expression is widespread in the entire ectoderm (Hui
et al., 1994) and Shh is expressed in the underlying mesoderm
(non-neural Shh; Echelard et al., 1993).

We started our investigation of Gli expression patterns after
neurulation, when they become more complex and at the same
time more relevant to our study. At E8.5 (middle stage; Figure 2),
Gli1 andGli2were expressed in overlapping patterns in the lateral
domain (Alvarez-Bolado et al., 2012; Figures 2A,B), while Gli3
was expressed in a more peripheral, non-hypothalamic domain
(Figure 2C) and Shh was expressed in the medial domain (neu-
ral Shh, medial expression; Figure 2D), in coincidence with the
medial progenitor domain (Alvarez-Bolado et al., 2012). The pre-
sumptive hypothalamus was defined by expression of specific
marker Nkx2-1 (Figures 2E,J).

At E10.5 (late stage; Figure 3) the Gli expression pattern
had changed again. While Gli2 expression was absent from
the hypothalamic primordium (Figures 3G–I), Gli3 and Shh-
activation diagnostic markerGli1 showed overlapping expression
domains in the medial domain (Figures 3A–C,M–O), suggesting
a potential activator function of Gli3 (Gli3A) in the midline at
this age. Shh was expressed in a lateral domain corresponding to
the lateral progenitor domain (Alvarez-Bolado et al., 2012; neu-
ral Shh, lateral expression). We concluded that the hypothalamic
expression of Shh and the Gli genes can be broadly subdivided
into at least three stages (summarized in Figure 11A).

Deficiency in Gli2 or Gli3 does not Alter the
Overall Specification of the Alar
Hypothalamus
Sonic hedgehog is required to specify hypothalamic structures
and the preoptic area (Chiang et al., 1996; Pabst et al., 2000; Rallu
et al., 2002). In mouse mutants lacking Shh expression in the neu-
ral tube (Foxb1-Cre;Shhf /f mutants), however, the preoptic and
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FIGURE 2 | Expression of Gli genes in the presumptive hypothalamus
at E8.5. In situ detection of marker gene expression in Gli2zfd/+ and Gli2zfd/zfd

mutant E8.5 embryos as indicated. “lat” and “med” in (A) indicate progenitor
domains. Red arrowheads in (A–C,F–H) indicate lack of expression in the
medial progenitor domain. Nkx2-1 expression (E,J) identifies the presumptive
hypothalamus. Scale bar (A) 100 μm.

alar hypothalamus have only a moderate phenotype, mostly evi-
dent in their reduced size (Szabo et al., 2009a; Zhao et al., 2012),
indicating that they are specified by Shh of non-neural origin
(e.g., from the prechordal plate or the notochord). Here we asked
what is the role of Gli factors in those two hypothalamic regions
by analyzing mutants in which Gli2, Gli3 or both neural Shh and
Gli3 were inactivated. Expression of transcription factor Nkx2-1,
an early preoptic marker (Shimamura et al., 1995; Xu et al., 2008),
was preserved in the Gli2zfd/zfd and Gli3Xt−J/Xt−J mutants (black
arrowheads in Figures 4A–C).Incidentally, some non-preoptic
telencephalic expression domains were missing in the mutants

(white arrowheads in Figures 4A–D). Arginin-Vasopressin (Avp)
is specifically expressed by the supraoptic and paraventricular
nuclei (Swanson and Sawchenko, 1983) and shows robust expres-
sion in both mutants (Figures 4E–G). The transcription factor
gene Lhx1 is a marker of the suprachiasmatic nucleus (Szabo
et al., 2009a), and this pattern remains essentially unchanged in
the mutants (Figures 4I–K). Finally, analysis of double Foxb1-
Cre;Shhf /f ;Gli3Xt−J/Xt−J mutants (lacking both neural Shh and
Gli3) showed robust marker expression (Figures 4D,H,L).

These results could indicate that, downstream of Shh of non-
neural origin at the early stage, Gli2 and Gli3 can fully substitute
for each other’s activator function in the alar portions of the
hypothalamus or, alternatively, that the specification of the alar
hypothalamus depends on suppression of Gli3R by non-neural
Shh (Rallu et al., 2002).

Gli2 is Required for the Development of
Medial Tuberal and Mamillary Regions
In order to analyze theGli2zfd/zfd phenotype in the basal hypotha-
lamus (tuberal and mamillary regions), we examined expression
of Shh andGli genes as well as regional markers at E8.5 and E10.5.
At E8.5, expression of Gli1, Gli3 and the regional marker Nkx2-
1 was not changed in the Gli2zfd/zfd mutant (Figures 2F,H–J),
except of course for the disappearance of the Gli2 domain
(Figure 2G). Expression of Shh, however, seemed expanded
(Figure 2I). At E10.5, expression of Gli1 and Gli3 was strongly
downregulated in the midline around the infundibular area (red
arrowheads in Figures 3D,E,P,Q) in the Gli2zfd/zfd mutants. At
mamillary levels, however, the two lateral expression domains
seem to have fused in a thickened midline [Figures 3F,R; this
is also true of the expression of the truncated (inactive) form
of Gli2 in the mutant (Figure 3L)]. At this age, Shh expres-
sion is normally downregulated in the medial domain of the
tuberal region (Manning et al., 2006; arrow in Figure 5A). In the
Gli2zfd/zfd mutant this Shh-negative domain was absent (arrow in
Figure 5B). Nkx2-1, a transcription factor gene defining regional
specification of the basal hypothalamus (Kimura et al., 1996;
Puelles et al., 2004, 2012), was expressed in an appropriate but
smaller domain, with stronger expression shifted into the medial
domain (Figures 5C,D). Six3 is a transcription factor required
for initiation of hypothalamic specification (Kobayashi et al.,
2002). It is normally expressed strongly along the entire medial
domain and flanking hypothalamus, except the mamillary part.
Six3 expression was severely reduced at both the infundibu-
lar (Figures 5E,F) and median eminence levels (Figures 5G,H).
Together with the alterations in gene expression, we observed
again a thickening of the medial domain of the tuberal region
(arrowheads in Figures 5F,H). Analysis of Six3 expression on
sagittal sections at E12.5 (Figures 5I,J) confirmed Six3 down-
regulation and a thickened medial domain of the Gli2zfd/zfd
mutant (arrowheads in Figures 5I,J). Since expression of Six3
(Figures 5E,F) indicated alterations of the infundibulum, which
is essential for pituitary development, we then examined the
expression of appropriate genemarkers for this region (Figure 6).
Infundibular expression of Tbx2 (Manning et al., 2006) and Fgf8
(Ericson et al., 1998; Figures 6A–D), as well as expression of pitu-
itary markers Lhx3 (Figures 6E,F), and Pitx2 (Figures 6 G,H)
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FIGURE 3 | Expression of Gli genes in the presumptive hypothalamus
at E10.5. (A–R) In situ detection of Gli genes in the presumptive
hypothalamus of E10.5 Gli2zfd/+ and Gli2zfd/zfd mouse embryos as indicated.
For each gene, three levels are shown, from pituitary/infundibulum (top row)

through mamillary region (bottom row). Black arrowheads in (A–C,M–O)
show co-expression of Gli1 and Gli3 in the midline; red arrowheads in
(D,E,P,Q) show downregulation of Gli1 and Gli3 in the Gli2zfd/zfd midline.
Scale bars, 200 μm.

was completely lost in the Gli2zfd/zfd presumptive hypothala-
mus at E10.5 (see also Park et al., 2000). These results indicated
that Gli2 is required for appropriate development of the medial
domain in the basal hypothalamus and for the development of
the neurohypophysis.

Arcuate, Ventromedial, and Mamillary Nuclei
are Severely Reduced in Size in the
Gli2zfd/zfd Mutant
We next analyzed the differentiation of the tuberal andmamillary
regions in Gli2zfd/zfd brains at E18.5 (at this stage, characteristic
neuronal nuclei are recognizable in the wildtype). Npy-expressing
and Pomc-expressing neurons are specifically present in the arcu-
ate nucleus (tuberal region; Elias et al., 1998; Figures 7A,C). In
the Gli2zfd/zfd brain, the arcuate nuclei were not preserved as
two distinct left and right domains. Instead, one single specif-
ically labeled area was observed, unpaired and medial, sitting
in the midline at the level of the tuberal area (dashed circle in
Figures 7B,D). The third ventricle was abnormally absent at the
site of this unpaired structure. Expression of SF-1 (nuclear recep-
tor Nr5a1) specifically labels the ventromedial nucleus of the
hypothalamus (Ikeda et al., 1995; Figure 7E). In the Gli2zfd/zfd
brain, SF-1 was expressed in a median, unpaired group of cells
(dashed circle in Figure 7F). The transcription factor Nkx2-1 is
specifically expressed in the lateral part of the wildtype ventro-
medial nucleus (Nakamura et al., 2001; Figure 7G), but formed

one single medial domain in the Gli2zfd/zfd brain (Figure 7H).
The transcription factor genes Lhx1, Otp, and Sim1 are specifi-
cally expressed in the mamillary body (mamillary region) in the
wildtype (Szabo et al., 2009a) but this expression was completely
lost in the Gli2zfd/zfd mutant (Figures 7I–N). Together with the
observations shown in Figures 5 and 6, these results indicate that
Gli2 is essential for the specification of the medial progenitor
domain (Alvarez-Bolado et al., 2012) of the basal hypothala-
mus. TheGli2zfd/zfd mutant mice showed an altered latero-medial
organization of the molecular pattern of the basal hypothalamus
consistent with a loss of the medial markers (notably reduced
Six3 and loss of Tbx2, Otp, Sim1, and Lhx1) and derivatives
(median eminence and neurohypophysis, mamillary body). The
latter were substituted at the mutant midline by markers and
derivatives typical of the lateral domain at this age, like Nkx2.1,
Npy, Pomc, and SF-1. That the neurohypophysis is a derivative
from this region has been described before (Pearson et al., 2011;
Pearson and Placzek, 2013).

Gli2 in the Medial Progenitor Domain
In the early presumptive hypothalamus (E7.5 to E8.5), an
unpaired medial progenitor domain (“med” in Figures 2A and
11A) is specified, which gives rise to medially located nuclei
like most of the arcuate nucleus, the medial portion of the
ventromedial nucleus, the median eminence and the mamillary
body (Alvarez-Bolado et al., 2012; derivatives of the acroterminal
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FIGURE 4 | Either Gli2A or Gli3A is sufficient for the specification of the
preoptic region and alar hypothalamus. (A–D) In situ detection of preoptic
marker gene Nkx2.1 on E18.5 mouse brain sections, genotypes as indicated.
Black arrowheads, preoptic neuronal nuclei; white arrowheads, additional

telencephalic expression domains. (E–L) In situ detection of anterior marker
genes on E18.5 mouse brain sections, markers and genotypes as indicated.
Arrowheads in E–H indicate the supraoptic and paraventricular nuclei; arrows in
I–L indicate the suprachiasmatic nucleus. Scale bars 500 μm.

region, Puelles et al., 2012). This early domain and its lineage
are strongly affected in the Gli2zfd/zfd mutant (Figures 5–7).
Gli2 expression overlaps with Gli1 in the medial domain at
E7.5 (Hui and Joyner, 1993). Since Gli1 expression is diagnos-
tic of Shh pathway activation, this indicates a Gli2A function.
The strong Gli2zfd/zfd midline phenotype must be due to a
requirement for Gli2 expression in the medial domain at E7.5,
since this domain does not show Gli2 expression at later stages
(Figures 2 and 3). Moreover, expression of Gli1 and Gli3, nor-
mally absent from the midline at E8.5 (Figures 2A,C), is not
ectopically upregulated in the Gli2zfd/zfd mutant (Figures 2F,H;
i.e., no rescue). At E10.5, Gli3, and Gli1 expression over-
lap in the midline (black arrowheads in Figures 3A–C,M–O)
suggesting an activator role of Gli3 (Gli3A). However, both
genes are strongly downregulated in the Gli2zfd/zfd midline
at E10.5 (red arrowheads in Figures 3D,E,P,Q), again mak-
ing a rescue of the Gli2zfd/zfd phenotype by a Gli3A function
impossible.

No Abnormal Phenotype in the Gli3Xt-J/Xt-J

Basal Hypothalamus
We went on to analyze the developing Gli3Xt−J/Xt−J basal
hypothalamus. At E18.5, expression of specific marker genesNpy,
Pomc and SF-1 in the tuberal region (Figures 8A–F) and of Lhx1

in the mamillary region (Figures 8M,N), showed that a Gli3A
function in presence of Gli2A is dispensable for the specification
of the basal hypothalamus.

We next addressed the question of a possible Gli3R function
in the developing hypothalamus. Gli3R function often results in
negative regulation of tissue growth (by inducing cell death and
reducing proliferation) and counteracting the ventralizing influ-
ence of Shh (Persson et al., 2002; Ruiz i Altaba et al., 2003).
Therefore, loss of Gli3R could result in ventralization and/or an
increased size of hypothalamic nuclei. Since Shh signaling coun-
teracts the processing of Gli3 protein into its repressor form,
experimental abolition of Shh signaling might result in over-
abundance of Gli3R. We investigated this possibility by analyzing
mouse mutants lacking Shh expression in the neural tube (Foxb1-
Cre;Shhf /f mutant, Szabo et al., 2009a). This mutant showed
strong downregulation of three tuberal marker genes (Npy, Pomc,
SF-1; Figures 8G–I) and had a more severe phenotype than the
Gli2zfd/zfd mutants (Figures 7B,D,F,H; see also Szabo et al., 2009a;
Shimogori et al., 2010). Given that Gli2A acts primarily at early
stage of hypothalamic induction (see above) and following the
logic of the Shh-Gli code (Bai et al., 2004), a possible explana-
tion of this difference could be that, in the absence of neural
Shh, formation of Gli3R is not prevented. A prediction of this
hypothesis is that, in the absence of both neural Shh and Gli3 the
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FIGURE 5 | Abnormal medial domain in the Gli2zfd/zfd mutant.
(A–H) In situ detection of gene expression on forebrain sections
of E10.5 embryos, genotypes, and markers as indicated. In
(E–H), pituitary (E,G) and median eminence (F,H) levels are

shown. Scale bar in (G,H), 200 μm. (I,J) In situ detection of
Six3 expression on sagittal sections of E12.5 WT (A) and
Gli2zfd/zfd (B) mouse embryos. Arrows show thickness of midline.
Scale bars, 500 μm.

tuberal region would have a less marked phenotype. We tested
this prediction by analyzing mutants deficient not only in neural
Shh but also in Gli3 (Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J mutants).
These showed essentially correct marker expression in the arcu-
ate and ventromedial nuclei (although the expression domains
appeared somewhat reduced and distorted; Figures 8J–L) sug-
gesting that the phenotype in Foxb1-Cre;Shhf /f mutants is at least
partially caused by upregulated Gli3R activity. The same reason-
ing applies to the mamillary body (mamillary region), which is
extremely reduced in the Foxb1-Cre;Shhf /f mutant (Szabo et al.,
2009a) but appears normal in the Gli3Xt−J/Xt−J mutant and in
Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J doublemutants (Figures 8M–O).
We conclude that Gli3 is dispensable for overall hypothalamic
specification. Moreover, it is likely that the upregulation of Gli3R
is themain contributor to the defects in the tuberal andmamillary
hypothalamus when neural Shh is inactivated, which would be

consistent with the classical Shh-Gli code in the spinal cord (Bai
et al., 2004).

A Possible Gli3 Activator Function in the
Lateral Hypothalamic Area of the Gli2zfd/zfd

Mutant
The LHA is a large and morphologically complex region and
with key functions in the regulation of behavioral state and
arousal mechanisms [reviewed in Swanson (2000)]. Analysis
of Foxb1-Cre;Shhf /f mutants has shown that expression of
Shh by the forebrain is essential for its specification (Szabo
et al., 2009a). Hypocretin/orexin (Hcrt; Hungs and Mignot, 2001;
Figures 9A–D) and pro-melanin-concentrating hormone (Pmch;
Croizier et al., 2013; Figures 9E–H), essential modulators of
metabolism and behavior, are among the very few specific marker
genes of restricted groups of LHA neurons. The Gli3Xt−J/Xt−J
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FIGURE 6 | Hypophysis region in the Gli2zfd/zfd mutant at E10.5. In situ detection of infundibular and pituitary markers on Gli2zfd/+ and Gli2zfd/zfd E10.5
embryos as indicated. Arrowheads in (A,C,E,G) indicate normal expression domain. Scale bars, 200 μm.

brain did not show changes in Hcrt (Figure 9C) or Pmch expres-
sion (Figure 9G), indicating that Gli3A is normally not involved
in the specification of the LHA. In the Gli2zfd/zfd mutant mice,
only a few scattered Hcrt-expressing cells were present, and
they were displaced toward the midline from their normal lat-
eral position (arrowheads in Figure 9B). The number of Pmch-
expressing neurons in the Gli2zfd/zfd mutant seemed not altered,
but the cells tended to gather in the midline, similar to Hcrt cells
(Figure 9F). This indicates that Gli2 is dispensable for the gener-
ation of Pmch-expressing cells, their altered position being rather
a phenotypic consequence of the missing medial domain in this
mutant (Figures 5 and 6). The phenotype of Foxb1-Cre;Shhf /f
mutants in this area (Hcrt cells are absent, and Pmch cells severely
reduced Szabo et al., 2009a) is stronger that that of Gli2zfd/zfd
mutants. We went on to address the possibility that a compen-
satory Gli3A function could explain the relatively mild LHA
phenotype of Gli2zfd/zfd mutant mice. To test this hypothesis,
we examined double mutants deficient in neural Shh and Gli3
(Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J) and found a phenotype similar
to that of the Foxb1-Cre;Shhf /f mutants (Hcrt cells absent, Pmch
cells severely reduced; Figures 9D,H), but more pronounced than
that of Gli2zfd/zfd mutants (Figures 9B,F). This indicates that, in
the LHA of the Gli2zfd/zfd brain, Gli3A might compensate for
the loss of Gli2A. This would be consistent with Gli1 still being
expressed in the lateral domain of Gli2zfd/zfd mutants at E8.5
(Figure 2E).

We concluded that, for the specification of the LHA
progenitors within the lateral progenitor domain, a Gli2A func-
tion is needed which can be partially substituted for by Gli3A.

Gli3 in Mamillary Neurogenesis
Differences in size can be due to quantitative changes in precur-
sor generation (symmetric cell divisions) at an early stage or to
later changes in neuron generation (asymmetric cell divisions).
Shh is essential for the expansion of neural precursors in the early
development of this region (Rowitch et al., 1999; Ishibashi and
McMahon, 2002).

Here, we wanted to address the contribution of Shh-Gli to the
neurogenesis of hypothalamic nuclei.

In situ analysis of Gli family expression at E12.5
(Figures 10A–C) showed Gli1 and Gli3 (arrowheads in
Figures 10A,C) expression in the mamillary region. Gli2 expres-
sion on the contrary was very low or absent (arrowhead in
Figure 10B). In agreement, a Gli3 reporter mouse line (Gli3-
nLacZ knock-in) showed strong beta-galactosidase labeling in
the mamillary region (arrowhead in Figure 10D).

Therefore, we labeled proliferating cells in the neural tube
by injecting BrdU in pregnant mice at E12.5 [i.e., at the peak
of neurogenesis in the mouse hypothalamus (Ishii and Bouret,
2012)] and collecting the embryonic brains 3 h later. Our
results (Figure 10E) show that proliferation during the neu-
rogenic period in the mamillary region was reduced in the
Gli3Xt−J/Xt−J mutant. Gli1 expression is diagnostic of Shh path-
way activation, and can be found in the mamillary region at
E10.5 (Figure 10F, upper panel), but it is lost in the Gli3Xt−J/Xt−J

mutant (Figure 10F, lower panel), indicating failure of this
domain to activate the Shh pathway in the mutant, in agreement
with the reduced proliferation. BrdU labeling in this region was
also reduced in the Gli2zfd/zfd mutant (Figure 10E), which we
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FIGURE 7 | Arcuate and ventromedial nuclei reduced, mamillary
nucleus absent in the Gli2zfd/zfd mutant. In situ detection of tuberal
markers (A–H) and mamillary markers (I–N) on sections of E18.5 WT and
Gli2zfd/zfd mouse brains as indicated. Arrowheads in (G,H) indicate the lateral
portion of the ventromedial nucleus; Arc, arcuate nucleus; MBO, mamillary
nucleus; VMH, ventromedial nucleus. Scale bars, 500 μm. (O) The proposed
hypothalamic model (see Figure 1B) showing in black the area affected by
the Gli2 null mutation. Black arrows indicate the arcuate nucleus (A–D) or the
ventromedial nucleus (E,F,H). Dashed circles in (B,D,E–G,I,K,M) outline
hypothalamic nuclei (as indicated).

interpret as a consequence of the defect in midline development
in these mutants (Figures 5 and 6). Intriguingly, deficiency in
both neural Shh and Gli3 increased neurogenesis, particularly in
the mamillary region (Figure 10E; see Discussion).

We then approached this issue experimentally by specifically
blocking the Shh pathway in the hypothalamus ofmouse embryos
developing in utero. We electroporated wildtype embryos at
E12.5 (Figures 10G–I) with EGFP-expressing reporter constructs
mixed with constructs expressing the loss-of-function Shh recep-
tor Ptch1-Δ-loop2 plus the red fluorescent reporter tdTomato
[similar to the one used by Briscoe et al. (2001); see Materials and
Methods]. The results show that cells expressing high levels of
Ptch1-delta-loop2 plus tdTomato in the mamillary region are less
proliferative, while the same experiment did not alter neuroge-
nesis in the alar hypothalamus (Figure 10J). We concluded that
proliferation during the neurogenic period in the alar portion of
the hypothalamus is not directly affected by Shh-Gli, while Gli3
has a role as an activator inducing neurogenesis at later stages in
the basal regions.

Discussion

We asked which combinations of GliA and GliR specify dif-
ferent hypothalamic regions, and which members of the Gli
family perform GliA or GliR functions. Therefore we inter-
preted mutant phenotypes with the help of Shh and Gli expres-
sion patterns (Figure 11A), hypothalamic progenitor domains
(Alvarez-Bolado et al., 2012; Figure 11B), the Shh-Gli code
established for the spinal cord (Bai et al., 2004) and a hypotha-
lamic model (Figure 1B; Puelles et al., 2012). We uncovered
strong differences in Gli gene requirements between alar and
basal hypothalamus as predicted by the model. Null mutations
of Gli2 or Gli3 do not alter the overall specification of the
alar portions, including preoptic (actually telencephalic) and alar
hypothalamus (or “anterior region”). In the basal regions (tuberal
and mamillary), however, Gli2 is indispensable for the devel-
opment of the medial progenitor domain and its derivatives
but it is partly dispensable for the lateral progenitor domain
(Figures 11B,D). Gli3 is dispensable for overall specification
of the wildtype hypothalamus, but Gli3A has a late influence
on mamillary proliferation. Finally, medial progenitor domain
specification is dependent on Shh of non-neural source (pre-
chordal plate, notochord), while the lateral progenitor domain
is strongly dependent on neural Shh, in whose absence ectopic
upregulation of Gli3R causes a severe phenotype. In this way, the
notorious anatomical complexity of the hypothalamus depends
on combinations of specification timing, progenitor domain,
Shh source, Gli gene dependence, and alar vs. basal position
(Figure 11D).

Gli2A, Gli3A, and repression of Gli3R in
hypothalamus specification
Gli2zfd/zfd mutants lack a floor plate and its flanking cells from
spinal cord to midbrain (Matise et al., 1998; Park et al., 2000). We
extend this result to the rostral end of the floor plate (the mamil-
lary region Puelles et al., 2012), and beyond this point, through
the medial progenitor domain of the entire basal hypothalamus.
Therefore, in the Gli2zfd/zfd mutant, the median eminence, pitu-
itary andmamillary body aremissing as well as part of the arcuate
and ventromedial nuclei (Figure 11B).
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FIGURE 8 | Gli3 activator is dispensable for specification of the basal
hypothalamus. (A–L) In situ detection of tuberal marker genes on E18.5
mouse brain sections, markers and genotypes as indicated. Black arrows
indicate the arcuate nucleus. Black arrows in L indicate the ventromedial

nucleus. (M–O) In situ detection of mamillary marker gene Lhx1 on E18.5
mouse brain sections, genotypes as indicated. Black arrows indicate the
mamillary body (MBO). Arc, arcuate nucleus; MBO, mamillary body; VMH,
ventromedial nucleus. Scale bars 500 μm.

In spinal cord,Gli3 has important repressor (Gli3R; Litingtung
and Chiang, 2000; Persson et al., 2002) and, in the absence of
Gli2A, activator (Gli3A) functions (Bai et al., 2004). The lack of
a pronounced phenotype in the Gli3Xt−J/Xt−J mutant hypotha-
lamus indicates that under normal conditions either Gli3A is not
important or that Gli2A can substitute for Gli3A. However, in the
Gli2zfd/zfd mutant, the lateral progenitor domain is still able to
produce part of the ventromedial and the arcuate nuclei and also
the LHA (with only minor alteration; Figures 9B,F) – this can
either be explained through rescue by a Gli3A function or it indi-
cates that GliA is not essential for the induction of the lateral pro-
genitor domain. A partial compensation through Gli3A (asterisk
in Figure 11D) is supported by Gli1 expression in the lateral
progenitor domain of the Gli2zfd/zfd mutants (Figure 2F), where

it partially overlaps with Gli3 (Figure 2H). The suppression of
Gli3R function by non-neural and neural Shh appears to be
essential for the development of the hypothalamus (Figure 11D),
since the phenotype of the ventral forebrain in Shh null mutants
(Chiang et al., 1996) is more severe than in Gli2zfd/zfd mutants
and the phenotype of the lateral progenitor domain in Foxb1-
Cre;Shhf /f mutants (Szabo et al., 2009a) is more severe than in
Gli2zfd/zfd mutants. In addition, the medial and lateral progen-
itor domains of Foxb1-Cre;Shhf /f mutants are largely rescued in
Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J mice (Figures 8G–I,J–L). Finally,
Hcrt+ neurons (part of the LHA) are reduced in Gli2zfd/zfd
mutants and completely lost in Foxb1-Cre;Shhf /f mutants and
even in Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J brains, suggesting that
their progenitors are uniquely specified by GliA or need GliA
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FIGURE 9 | Gli mutant phenotypes in the LHA. RNA in situ detection of lateral hypothalamic markers Hcrt/Orexin and Pmch on E18.5 mouse brain sections,
genotypes as indicated. Arrowheads in (B,H), point at smaller groups of cells. Scale bars, 500 μm.

later or for a longer time than other progenitors in the lat-
eral domain (Figure 11D). This is consistent with the very
restricted place and time of neurogenesis of Hcrt+ neurons
(Amiot et al., 2005). As mentioned in Section “Materials and
Methods,” we have not been able to obtain double mutant Gli2-
Gli3 embryos.

As for the alar hypothalamus and preoptic area, they
are strongly dependent on Shh for their development, while
Gli2zfd/zfd or Gli3Xt−J/Xt−J show no – or only subtle – pheno-
types in these areas. This indicates that either Gli2A and Gli3A
can fully substitute for each other in these regions, or they
depend on suppression of Gli3R rather than induction of GliA
by Shh for their specification (Chiang et al., 1996; Rallu et al.,
2002).

The Hypothalamic Version of the Shh-Gli
Code
In the spinal cord (Figure 11C), signaling by notochordal
Shh is sufficient to generate the proper pattern of ventral
progenitor gene expression (Matise et al., 1998; Jeong and
McMahon, 2005), whereas ongoing Shh signaling from the
floor plate (neural Shh) is necessary to maintain progenitor
domain formation during neurogenesis (Dessaud et al., 2010)
and for oligodendrocyte specification (Yu et al., 2013). We
show that Shh of non-neural origin specifies the medial pro-
genitor domain through Gli2A at an early stage, while neu-
ral Shh specifies the lateral progenitor domain at a later
stage, probably by counteracting ectopic GliR function and,
in the case of LHA progenitors, by inducing Gli2A (see
above).

In both spinal cord (Bai et al., 2004; Figure 11C) and hypotha-
lamus (Figures 11B,D), Gli2 performs the main GliA function.
Gli2, however, is required for the induction of Shh expression in

the floor plate (Matise et al., 1998), but not in the hypothalamus
(Figure 2I).

Opposite gradients of GliA and GliR underlie the pre-
cise dorsoventral polarity of the spinal cord (Litingtung and
Chiang, 2000; Persson et al., 2002) and hypothalamic speci-
fication requires counteracting Gli3R by Shh. Additionally, in
the chicken hypothalamus, Gli3R activity is involved in Pax7
de-repression in some progenitors (Ohyama et al., 2008).

Finally, a Gli3A function is required for mamillary prolifera-
tion during the neurogenic phase (Figure 10E). The mamillary
region overgrowth in Foxb1-Cre;Shhf /f ;Gli3Xt−J/Xt−J mutants
(Figure 10E) parallels the abnormally increased size of the spinal
cord in Gli2zfd/zfd;Gli3Xt−J/Xt−J mutants. It remains unclear why
inactivation of all Shh signaling results in a proliferation increase
(Bai et al., 2004).

Acroterminal Region vs. Floor Plate
We have mapped the Gli2zfd/zfd phenotype (Figure 7O) on
a genetic-molecular model of the developing hypothalamus
(Puelles et al., 2012) in which the ventral and dorsal mid-
lines do not meet at a hypothetical “tip” of the neural tube
(Figure 1B). Rather, the model proposes that the rostral end
of the tube is closed by a “lid” in the form of a transverse
structure called acroterminal region, which does not share the
typical characteristics of the floor plate—e.g., it does not express
Foxa2 (Ruiz i Altaba et al., 1995; Dale et al., 1999), under-
goes complex, specific regulation (Ohyama et al., 2005; Manning
et al., 2006; Ohyama et al., 2008; Trowe et al., 2013) and, as
we show here, it is strongly neurogenic, not a property of the
floor plate (except in the midbrain Kittappa et al., 2007; Ono
et al., 2007; Bonilla et al., 2008). The histologically recogniz-
able floor plate expresses Shh, Ntn1, Lmxb1, Foxa1, and Nr4a2
(Allen-Institute-for-Brain-Science, 2009; Puelles et al., 2012), is
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FIGURE 10 | Gli3 promotes proliferation in the mamillary region.
(A–C) In situ detection of Gli genes on E12.5 WT mouse brain sections.
Arrowheads indicate the mamillary region. (D) LacZ reporter detection on
an E12.5 Gli3-nlacZ knock-in mouse brain section; arrowhead indicates
the mamillary region. (E) BrdU-labeled cells per bin at E12.5, genotypes
as indicated. Unpaired t-test, two-tailed, mean ± SD; ∗p ≤ 0.05,
∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001. (F) Gli1 expression in the medial domain of
the hypothalamus (arrows) on E10.5 horizontal sections of WT (upper

panel) and Gli3Xt−J/Xt−J (lower panel) embryos. (G–I) Labeled cells in the
mamillary region of WT E18.5 embryos after in utero electroporation with
GFP and Ptch-Δ-loop-tomato DNA constructs at E12.5. White
arrowheads show double-labeled cells. (J) Percent of GFP-expressing cells
co-expressing red reporter “tomato” after in utero electroporation of
control (white bars) or experimental (black bars) constructs, in two
different regions, as indicated. Unpaired t-test, two-tailed, mean ± SD;
∗∗p ≤ 0.01; n.s., non-significant.

induced by the underlying notochord, and it ends rostrally at
mammillary level (Puelles et al., 2012). Beyond mammillary
level, the acroterminal region extends all the way through the
tuberal region, alar hypothalamus and preoptic region and up
to the anterior commissure, it is transversally oriented (has
alar and basal portions) and strongly patterned (probably by
the underlying prechordal plate) and generates, among other,

the median eminence, infundibulum, neurophypophysis, and
eyes.

The dorso-ventral and rostro-caudal axes of the embryonic
neural tube, considered in this way, are at a 90◦ angle with
those of the adult brain as they are usually considered; i.e., the
adult rostro-caudal axis would be the dorso-ventral axis in our
model. If this discrepancy will eventually be corrected remains

Frontiers in Neuroanatomy | www.frontiersin.org 13 March 2015 | Volume 9 | Article 34

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Haddad-Tóvolli et al. Shh-Gli in developing hypothalamus

FIGURE 11 | The role of each Gli protein in the basal hypothalamus
of the mouse. (A) Diagram showing expression domains of the Gli
factors and Shh in the presumptive hypothalamus at the early, middle,
and late phases. “lat” and “med,” lateral and medial domains, respectively
(early phase according to Hui et al., 1994). (B) Summary diagrams of
progenitor domains (neuroepithelium) of the basal hypothalamus in WT
and mutants as deduced from phenotype analysis in the present study.
(C) Diagrams comparable to those in (B) representing the progenitor

domains in the spinal cord of WT and mutants as reported in the
literature (as indicated). Question marks indicate that the V0/V1 domains
have not been investigated. (D) Specific contribution of Gli proteins to the
specification of the medial and lateral progenitor domains in three
successive stages of development. Dotted square, possible influence of
Gli2A on lateral progenitors before E8.5. The asterisk (∗) means that loss
of GliA2 could be compensated by Gli3A. MBO, mamillary body. See
Discussion for details.
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open. The connectivity and function of the classical regions of
the hypothalamus and the behavioral control column (Swanson,
2000) are not otherwise challenged by the proposed nomencla-
ture (Puelles et al., 2012).

The Gli2zfd/zfd Phenotype and the
Hypothalamic Model
The Gli2zfd/zfd hypothalamic phenotype can be cleanly mapped
(Figure 7O) on the model of the embryonic hypothalamus
(Puelles et al., 2012), which in turn receives experimental confir-
mation from our work. The basal regions depend specifically on
Gli2. The alar hypothalamus and preoptic region, on the contrary,
are not strictly dependent on Gli2A or Gli3A and are there-
fore genetically different. In this way, the basal/alar boundary,
one main insight of the model, is confirmed. The basal part has
unique genetic requirements, as much in the floor plate as in the
acroterminal region, which are difficult to reconcile with a con-
ventional rostral-caudal hypothalamic orientation (Figure 1A).
Moreover, the medial and lateral progenitor domains of the basal
hypothalamus (Alvarez-Bolado et al., 2012) can bemapped on the

model too, corresponding to acroterminal and terminal hypotha-
lamus (Puelles et al., 2012). Mapping other mutant phenotypes
will refine the model and reveal fundamental aspects of brain
development and organization. The patterning of the acroter-
minal region by the prechordal plate, for instance, is an open
question.
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