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Abstract

To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it
is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug
resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination
drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus
coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance.
Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites.
The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants
enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By
computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly
following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare
transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing ‘‘transient’’ mutant
alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of
resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and
resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness
suggests that aggressive drug treatment delays the emergence of drug resistance.
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Introduction

Effective antimalarial drugs remain a major means of control-

ling human malarias. However, control efforts of Plasmodium

falciparum, the most virulent form of human malaria, have been

thwarted by the rapid evolution of drug resistance. Indeed, after

about 12 years of massive use of chloroquine (CQ), mutations

conferring resistance against CQ emerged independently in four

geographic regions [1–3]. In the 1990s, CQ became ineffective to

treat P. falciparum malaria in many endemic areas worldwide. It

was replaced as a first-line treatment by sulphadoxine-pyrimeth-

amine (SP), a combination of two drugs. SP resistance emerged

quickly and spread across endemic areas [4–6]. Currently,

arteminisin-based combination therapies (ACT) have become the

preferred treatment option. The rationale behind combination

therapies is that a parasite acquires resistance only when it carries

independent mutations, each of which acts against a single drug

[1,7,8]. However, the recent observation of weak ACT resistance

in Southeast Asia [9–14] may forecast further evolution of clinical

resistance that threatens successful control interventions and

highlights the importance of understanding the mechanisms

driving drug resistance under combination therapy.

Theoretical investigations have followed two paths: one focusing

on a characterization of the patterns emerging from empirical data

(e.g. [15]), the other directed to understanding how rapidly drug

resistance occurs and what biological/clinical factors affect its

spread. The latter path was mainly approached by either models

of population/demographic dynamics or by population/evolu-

tionary genetic processes. Although there is a general agreement

on the emerging patterns [16], they differ in several key elements.

Population/demographic models focus on demographic dynamics

of infected vs. uninfected hosts, as determined by epidemiological

factors such as transmission patterns of sensitive and resistant

parasites, drug treatment, and immunity [17,18]. This approach is

useful to understand the circumstances allowing or suppressing the

spread of resistant parasites; however, usually at the cost of

ignoring the evolutionary dynamics of resistant mutations. On the

contrary, population/evolutionary genetic models reduce this

problem to the temporal change of a resistant allele’s frequency

in the pathogen population [1,15,16,19–25]. Mathematical models
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here often assume a homogeneous pathogen population of

constant or infinite size, ignoring the complex demographic

structure of parasites that is naturally shaped in endemic regions.

Regardless of their limitations, population-genetic models allow

the description of the early phase of drug-resistance evolution – a

sensitive allele randomly mutates into a resistant allele and

increases in frequency. In contrast, population-dynamic approach-

es usually assume that mutations conferring resistance are already

in relative high frequency in the population. Drug selection is the

driving force of their dynamics and they neglect the early phase

when resistance mutations can be easily lost by random drift.

However, a crucial problem in public-health planning of drug

deployment is to predict the number of de novo resistant mutations

arising in the pathogen population upon drug treatment and the

likelihood that they survive stochastic loss and swamp the entire

population. Such information is essential for monitoring/contain-

ment of resistance at early stages. This prediction can only be

made from accurate modelling of the early population-genetic

processes [26]. Another reason to use population-genetic model-

ling is that disease dynamics may be critically dependent on the

genetic details of resistance. For example, molecular genetic

analyses of major genes involved in anti-malarial drug resistance

showed that multiple non-synonymous mutations occurred at each

responsible gene and their order of occurrence determines the

degree of resistance [27] and therefore translates into difference in

fitness [5]. Such genetic details may not be properly addressed by

population-dynamic approaches.

Despite these advantages, there still remains serious limitations

regarding population dynamics in population genetic approaches

as mentioned above. Conventional population-genetic models are

based on the discrete-time Wright-Fisher model or its variants

[28], which describe the process of inheritance as random

sampling of gametes for a fixed number of individuals in a given

generation. Here, a simple assumption (or no explicit assumption)

about population size or population structure is made because it

needs to be specified as a parameter for the sampling. Then, the

entire system is described by the temporal change of relative

frequencies, not absolute counts, of alleles under consideration.

The most important determinant of the model is therefore the

relative fitness of different alleles, which determines the trajectory

of relative allele frequencies. However, in a realistic epidemiolog-

ical model, the size and structure of pathogen populations under

density dependence should be a key variable rather than a fixed

parameter. For example, a given host shows clinical symptoms

only if parasitaemia (parasite density inside the host) exceeds a

threshold value [29], which is followed by drug treatment that

subsequently reduces parasitaemia and also changes the fitness

landscape of different alleles. Therefore, there is an intimate

feedback between demographic and genetic processes during

drug-resistance evolution - at least at the level of the parasite

populations inside human hosts.

Currently, two contrasting recommendations exist for drug-

deployment policies that aim to maximize the life span of anti-

malarial drugs by delaying the evolution of resistance, interest-

ingly, both rooted in the principles of population genetics. First,

strong and thorough drug treatment that ensures complete

clearance of parasites is recommended [30,31] to minimize the

sensitive parasites’ probability to mutate to resistant ones. This is

understood given the principle that the rate of adaptation by

natural selection increases with increasing population size, which

leads to an increasing number of new mutations entering the

population and increasing efficacy of selection [32]. Therefore,

one might expect that keeping the number of sensitive parasites as

low as possible by aggressive drug treatment would delay the

emergence of resistance. In disagreement, it is argued that stronger

drug treatment only increases the relative fitness of resistant

mutants, thus accelerating their spread [33,34]. This argument is

particularly true in the presence of strong intrahost competition

between sensitive and resistant parasites, which was experimen-

tally demonstrated in mice [35]. Therefore, contrary to the first,

the second recommendation suggests to minimize drug usage to

avoid creating a fitness landscape favourable for evolving drug

resistance.

It might be too simplistic to suggest adopting only aggressive or

minimal drug as a general and exclusive principle. It was argued

that aggressive chemotherapy would be effective in deterring the

rise of resistance starting from de novo mutation but facilitate its

spread later when a strongly resistant allele has already reached a

sufficient frequency in the population [34]. However, at which

point (in the timeline of resistance evolution) treatment options

should be switched was not made clear. Whether and where such a

switch occurs will critically depend on how effectively strong drug

treatment eliminates both sensitive wild-type and resistant mutant

parasites, while the mutant has higher fitness relative to the wild-

type under the initial dose of drugs. Conventional population-

genetic modelling based only on relative fitness cannot describe

such a scenario and thus cannot evaluate its importance in the

overall evolutionary outcome. It appears that resolving these

conflicting conclusions requires the quantitative assessment of a

more complete model. Such a model must consider the absolute as

well as relative numbers of resistant parasites at both intra- and

interhost levels. Importantly, it needs to consider the whole

evolutionary process starting from de novo mutations in sensitive

parasites, which rise to high frequency among parasites in

mosquitoes. This consideration again highlights the importance

of a model that integrates demographic and genetic dynamics.

In this study, a stochastic model of anti-malarial drug-resistance

evolution is proposed. The major aim is not to provide accurate

quantitative predictions regarding the speed of resistance evolution

but to demonstrate that drug resistance can arise and spread in a

manner that was not considered before if both population-

dynamic and genetic processes are effectively integrated in the

model. A population of malaria parasites is considered and their

reproduction is modelled in terms of absolute fitness (expected

number of offspring in the next generation), rather than relative

fitness. The absolute fitness is mainly specified by a function of

drug usage in the respective host. Then, the behaviour of the

proposed system is examined using numerical simulation. The

model does not intend to recreate all aspects of genetics and

population dynamics associated with resistance evolution. How-

ever, it is designed to address the following fundamental properties

of resistance evolution in sufficient detail. First, two loci associated

with resistance against two different drugs are considered, as the

current paradigm of drug treatment against pathogenic parasites is

to simultaneously administer two or more different drugs (e.g. SP

or ACT). Second, the simulation model strives to be accurate with

regard to early dynamics capturing the period in which drug

treatment starts in a host population but a resistant mutation has

not yet started to propagate. Notably, genetic analyses revealed

that both CQ and SP resistance spread from surprisingly few

mutational origins [18,27,36] followed by widespread geograph-

ical migration. This implies that the propagation of resistant alleles

does not occur immediately after the introduction of drugs and a

realistic model should yield a reasonably long waiting time before

resistance spreads. Dissecting compounding factors that govern the

waiting time until such a rare occurrence is a major objective of

this model. Third, in line with the above objective, only partially

resistant mutations are considered. Namely, while partially
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resistant parasites are cleared out less efficiently by the drug than

sensitive ones, a sufficient dose of drugs still kills them [37,38].

Thus, the current model focuses on the initial spread and

establishment of mutations conferring partial resistance that is

typically manifested by single initial amino-acid mutants (weakly

resistant allele). This might be the most important step in

determining the entire waiting time for the emergence of full

drug resistance. Finally, it is aimed to build a flexible and

computationally feasible numerical model of resistance evolution

which is extendable to further demographic and genetic details.

Methods

Model outline
The temporal changes in the numbers of sensitive and resistant

parasites transmitted among a finite number of human hosts that

are susceptible to infection are of primary interest. The dynamics

of the system is modelled in discrete time as described below (see

Figure 1 for an illustration of the dynamics from time t to time

t+1). For modelling purposes, parasites within a host are treated as

a sub-population of the total population of all parasites, analogous

to Wright’s island model [28]. Moreover, there is an additional

sub-population termed migrant pool or mosquito pool, which

reflects the collection of parasites that are transmitted among all

mosquitoes. Hence, human hosts are modelled explicitly but

mosquitoes only collectively. The dynamics of parasites within a

host determines the course of the infection and its treatment. If the

number of parasites within a host exceeds a critical value (NC), the

infection is ‘‘detectable’’ (i.e. the patient expresses disease

symptom) and the host receives drug treatment. Thus, the

parasitaemia threshold, NC, represents how early infections are

treated. A treated host receives a combination of two drugs, D1

and D2, which clear out parasites. If the cumulative parasitaemia

in a host during the period of consecutive infection, despite drug

treatment, exceeds another threshold, the infection is terminated

(e.g. the patient dies or is cured by another effective drug

instantaneously). Within the host, haploid parasites reproduce by

mitosis and might mutate to confer partial resistance against the

drugs. During the course of the infection, a small number of

parasites enter the migrant pool, as mosquitoes take their blood

meal from infected hosts. Random pairs of parasites that exit from

the same host conjugate and recombine in the migrant pool. This

models gametocytes of Plasmodium species recombining immedi-

ately after the blood meal within the mosquitoes’ guts, and mature

into sporozoites that reside in the mosquitoes’ salivary glands. All

haploid parasites (sporozoites) within the mosquitoes are treated as

if they constitute a single deme, which sends migrants back to

hosts. It models parasites’ migration between hosts via mosquito

vectors in which recombination occurs. Although, malaria

parasites undergo many developmental changes, i.e., sporozoites,

merozoites, gametocytes, etc., for modelling purpose this fine

distinction is not needed. Therefore, all these forms are

simplistically subsumed just as parasites. This is a reasonable

assumption if the genetic compositions of parasites in the

respective stages are proportional.

Genetic assumptions
Parasites within the host are haploid and reproduce asexually,

whereas they undergo a step of meiosis within mosquitoes when

they migrate between hosts. There are two loci, A and B, in the

parasite’s genome that are associated with (partial) resistance

against drug D1 and D2, respectively. Each locus has two alleles, a

sensitive (AS or BS) and a resistant (AR or BR) one. Therefore, each

parasite has one of the four haplotypes ASBS, ASBR, ARBS, and

ARBR, indexed as haplotype 1 (‘‘sensitive’’), 2 and 3 (‘‘single-drug

resistant’’), and 4 (‘‘double-drug resistant’’), respectively. Their life

cycle includes a brief diploid phase that ends with meiosis. It is

assumed that recombination between the loci occurs during

meiosis with probability r. The growth rate of parasites (absolute

fitness) within hosts depends on their haplotype, i.e., whether they

are sensitive or resistant against drugs. Moreover, sensitive

parasites within hosts might mutate to confer resistance. Summa-

rizing, selection and mutation occur within hosts, whereas

recombination occurs outside the hosts in the mosquito vector.

It is assumed that the population of parasites evolves in discrete

time, which is simply counted as ‘‘generations’’. One generation

does not necessarily reflect the time span of an infection, or a full

transmission cycle, although it was originally intended to roughly

correspond to 12 hours for the following two reasons. First,

because drugs clear parasites continuously, a finer time scale than

the usual 48-hour cycle seems appropriate. Second, to properly

model transmission it was important to choose a generation time

reflecting that mosquitoes can bite anytime. However, because

other time-dependent parameters described below were chosen

arbitrarily, this time unit can essentially be scaled arbitrarily.

Drug pressure within human hosts (selection)
In total, there are H potential hosts (corresponding to demes in a

migration framework). The parasite population is divided into

subpopulations corresponding to hosts they reside in. In host j

( = 1, …, H), the number of parasites with haplotype i at time t is

denoted by nij(t). The change of parasite numbers within a host

depends on the parasites’ haplotypes, the total number of parasites

(density) in the host and drug concentrations. The absolute fitness

(the expected number of descendants in the next generation) of an

individual parasite with haplotype i in host j is given by

wij~Wij(t)
1zr

1zrNj(t)=K
, ð1Þ

where Wij(t) is the density-independent relative fitness of

haplotype i in host j at time t. Nj(t) is the total number of

parasites (~
P4

i~1 nij(t)) in host j, r is the intrinsic growth rate

(parasite number multiplies by 1+r at low density if Wij(t)~1) and

K is the carrying capacity of parasites in an untreated host. Assume

that the concentrations of drug D1 and D2 in host j are C1j(t) and

C2j(t), respectively, at time t. Naturally, C:j(t) is normalized to 0 in

the absence of the drug and 1 at the maximum therapeutic

concentration (the initial dose). Then, W1j(t) describes the impact

of drugs on the fitness of sensitive parasites under the assumption

that fitness is correlated with drug concentrations:

W1j(t)~(1{d1SC1j(t))(1{d2SC2j(t)): ð2aÞ

The parameter dkS therefore represents the effect of drug k on the

sensitive parasite. W1j(t) decreases from 1 to (1{d1S)(1{d2S) as

the concentrations of both drugs increase. Next, we define

W2j(t)~(1{c)(1{d1SC1j(t))(1{d2RC2j(t)), ð2bÞ

W3j(t)~(1{c)(1{d1RC1j(t))(1{d2SC2j(t)), ð2cÞ
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W4j(t)~(1{c)2(1{d1RC1j(t))(1{d2RC2j(t)): ð2dÞ

In the above equations, c represents the strength of natural

selection against the resistant allele (‘‘metabolic cost of resistance’’)

and dkR represents the effect of drug k on the resistant parasite.

Drug resistance means dkS.dkR$0. Drug concentrations, Cij(t),

will be given as functions of time according to the specific model of

drug treatment described below. Note that, since eq. (1) is a

decreasing function of Nj(t), the fitness of a resistant parasite increases

as the number of sensitive parasites in the same host decreases.

However, as long as Wij(t)v1zr(Nj(t){K)=(K(1zr)), its

absolute fitness remains below one. Namely, sufficiently strong

drugs do not allow partially resistant parasites to grow when sensitive

parasites were cleared, contrary to other models that assume strong

within-host competition [33,34].

Reproductive cycle
Migrations of parasites between hosts, corresponding to new

infections and co-infections, occur in each generation. No spatial

structure is assumed in the host population. Therefore, hosts

receive infective parasites (‘‘migrants’’ in the context of the

Wright’s island model) equally from a common mosquito pool

(migrant pool), which models the collection of parasites in

mosquitoes’ salivary glands. Let mi(t) be the expected number

of parasites (sporozoites) of haplotype i at time t that reside in the

mosquito pool that are ready to be inoculated into hosts. After, a

mosquito took its blood meal; parasites (gametocytes) undergo a

step of meiosis before new parasites (sporozoites) are developed.

Hence, mi(t) does not change solely due to transmission from all

hosts to mosquitoes, but also undergo a step of sexual reproduc-

tion. In particular, changes occur as follows:

The number of parasites contributed by a given host to the

migrant pool depends on its current load of parasites. Since the

number of parasites (gametocytes) transferred from host j to a

mosquito increases with Nj(t) but not linearly [39,40], we model

that the contribution of host j to the migrant pool is proportional

to log(1+Nj(t)). The haplotype frequencies of migrants (infective

sporozoites) originating from a host are different from those in that

host because meiotic recombination between haploids occurs

within the mosquito (see Figure 1). Let yij be the expected

frequency of haplotype i descending from host j. Then, using the

standard recursions for haplotype changes by recombination [28],

yij~xij{({1)drfx1jx4j{x2jx3jg,

(d~0 for i~1,4 and 1 for i~2,3),
ð3Þ

where r is the recombination rate between the two loci and

xij~nij(t)=Nj(t). Therefore, the number of sporozoites in the

migrant pool changes according to

Figure 1. Schematic diagram of parasite reproduction cycle in the model. In discrete time unit, the numbers of parasites in hosts and in the
mosquito infective pool are updated.
doi:10.1371/journal.pone.0101601.g001
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mi(tz1)~(1{dm)mi(t)zt1

XH
j~1

yij log (1zNj(t)), ð4Þ

where t1 specifies the rate of parasite migration (transmission)

from host to mosquito and dm is the death rate of mosquitoes.

The recursive changes of nij(t) are given by the following

equations. Due to parasite migration (infection), the number of

parasites in a host increases to

n’ij~nij(t)zt2mi(t), ð5Þ

where t2 specifies the rate of infection/transmission from

mosquitoes to hosts. It is important to notice that t1 (equation 4)

and t2 summarize the vector population density and/or vector

competence. Note that the losses of parasite numbers as

gametocytes out of hosts and as sporozoites out of the mosquito

pool are ignored. Furthermore, within hosts, mutation happens at

each locus with probability m per generation. Simultaneous

mutations at both loci are ignored, since they are very unlikely.

Thus, the expected numbers change to ~nnij , where

~nn1j~(1{2m)n’1jzm(n’2jzn’3j),

~nn2j~(1{2m)n’2jzm(n’1jzn’4j),
ð6a� bÞ

~nn3j~(1{2m)n’3jzm(n’1jzn’4j),

~nn4j~(1{2m)n’4jzm(n’2jzn’3j):
ð6c� dÞ

At time t, transmission between mosquitoes and hosts occurs.

Simultaneously, hosts are co-infected from the common sporozoite

pool. Next, mutation and replication (selection) occur. After

replication the expected numbers of haploids become

n̂n~wij~nnij for i~1 to 4ð Þ: ð7Þ

Finally, in order to account for the stochastic dynamics of

parasite reproduction, the number of parasites with haplotype i in

host j in the next generation is assumed to be determined by

nij(tz1)~Poisson(n̂nij): ð8Þ

Of course all steps in the recursion, particularly migration

(transmission) in and out of hosts, are of stochastic nature.

However, it is assumed that the above Poisson distribution absorbs

the stochastic noises generated in those steps. We choose a Poisson

distribution because it approximates the offspring number

distribution under the Wright-Fisher model of reproduction.

However, unlike the Wright-Fisher model, population size is not

a pre-determined parameter but a dependent variable that

changes at a rate determined by the genetic composition of

population, the change of which is in turn modulated by within-

host population size (i.e. increase above NC triggering change in

haplotype fitness). Therefore, the temporal dynamics of demog-

raphy is now tightly coupled with that of the population’s genetic

composition.

Models of drug treatments and termination of infection
An infection is treated if the parasitaemia (number of parasites

within the infected host) exceeds a given threshold value NC. We

initially investigate the scenario in which all infected hosts are

detected and treated. However, as even infections with high

parasitaemia might be asymptomatic and hence untreated, we

later allow only a fraction a of hosts to receive treatment by setting

the carrying capacity of the remaining (fraction 1-a) hosts to be 0.1

NC. An infection is treated with a combination of two drugs, which

will lead to rapid clearance of parasites within the hosts. More

specifically, immediately after the total number of parasites in the

host exceeds the critical value, NC, drugs are administered. It is

further assumed that the concentration of the drugs remains

constant for lT generations after initial administration and then

decays exponentially. Let Tj,1 be the first time the host j takes drug

i. Subsequently, Tj,k denotes the time of the kth drug administra-

tion.

Then, the concentration of drug i ( = 1 or 2) in host j at time t is

given by

Cij(t)~

0 for tvTj,1

1 for Tj,kƒtƒTj,kzlT

exp ({li(t{Tj,k{lT)) for Tj,kzlTƒtƒTj,kz1

8><
>:

ð9Þ

Here, li specifies how fast the concentration of drug i decays.

Clearly, we have, Nj(Tj,k{1)vNCƒNj(Tj,k), where Nj(t) is the

total number of parasites in host j at time t before selection.

If a host is infected with a large number of resistant parasites,

drug treatments do not lead to clearance. Under the model

formulated above, such a host is subject to repeated cycles of

treatment and recrudescence. While prolonged infection with

resistant parasites without clinical manifestation often occurs in

reality, we may also consider the termination of resistant infection

due to host death or treatment with an alternative effective drug.

We assume that, if the cumulative parasitaemia starting from a

new infection exceeds kDNC in a host, parasite numbers in that

host is set to zero (nij(t) = 0 for all i). Increasing kD from small to

large value thus allows effectively modelling a range of scenarios,

from host death with replacement or radical cure of the infection

with an alternative effective drug to recrudescence without clinical

manifestations.

Simulation
The numerical simulation starts with 100 wild-type (sensitive)

haploids (sporozoites) in the mosquito pool that are ready to be

transmitted to hosts (i.e. m1(0) = 100, and mi(0) = 0 for i?1).

Namely, it simulates the scenario that malaria parasites are

introduced to a host population carried by a small number of

infected mosquitoes. (However, as shall be seen in the results, an

endemic state will be reached before the spread of resistant

parasites is successfully initiated.) If parasites are lost from the

population by chance (nij(t) and mi(t) = 0 for all i, j) the simulation

starts again. One replicate of a simulation is run up to Tmax

generations and the frequencies of resistant alleles at both loci in

the migrant pool are recorded. After the drug treatment starts (i.e.

parasitaemia exceeds NC in at least one host), there are three

possible outcomes: 1) the resistant allele(s) at one locus (or both

loci) exceeds a high frequency (0.5 in the mosquito pool; see below)

before Tmax; 2) resistant alleles remain at low frequency until Tmax;

or 3) all parasites, either sensitive or resistant, are eliminated

before Tmax. If the first outcome is obtained in many simulation

replicates (at least 100 runs) for a given parameter set, the mean

waiting time is recorded. The entire simulation was written in C,

Modelling the Evolution of Antimalarial Resistance
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which is available upon request. The stochastic effect is simulated

by random Poisson number generator in (PRESS et al. 1992). The C

code was validated by implementing the program in MATLAB

(version R2009b; The MathWorks, Inc.) and comparing results.

Results and Analysis

The numerical simulation of drug resistance evolution under

combination therapy was conducted as described in Methods and

examined how rapidly drug resistance alleles reach high frequen-

cy. Parameter values for the simulations (Table 1) were chosen so

that a wide exploration of the parameter space would not become

computationally too demanding. In particular, the population of

1,000 human hosts was used. To facilitate the emergence of drug

resistance in such an unrealistically small host population, a high

mutation rate was used. Other parameters were also chosen

arbitrarily and may deviate considerably from the actual values in

malaria epidemics. However, the major objective here is to

identify evolutionary pathways leading to the rise of resistance and

factors qualitatively influencing these pathways It is to be

examined if change in absolute values of parameters lead to

qualitative changes in the dynamics.

Exemplary trajectories to drug resistance
The first step in understanding the evolutionary dynamics

leading to the emergence of drug resistance (high frequency of AR

and/or BR) under the proposed model is to identify key

demographic and genetic changes that initiate the spread of

resistant alleles. For this purpose the trajectories of parasite

numbers with different haplotypes, from a randomly chosen

replicate of the stochastic simulation, are plotted and closely

inspected (Figure 2). The intrahost concentrations of the two drugs

are assumed to decay at the same rate. All parameter values are

shown in Table 1 (in the column ‘‘starting values’’). Figure 2 shows

the trajectories of parasite numbers in the mosquito migrant pool

and in six hosts, four of which (host number 1 to 4) were arbitrarily

chosen to show the dynamics at ‘average’ hosts. Host no. 950 is the

first in which single-drug resistant parasites (ARBS in this example,

shown by the orange curve) dominate over sensitive parasites

(satisfying the condition that n1j=Njv0:1 and Njw1000). Host no.

422 is the first, in which double-drug resistant parasites (ARBR,

shown by red curves) dominate over all other haplotypes (satisfying

the condition that n4j=Njw0:1 and Njw1000). The entire course

of simulation can be divided into two phases. Phase I is from the

start of the simulation to the ‘‘establishment’’ of single-drug

resistant parasites in host no. 950 in generation 3550. Phase II is

from the end of phase I to the end of the simulation run when the

relative frequency of double-drug resistant parasites (haplotype

ARBR) exceeds 0.5 in the migrant pool.

During phase I, recurrent infections by sensitive parasites

(shown by peaks of green curves) occur in all hosts. In each

infection the parasite number exponentially increases to NC and

triggers drug treatment, by which the number of sensitive parasites

is quickly reduced to zero. Small numbers of single-drug resistant

parasites (ARBS and ASBR shown by orange and blue curves,

respectively) are generated by mutations when sensitive parasites

are increasing to a large number. At the time of drug treatment in

a host j, n2j and n3j reach peaks that are greater than the single-

generation production of new mutants (NCm~5,000), because

mutations have also accumulated from previous generations, but

obviously smaller than the expectation under the assumption of

mutation-selection balance and constant population size at NC

(because each resistant allele lasts about 1/c generations, the

expectation is NCm=c~5:104). Combination therapy almost

always wipes out these single-drug resistant parasites (but see

below). Therefore, by tracking the haplotype dynamics in

individual hosts a preliminary conclusion is drawn: higher relative

fitness of resistant over sensitive parasites in drug-treated hosts

does not result in immediate rise of resistant parasites despite

repeated cycles of drug treatments. Effective combination drug

treatment thus seems to suppress the spread of resistant alleles, as

indicated by very low values of m2(t) and m3(t) in the migrant

pool, during phase I.

Table 1. Parameters used in the current model.

symbol Definition* starting value

K Carrying capacity of sensitive parasites in an untreated host 1011

r Intrinsic growth rate 1.5

dm Death rate of mosquitoes 0.1

t1 Transmission rate from host to mosquito 0.015

t2 Transmission rate from mosquito to host 1025

r Recombination rate 0.5

m Mutation rate 1027

H Total number of hosts 1000

NC Threshold number of parasites in a host that triggers drug treatment 561010

kD Multiplying factor for the cumulative number of parasites ( = kDNC) that causes host death 10

l1 (l2) Rate of decay for drug 1 (drug 2) 0.1

lT Duration of maximal drug concentration sustained after administration 5

d1S (d2S) The reduction of sensitive parasite’s fitness by drug 1 (drug 2) 0.95

d1R (d2R) The reduction of resistant parasite’s fitness by drug 1 (drug 2) 0.6

c Selective disadvantage of a resistant allele in an untreated host (metabolic cost) 0.1

Tmax Maximum number of generations for one simulation replicate 26105

*all time-dependent parameters are given per generation or in units of generations.
doi:10.1371/journal.pone.0101601.t001
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During the short-lived periods of presence in hosts, some single-

drug resistant mutants may be transferred to the migrant pool.

This, however, occurs with a very small probability and m2(t) and

m3(t) fluctuate at very low values during phase I. It should be

noted that the transmission of a resistant parasite from a host to

the migrant pool is most likely to happen shortly after drug

treatment, when both sensitive and single-drug resistant parasites

are being eliminated. This is because the contribution of host j to

the migrant pool is modelled to be proportional to log (1zNj) (eq.

4). Since single-drug resistant parasites are eliminated slowly

relative to sensitive ones, their relative frequency, (n2jzn3j)=Nj ,

within host j increases sharply before n2j and n3j hit zero. The

expected number of single-drug resistant mutants transferred from

host j is proportional to f(n2j(t)zn3j(t))=Njg log (1zNj(t)) (eq. 4).

Figure 3 shows that this quantity greatly increases upon drug

treatment. Therefore, although the absolute fitness of resistant

haplotypes under drug treatment is not high enough to start the

immediate spread of resistance, the higher relative fitness of them leads

to a considerable enrichment of resistant parasites in the mosquito

pool. (This enrichment is seen in Figure 2 as n1j : n2j&1 : 10{7 on

average among hosts and m1 : m2&1 : 10{5 in the migrant pool

during phase I).

Phase II starts when a host (no. 950 in Figure 2) is infected by a

parasite with single-drug resistant haplotype (haplotype 2 in the

example), due to a rare event of transmission from the mosquito

pool. Obviously, drug concentration in this host was effectively

zero at the time of infection, as the last drug treatment occurred

about 300 generations ago while concentration decays by

approximately 10% per generation (l= 0.1), allowing the growth

of this partial resistant parasite. The expected waiting time until

such event is approximately 1=(1000t2(m̂m2zm̂m3))~104=3&3,333
generations, where m̂m2~m̂m3&0:015 (in Figure 2) is the expected

number of single-drug resistant parasites in the migrant pool in a

given generation during phase I, if a randomly chosen host is not

drug treated at a given time. Since a given host receives repeated

drug treatments and drugs do not decay immediately, this

expected waiting time is likely an underestimate (see below for

more analysis). In host no. 950, the single-drug resistant parasites

grow to NC and trigger another drug treatment. However, as it

takes longer for drugs to reduce n2 from NC to zero than it takes to

reduce n1 from NC to zero, these single-drug resistant parasites are

not completely cleared before drug concentrations drop below the

level inhibitory to their growth. It is therefore followed by the

recrudescence of parasitaemia and repeated cycles of drug

treatment. Eventually, when the cumulative parasitaemia exceeds

kDNC, this infection is terminated (see Methods) and all parasite

numbers in the host are set to zero. Before the termination of this

infection, however, a large number of single-drug resistant

parasites are transferred to the migrant pool, identified by a sharp

increase of m2 (orange curve), which will in turn initiate the

Figure 2. A representative replicate of the stochastic simulation, leading to the spread of drug-resistant parasites through type A
establishment, run with parameters given in Table 1. The numbers of parasites with different haplotypes (1, 2, 3, and 4 by green, orange, blue,
and red curves, respectively) are plotted over time for four randomly chosen hosts (#1–4) and for two hosts (#950, #422) where the establishments
of single- and double-drug resistant strains, respectively, occur. Note that, as haplotype 2 and 3 are observed in similar numbers before the
establishments, blue curves appear invisible behind orange curves. The parasite numbers were taken immediately after Poisson sampling (eq. 8;
therefore non-negative integers) and their log10- transformed values are shown on the y-axis. On the bottom is the corresponding numbers of
parasites (‘‘migrants’’) in the mosquito pool (mi(t); eq. 4). Note that mi(t) is the expected number (real-valued) of parasites and therefore can be a very
small number.
doi:10.1371/journal.pone.0101601.g002
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infections by the resistant parasites in other, infection free hosts.

Figure 2 also shows that n4j and m4, the numbers of double-drug

resistant parasites (ARBR) in the host and migrant pool respectively,

start to increase as m3 grows to a large number. This causes the

recrudescence (relapse of parasitaemia) mostly composed of these

double-drug resistant mutants (as happened in host no. 422),

which is now impossible to eliminate by drugs, and new infections

of double-mutant parasites to other disease-free hosts occur. In this

way the double-drug resistant parasites quickly spreads to all other

hosts in the population. Overall, Figure 2 shows an example in

which the establishment of single-drug resistant parasites in a host

is quickly followed by the eventual spread of double-drug resistant

mutants in the entire population, thus producing a much shorter

phase II relative to phase I. Such a rapid progression was possible

as the given intensity of drug treatment (given by lT and l)

permitted the recrudescence of single- and double-drug resistant

parasites while it prevented the recrudescence of sensitive ones.

In the example shown in Figure 2, the establishment of single-

drug resistant mutants (i.e. a host becoming predominantly

infected by these mutant parasites) occurred due to the transmis-

sion of a mutant parasite into an uninfected host carrying no

parasites. Such an event is denoted as ‘‘type A establishment’’.

This type of establishment occurred in the majority of simulation

replicates that were run using parameters given in Table 1.

However, in other replicates, the first establishment resulted from

a rare event of recrudescence: an intermediate peak of n2 or n3 is

reduced by drugs but does not hit zero (i.e., mutant parasites

survive) by chance (denoted ‘‘type B establishment’’). This may

happen if a rare early mutation of sensitive to resistant allele,

shortly after the inoculation of a sensitive parasite, leads to an

unusually large number of single-drug resistant mutants at the time

of drug treatment. Obviously, weaker drug treatment (smaller lT or

larger l) will promote such an establishment of single-drug

resistant parasites through incomplete clearance. Figure 4 shows a

particular replicate of simulation (but with l= 0.2) in which such

incomplete clearance happened. When 1,000 replicates were run

with parameters given in Table 1, the waiting time until the

establishment (either type A or B) had a mean value (62 s.e.) of

2,490 (6141) generations, and its distribution had an exponential-

like shape (although not exponentially distributed). It is much

shorter than 3,333 generations, which was expected above

assuming that only type A establishments occur.

These exemplary trajectories provide the following insights on

the major factors in the model that determine how fast drug-

resistant haplotypes spreads in the population: 1) the emergence of

drug resistant critically depends on a rare event of resistant

mutants’ transmission from drug-treated hosts, through the

migrant pool in mosquitoes, to another susceptible host with no

or reduced drug concentration (type A establishment), or rare

failures of drugs in eliminating mutant parasites (type B

establishment); 2) the likelihood of both types of establishments

increases as the numbers of single-drug resistant parasites at the

time of drug treatment increases; 3) these transient peaks of

mutant parasites are determined by the threshold parasitaemia

(NC), the mutation rate (m) and the selective disadvantages of

resistant mutations in the absence of drug pressure (c); 4) the rate of

type A establishment should increase with the mosquito-to-host

transmission rate (t2) and the equilibrium frequency of single-drug

resistant mutants in the migrant pool (m̂m2 and m̂m3) during phase I,

which in turn depends on the host-to-mosquito transmission rate

(t1) and the relative rates of sensitive and resistant parasites’

elimination by drugs (dS vs dR); 5) the rate of type B establishment

Figure 3. The transmission of parasites from a host to mosquitoes during the course of infection and clearance by drugs in phase I.
Upper panel shows exemplary parasite numbers taken from simulation. Lower panel shows the corresponding temporal profile in the relative
amount of host-to-mosquito transmission (f(n2j(t)zn3j(t))=Nj(t)g log (1zNj(t)); see eq. 4) for each haplotype (1, 2, and 3 shown in green, orange
and blue, respectively). Note different y-axis scales for haplotype 1 and haplotype 2/3.
doi:10.1371/journal.pone.0101601.g003
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depends on the intensity of drug treatment (lT and l) for a given

dR; and, 6) once a single-drug resistant haplotype prevails in a host,

the emergence of double-drug resistant haplotype quickly follows,

provided that the combination drug treatment cannot reduce the

number of single-drug resistant parasites from NC to zero.

Determinants of waiting times until the establishment of
resistance

The model is further examined by simulating drug-resistance

evolution with changing parameter values. As the first step in the

exploration of parameter space, the value of only one parameter

was varied while other parameter values were kept being the

‘‘starting values’’ in Table 1. In this way, the effects of individual

parameters were examined. The waiting time (number of

generations) until the frequency of the double-drug resistant

haplotype (ARBR) in the migrant pool exceeds 0.5 was recorded.

The total waiting time, LT, is divided into the length of phase I, L1,

and phase II, L2 = LT - L1, where phase I and II are defined above.

For each parameter set the means of L1 and LT were obtained over

400 replicates unless stated otherwise. Furthermore, the number of

replicates in which the drug resistance spread through type A or

type B establishments of single-drug resistant parasites was also

counted.

Asymmetry of drug strength or monotherapy. First, the

impact of asymmetric drug effects (d1Swd2S and d1Rwd2R) was

examined (Table 2). Drug combinations were adjusted such that

(1{d1S)(1{d2S) and (1{d1R)(1{d2R), combined drug effects

on fully sensitive and resistant parasites, respectively, remain

constant (cases 1, 2 and 3 in Table 2). As drugs become more

asymmetric, the waiting times (LT and L1) decrease, as the

asymmetry accelerates the decay of drug effect (Text S1). When

d2S~d2R~0, it effectively simulates monotherapy (cases 4–6 in

Table 2). To make the result comparable to combination therapy,

the effect of the single drug (1{d1S ) was set to match the effect of

combined drugs ((1{d1S)(1{d2S)) used above and, similarly, d1R

was increased (in case 4 in Table 2, 1–0.9975 = (1–0.95)2 and 1–

0.84 = (1–0.6)2). However, the waiting time was greatly reduced

(case 4), firmly supporting the advantage of combination therapy

over monotherapy that were claimed in previous studies

[1,23,33,41]. Under the framework of the current model there

are two main explanations: first, the drug effect decays faster under

monotherapy (Text S1); second, a single mutation confers a much

higher gain of parasite fitness under monotherapy than under

combination therapy. In agreement with the latter argument, an

increase in d1R (0.98 in case 5 from 0.84 in case 4 in Table 2), thus

stronger drug pressure against the resistant parasites, resulted in

waiting times comparable to the cases of combination therapy

(case 1–3). However, increasing d1S to the extreme value (from

0.9975 to 0.999; case 6) did not have an effect on the waiting time.

These results support the conclusion obtained above that the

initiation of spread critically depends on the escape of a mutant

parasite while their relative frequency within the host increases

immediately after drug administration. In the following, only the

cases of symmetric combination therapy will be considered,

denoting dS~d1S~d2S and dR~d1R~d2R for simplicity.

Mutation rate, treatment threshold, and metabolic

cost. Figure 5a shows the negative correlation between m and

LT (or L1): high mutation rate makes drug resistance evolve faster,

as expected [16]. The total waiting time is mostly the length of

phase I. The threshold parasitaemia for drug treatment, NC, is

negatively related to the waiting time (Figure 5b), indicating that it

takes much longer for drug resistance to spread as drug treatments

are initiated in response to smaller parasitaemia. The waiting time

also increases as metabolic costs (selective disadvantages of a

resistant parasites in the absence of drug pressure), c, increase

(Figure 5c), in agreement with previous studies [21,23]. These

results confirm that the number of single-drug resistant parasites at

the time of drug administration, which is modulated by m, NC, and

Figure 4. A simulation replicate in which resistance evolution occurs through type B establishment. Parameters were given in Table 1
except for l= 0.2. See Figure 2 legend for explanations of curves.
doi:10.1371/journal.pone.0101601.g004
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c, is the critical determinant of the length of phase I through both

type A and B establishments: it translates into the expected

number of mutants in the mosquito pool (type A) and the

probability of failing to eliminate them (type B). It is also shown

that NC and c are negatively and positively related to L2,

respectively. Small NC limits the number of mutant parasites

transmitted from host to migrant pool during phase II. This result

suggests that active surveillance to identify malaria patients and

start treatment with a combination drug therapy (or even to treat

individuals who are infected but asymptomatic yet) might be a

major determinant to delay the initiation and successive spread of

drug resistance.

Drug efficiency against resistant and sensitive

types. With dS fixed at 0.95, increasing dR from 0.45 to 0.7

(decreasing the fitness of resistant parasites under maximal drug

concentration) results in great increase in L1 and L2 (Figure 5d).

This is expected as the relative advantage of resistant over sensitive

parasites is decreased. In other words, strongly resistant parasites

establish and spread quicker than weakly resistant ones, a result that

is consistent with the predictions made by other approaches [22].

While increasing dR gradually increases the length of phase I (L1), it

sharply increases phase II (L2) at the highest value (0.7). It suggests

that, with large dR, a transient establishment of single-drug resistant

parasites in a host does not immediately lead to the spread of

resistance to other hosts, because mutant parasites cannot rebound

after recurrent treatment. Importantly, this consequently limits the

number of resistant parasites transmitted to the migrant pool. The

similar (but weaker) effect of c on L2 discussed above (Figure 5c) can

be understood by the decreasing relative fitness of resistant types

with increasing c.

The value of dS was also changed from 0.9 to 0.99 while dR was

fixed at 0.6 (Figure 5e). Interestingly, increasing dS (decreasing the

fitness of sensitive alleles relative to resistant ones) did not lead to faster

spread of drug resistance. L1 and dS are positively correlated when dS

increases from 0.9 to 0.94. Then, with dS.0.94, waiting times are

only slightly affected by dS. This result is explained by the fact that the

absolute fitness of a single-drug resistant parasite is a decreasing

function of dS (e.g. W2j(t)~(1{c)(1{dSC1j(t))(1{dRC2j(t))). If dS

is sufficiently reduced, the fitness of a single-drug resistant haplotype

can increase sufficiently high to allow its rebound after drug

treatment, thus initiating the type B establishment of the mutant

parasites in a host. In agreement with this explanation, the counts of

type B events (out of 400 replicates) were 346, 244 and 100 for

dS = 0.9, 0.92 and 0.94, respectively. Moreover, if dS is large, the

number of parasites within the mosquito pool becomes smaller.

Hence, hosts are less likely to be infected (low transmission) than

expected due to treatment-induced eradication. Therefore, within a

given time window, the number of infections is lower, which implies a

longer waiting time for the initiation and subsequent spread of

resistance.

Duration of treatment and drug decay. Next, the duration

(in generation) of the maximum drug concentration after the start

of treatment (lT) was varied from 3 to 7. The complete clearance of

both resistant and sensitive parasites during phase I requires a

large value of lT. Therefore, L1 is expected to increase as lT
increases, by reducing the likelihood of the type B establishment.

Figure 5f shows that this actually happened in the simulation when

lT increased from 3 to 5. However, L1 did not change when lT
increased beyond 5, indicating that lT = 5 already reduced the

probability of type B establishment to the minimum. When lT
increased from 5 to 7, L2 greatly increased. This is because, with a

large value of lT, the number of single-drug resistant parasites is

likely to go to zero even when it starts from NC, thus preventing the

spread of resistant haplotypes after a type A (or B) establishment in

a host happened.

Similar effects on waiting times were observed when the rate of

drug-concentration decay (l) was varied (Figure 5g). l= 0.1 means

approximately 10% reduction in drug concentration per genera-

tion (eq. 9). Smaller l thus means slower decay, which leads to

more thorough elimination of both sensitive and resistant parasites

per treatment. Conversely, increasing l has a similar effect of

decreasing lT. Note that the values of l considered here are

sufficiently large so that, when a parasite is transmitted to a host

from the mosquito pool, the host is expected to contain effectively

zero concentration of drugs. We observed a negative correlation

between l and the waiting time (i.e. faster evolution of drug

resistance with faster decay of drugs; Figure5g), which is

contradictory to the current consensus on the expected role of

drug decay in drug-resistance evolution [30,42]. This result will be

further discussed below. Additionally, we performed simulation

with unequal rates of drug decay: the first drug decays slowly

(l1 = 0.05) and the second drug decays fast (l2 = 0.2). In this case,

the mean waiting time to resistance (LT = 2,836) is much closer to

the case of both drugs decaying fast (l1 = l2 = 0.2; LT = 971) than

slow (l1 = l2 = 0.05; LT = 12,498). Therefore, it appears that a

drug with faster decay results in rapid emergence of resistance

despite the presence of the other slowly-decaying drug.

Threshold for host death and recombination rate. The

threshold of cumulative parasitaemia causing host death or gravity

that justified the treatment by an alternative drug was varied from

5 to 20 times NC (Figure 5h). It had little effect on waiting times

when kD$7.5. However, L2 increased significantly when kD was

reduced to 5. This suggests that a very short duration of high

parasitaemia inhibits the spread of single (or double)-drug resistant

parasites after they are established in a host. This is intuitively

clear, because large kD implies that resistant parasites can be

transmitted efficiently to the mosquito pool. If resistant parasites

Table 2. Effects of asymmetric drug effects on waiting times (mean 6 2 std. err.).

case d1S d2S d1R d2R LT L1

1 0.95 0.95 0.6 0.6 3,0746242.2 2,5356223.8

2 0.975 0.9 0.8 0.2 2,2216167.3 1,8306163.5

3 0.98 0.875 0.84 0 1,8086127.3 1,4286121.8

4* 0.9975 0 0.84 0 12061.02 14.060.48

5* 0.9975 0 0.98 0 2,2316159.8 1,8096159.1

6* 0.999 0 0.84 0 11761.01 14.360.47

*Waiting time until AR allele reaches frequency 0.5 in the mosquito pool.
doi:10.1371/journal.pone.0101601.t002
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would be cleared out of a host at the first rebound of parasitaemia

(reflecting use of an alternative drug, because of clinical failure),

phase II would substantially delay. When additional simulation

with kD = 50 or 100 was performed, little change in L1 or L2 was

observed. Therefore, allowing prolonged infection with resistant

parasites (due to recrudescence without clinical manifestation) does

not seem to speed up the spread of resistance.

Next, the recombination rate r was changed from 0.5 to 0

(complete linkage). It caused very little change, from 2,5356223

(mean 6 2s.e.) to 2,5086211 for L1 and from 3,0746242 (mean 6

2s.e.) to 3,0946235 for L1+ L2. This result is in contrast to earlier

studies that predicted the profound effect of recombination in

slowing down the resistance evolution under combination therapy

[1,20] (see Discussion).

Proportion of infected hosts that are treated. So far, we

considered scenarios in which all infected hosts are detected and

treated. Now, only proportion a of hosts receive drug treatment

because carrying capacity for parasites (K in eq. 1) in other hosts is

set below NC. Decreasing a increased both L1 and L2: with a= 0.9,

0.8, 0.7, 0.6, and 0.5, LT (L1) = 2,707 (2,123), 2,930 (2,222), 3,796

(2,788), 4,802 (3,332), and 6,283 (4,253), respectively. Waiting

times could not be obtained with a,0.5 as it prevented resistant

alleles from reaching relative frequency of 0.5 in the migrant pool.

This result confirms the conclusion of previous studies that the

presence of untreated hosts confers advantage to sensitive parasites

and thus delay the spread of drug resistance [16,22].

Effects of transmission rate and pattern. The population

structure of parasites in the current model, over which resistance

spreads as described above, is very sensitive to transmission rate t1

Figure 5. Waiting times until the spread of resistance when a single parameter is varied while others are fixed with values in
Table 1. The total waiting times (LT) are shown by points (mean 6 2 standard error) connected by solid lines and the lengths of phase I (L1) by
dashed lines.
doi:10.1371/journal.pone.0101601.g005
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and t2. If fewer parasites migrate to the mosquito pool, it leads to

fewer hosts infected, which further reduces parasite numbers in

mosquito pool. Therefore, as t1 or t2 decreases gradually to

certain thresholds, the overall population size of parasites declines

drastically, eventually leading to population collapse (i.e. drug

treatments leading to complete clearance of parasites in the entire

system). It is reflected in very rapid increase of LT as t1 or t2

becomes smaller than the values used above (Figure 6): as

population size becomes smaller mutations arise less frequently to

initiate resistance evolution. Such high degree of sensitivity to

transmission rates might be due to the unrealistically small number

of hosts used in simulation. However, the general negative

relationship between transmission rates and the waiting time is

likely to hold in actual (larger) population. (Note – This result

should be understood separately from many studies’ conclusion

that resistance occurs more rapidly in low transmission areas,

which is based on higher fraction (a) of hosts being treated upon

infection in lower transmission areas. Our result was obtained

while a is kept constant.).

We also examined if the unique conclusion from our model, in

particular the positive relationship between l and LT, depends on

the assumption in eq. (4) that the host-to-mosquito transmission

rate is proportional to log (1zNj). Simulation was performed

after this term was replaced by (Nj=K) log K , so that the

transmission rate linearly increases with parasitaemia until it

reaches K. Without increasing the transmission rate, this change

led to the collapse of parasite population: during the early phase of

infection when N,,K too few parasites migrate into the mosquito

pool to sustain the cycle of infections while each infection reaching

NC is knocked down by drug treatment. t1 was thus increased to

0.05 (from 0.015). Under this setting, while the average number of

parasites maintained in the migrant pool was similar (approxi-

mately 300), the expected numbers of single-drug resistant

parasites (m2 and m3) were more than an order magnitude smaller

(m2/m1 ,1026; it was ,1025 in Figure 2 and 4). It therefore led to

longer waiting time for the establishment of resistance. This

demonstrates that the effect of non-linear function (log (1zNj)) in

host-to-mosquito transmission rate to confer transmission advan-

tage to resistant parasites, as explained earlier (Figure 3). The

relationship between l and LT was still negative (for l= 0.075, 0.1,

0.15, and 0.2, LT = 34,076, 8,599, 1,134, and 625 generations,

respectively), suggesting that the qualitative behavior of the system

did not change. In addition, we considered a scenario in which

transmission rate (frequency of mosquito bites) is higher for certain

hosts than others [43]. Simulations were performed with host-to-

mosquito transmission according to eq. (4) and with parameter

values in Table 1 except that different values of t1, uniformly

distributed between 0 and 0.03, were assigned to individual hosts.

Transmission rate to a given host (t2) was also changed

proportionally (t2 = t1/1500). Such heterogeneity in host-to-

mosquito transmission however did not change the overall

behavior of dynamics and the relationship between l and LT

(for l= 0.05, 0.075, 0.1, 0.15, and 0.2, LT = 12877, 4850, 3046,

1632, and 960 generations, respectively).

Discussion

This study proposed a model of the evolution of anti-malarial

drug resistance which focuses on the early stochastic processes

including de novo mutations conferring partial resistance against

combination therapy and their successful propagation under weak

intra-host competition. Our model was designed to investigate the

joint dynamics of both parasite numbers and haplotype frequen-

cies by tracking the absolute as well as relative counts of sensitive

vs. resistant parasites. Such an approach was particularly necessary

to address the notion that the complete elimination of parasites by

strong drug treatment may effectively prevent the evolution of

resistance [31].

Pathway to the first establishment of resistance mutation
The occurrence and initial establishment of resistant parasites is

a major determinant of the timeframe of drug resistance evolution

[26,44]. The initial propagation of resistant alleles, which emerges

within an infection by random mutation, can continue only if it is

transferred to a mosquito. However, if the initial mutation only

partially restore parasites’ fitness under drug treatment (e.g.

tolerance as have been currently observed in ACTs), drugs will

likely eliminate resistance parasites before they can enter the

transmission cycle and, therefore, the spread of resistance cannot

be explained. To circumvent this problem, the potential role of

sub-optimal drug concentration, at which sensitive parasites are

killed (absolute fitness ,1) but resistant parasites are not (absolute

fitness .1), during the period of drug decay was invoked [30,42]: a

parasite carrying a resistant allele may enter a host with

suboptimal drug concentration and multiply to establish its clone.

This will initiate the cycles of infection to other hosts (also with

suboptimal drug concentration). This model can thus explain the

spread of initially weakly resistant alleles [30,42]. However, the

very first appearance of a resistant parasite to be transmitted to a

host remained unexplained, and thus implicitly assumed that they

somehow arose in a mosquito vector. It might be possible that a

de novo mutation occurs during meiosis within the mosquito gut

Figure 6. Waiting times until the spread of resistance when host-to-mosquito (t1) and mosquito-to-host (t2) transmission rates are
varied while other parameters are fixed with values in Table 1 (except kD = 50 and a = 0.9). The total waiting times (LT) are shown by
points (mean 6 2 standard error) connected by solid lines and the lengths of phase I (L1) by dashed lines. Low transmission rates (t1,0.007 and t2,
561025) caused the complete elimination of parasites in total population upon the start of drug treatment, which prevented further simulation.
Mean times to waiting times are based on 200 replicates.
doi:10.1371/journal.pone.0101601.g006
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[25]. However, this scenario might be ignored because signifi-

cantly lower numbers of parasites are carried within mosquitoes

relative to those within hosts [44]. Recently, Pongtavornpinyo et al.

[26] assessed the probability of the initial spread of de novo

mutation in different stages of parasite’s life cycle. However, this

study assumed mutations conferring full resistance and the

probability of resistant parasites surviving treatment - the key

determinant of the model - was externally given rather than given

as a function of more basal clinical and pharmaceutical

parameters. In the current study, the described intrahost dynamics

is much simpler. However, as we made minimal assumptions

regarding the fate of resistant alleles, computer simulations of our

model revealed key events leading to the onset and spread of

resistance.

Incomplete resistance by initial mutation and absolute
fitness

A critical assumption of this model is that mutation at each locus

confers only partial or incomplete resistance: the absolute fitness of

resistant parasite is below one under the full dose of the

corresponding drug. In addition, this absolute fitness is only

slightly dependent on the parasitaemia of the host (cf. ‘‘specific

immunity’’ in [21]). Namely, when sensitive parasites are

eliminated by drugs, the fitness of resistant parasites in the same

host is not sufficiently increased to yield their positive growth. This

is in contrast to the ‘‘competition’’ scenario in which a strong

density regulation (presumably due to resource competition) is

assumed to cause the increase of resistant parasites in place of

killed sensitive parasites (‘‘generalized immunity’’ in [21]; also

[33,34]). The competition scenario implicitly assumes that total

parasitaemia in a host is always maintained above zero despite

drug treatment. Namely, the ‘‘extinction’’ of local population does

not occur. Then, the evolutionary of trajectory of parasites is fully

determined by the relative fitness between sensitive and resistant

parasites. Since the mutants’ relative fitness only increases as

stronger and longer-lasting drugs are used, the competition

scenario inevitably leads to a conclusion that resistance spreads

faster with more aggressive drug treatment. In contrast, in our

model, the higher relative fitness of resistant over sensitive

haplotypes does not lead to an immediate increase of resistant

parasites because the absolute fitness of resistant parasites under

treatment, free from competition effect, is still below one.

Furthermore resistant parasites are more quickly removed before

they enter transmission cycle by stronger drugs. This leads to the

opposite conclusion that aggressive drug treatment delays the

evolution drug resistance.

Delayed resistance with aggressive treatment and slow
drug decay

The simulation results indicate that the spread of drug resistance

is delayed when the drug treatment is strong (large values of dR and

dS) and long-lasting (large lT and small l), which ensures the

complete elimination of not only resistant parasites that accumu-

late to a modest number by mutations but also sensitive parasites.

Using drugs with strong effect on sensitive parasites (large dS) is

important as it reduces the opportunities for type A (by reducing

the source of mutants transmitted to the mosquito pool) and type B

(by reducing the fitness of single-drug resistant parasites that are

being eliminated) establishments. It is also suggested that an early

detection of infections and drug use, which lowers the parasitae-

mia (NC) at the time of treatment, can delay the evolution of

resistance. These results point to the general population-genetics

principle that the rate of adaptive evolution is proportional to the

size of population from which rare variants arise: with a smaller

number of sensitive parasites maintained under aggressive drug

treatment, a smaller number of resistant parasites will be produced

by mutation. With reduced production of resistant parasites, the

opportunity of their transfer to mosquito vector and subsequent

propagation to other hosts becomes severely limited.

It is of particular note that a slow decay of drug concentration

(decrease in l in eq. 9) delays the evolution of drug resistance

(increase in waiting time) given that other parameter values are

held constant. Other studies have offered the opposite conclusion

that a slow decay promotes the evolution of resistance [30,34,42].

According to these studies, a slow decay of drugs extends the time

window of suboptimal drug concentration at which the growth

rate of resistant parasites is positive while that of sensitive ones is

negative. However, we do not find such predicted effect of

extended suboptimal drug concentration in accelerating resistance

evolution. This discrepancy between our result and their

prediction is again due to our model based on absolute fitness of

parasites that makes it possible to eliminate partially resistant

mutants with drug treatment. Here, l is not a simple parameter

that specifies the rate of drug decay only: with other parameters

fixed, a decrease in l implies an increase of drug efficiency due to

increase in cumulative drug dose. When initial partially resistant

mutants are efficiently eliminated, the emergence of resistance

would be greatly delayed. It should also be noted that, in the

simulation results, after a partially resistant allele’s initial

establishment (type A or B) in a host, its spread to other hosts

does not depend on the presence of a suboptimal drug

concentration: it is mainly transmitted to parasite-free hosts with

zero concentration of drugs and then quickly multiplies to a large

number without having to compete with sensitive parasites.

Therefore, the importance of suboptimal drug concentrations in

promoting resistance evolution, as advocated in previous studies,

may not apply to our model. However, we admit that, due to the

simplicity of intrahost reproduction in our model, the role of

suboptimal drug concentration in enriching resistant parasites

after they exit the hepatic stage of their life cycle [26] could not be

addressed. Further refinement of our model by dividing a host into

hepatic and blood stage will be needed for accurate assessment of

this problem.

Limits in the model
Although the model studied here provided important insights on

the complex stochastic processes involving the initial spread of

partially resistant mutations, how accurately it represents the

actual pathway of resistant parasites’ spread might be debatable.

First, due to the lack of detailed information regarding the realistic

ranges of many model parameters and the constraint in the

number of hosts simulated, the behaviour of the model was

examined for arbitrary sets of parameters. We did not observe any

indication that the qualitative dynamics of the system depends on

any particular range of parameter values, as the waiting times L1

and LT increased or decreased largely monotonically as predicted

when the value of a single parameter changed (Figure 5).

However, it is possible that joint changes in several variables

toward (unknown) realistic values may lead to a qualitatively

different behaviour of the system.

Second, the current model of intrahost dynamics might be too

simplistic to reveal important factors of resistance evolution

including the effect of recombination. No effect of recombination

was observed in our simulation probably because, in the glimpse of

Figure 2, haplotypes 1 and 4, or 2 and 3, rarely coexist in sufficient

frequencies in a host. This non-overlap between haplotypes that

preclude recombination is expected under the current model of
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simple within-host parameter growth: unless two different strains

enter a host at very similar time points, their numbers are expected

to be highly unequal because of the rapid exponential growth of

the first clone before the arrival of the second. Given that multiple

clones of Plasmodium are frequently detected from a single host [31]

and therefore provide the evidence that frequent recombination

between different parasites actually occurs [5], the model of

within-host parasite growth needs to be modified in the future to

allow similar parasitaemia for different clones.

More importantly, our model of intrahost parasite reproduction

imposed only very weak competition between strains of different

haplotypes. Using a rodent malaria model, Wargo et al. [35]

experimentally demonstrated that the removal of sensitive

parasites by drug treatment led to an amplified release of resistant

parasites after treatment. It is worth noting that there are

differences between the rodent malaria model and P. falciparum

that may affect the generalization of these results [35]. However, if

such strong intrahost competition exists in human malarias, the

overall dynamics of resistance evolution may drastically change

such that aggressive drug treatment facilitate the spread of

resistant parasites [33,34]. It is not clear how a mathematical

model can be built for such strong competitive exclusion between

strains. We explored several ways of modifying our reproductive

model to impose strong competition. For example, we replaced the

density-regulatory factor 1=(1zrN=K) in eq. (1) by

1=(1zr(NRzhNS)=K) for the absolute fitness of a (single-drug)

resistant parasite where NR and NS are the numbers of resistant

and sensitive parasites and h is the competition factor. Using h..

1 and changing other parameters to increase the resistant mutant’s

fitness one can model the rapid growth of resistant parasites when

the host is ‘‘free’’ of sensitive parasites. However, this condition

also prohibits the accumulation of resistant parasites by sponta-

neous mutations while sensitive parasites prevail before treatment,

leading to unrealistically long waiting times (data not shown). Thus

it appears that a new mathematical model beyond simple density

regulation of parasites needs to be developed to investigate the

effect of intrahost competition on drug-resistance evolution in

realistic time scale.

Finally, a profound understanding of the evolutionary mecha-

nisms driving drug resistance - from initial establishment to

successive progression - under combination therapy is most

important, as combination therapy was argued to be the most

promising strategy [41]. Our model provides such insights into

drug resistance, while emphasising the importance of the two

phases involved in establishing drug resistance. While the present

study clearly showed that combination therapy is superior to

monotherapy, testing combination therapy against alternative

strategies (alternating therapy, mosaic therapy cf. [41]) requires

further investigation. Our model can be easily adapted for this

purpose.
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