
A Novel Human TPIP Splice-Variant (TPIP-C2) mRNA,
Expressed in Human and Mouse Tissues, Strongly
Inhibits Cell Growth in HeLa Cells
Rasmi Rekha Mishra, Jitendra Kumar Chaudhary, Gagan Deep Bajaj, Pramod C. Rath*

Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract

Alternative splicing of mRNAs is known to involve a major regulation of gene expression at RNA level in mammalian cells.
The PTEN (Phosphatase and TENsin homologue deleted from the human chromosome 10), TPTE (Transmembrane
Phosphatase with TEnsin homology) and TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) belong to a family of
dual-specific lipid and protein phosphatases. PTEN is a well characterized tumor suppressor, which plays crucial role in cell
survival, cell cycle regulation, cell proliferation as well as adhesion, motility and migration of cells. The C2-domain of PTEN is
essential for PTEN-functions. We have isolated a novel 1019 bp human TPIP cDNA (TPIP-C2) from a human testis cDNA
library. In silico analysis of the cDNA revealed that it is produced from the TPIP-locus on the human chromosome 13 by
alternative RNA-splicing. It has a unique 59-Alu sequence, a LINE sequence followed by a 582 bp Open Reading Frame (ORF)
encoding a 193 aa polypeptide with a partial phosphatase domain and a C2-domain. TPIP-C2 mRNA is expressed in human
testis and in mouse tissues. Mouse testis and brain showed higher levels of TPIP-C2 mRNA in comparison to the heart, liver
and kidney under normal physiological conditions. TPIP-C2 mRNAs from human and mouse testes show extensive sequence
identity. Over-expression of TPIP-C2 cDNA in HeLa cells strongly (up to 85%) inhibited cell growth/proliferation and caused
apoptosis in a caspase 3-dependent manner. These findings suggest for the first time that a TPIP splice-variant mRNA with a
partial phosphatase domain and a C2-domain is expressed in cells and tissues of human and murine origins under normal
physiological conditions. Inhibition of cell growth/proliferation and induction of apoptosis by overexpression of TPIP-C2
mRNA in HeLa cells suggest that it may be involved in negative regulation of cell growth/proliferation.
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Introduction

Mammalian genomes contain relatively less numbers of genes,

which encode large numbers of proteins. This is effective by

alternative splicing of the primary transcripts to generate splice-

variants (SVs) of mRNAs, which code for isoforms of proteins with

variable functions. The PTEN/MMAC1 (Mutated in Multiple

Advanced Cancers-1)/TEP1 (TEnsin-like Phosphatase-1) was

identified as a tumour suppressor gene from the human chro-

mosome 10q23.3 [1–3]. It is the second most mutated tumour

suppressor after TP53 and is mutated or deleted in a wide variety

of cancers. In addition to genetic mutations, somatic, germ-line

and promoter mutations of PTEN are responsible for Cowden

syndrome (CS), Bannayan-Riley-Ruvalcaba Syndrome (BRRS),

Proteus and proteus-like syndrome etc [4–6]. PTEN acts as a dual-

specific phosphatase, it dephosphorylates both proteins at tyrosine,

serine, and threonine residues and lipid second messengers like

phosphatidyl inositol 3, 4, 5-triphosphate [PI(3,4,5)P3], -3, 5-

diphosphate [PI(3,5)P2], -3, 4-diphosphate [PI (3,4)P2] and -3-

phosphate [PI(3)P] at D3-position, thus antagonizing the PI-3

kinase-AKT mediated cell growth/proliferation signaling pathway

[7–10]. Crystal structure, deletion and mutation studies of PTEN

revealed that the C-terminal C2-domain associates strongly with

the N-terminal phosphatase domain to make the catalytic site

and even small deletion of the C2-domain removes detectable

phosphatase activity [11–14]. Evidence from recent literature

suggests that the C-terminus of PTEN possesses autoinhibitory

function, interfering both the phosphatase and C2-domain and

this is accomplished by direct interaction of the tail region with the

C2-domain [15–17]. It is also reported that PTEN regulates cell

migration through its C2-domain, independent of its lipid-

phosphatase activity and this activity of C2-domain is controlled

by Thr383 phosphorylation/dephosphorylation [18]. Similarly,

PTEN physically interacts with many proteins, e.g., Thioredoxin-1

(Thx-1), serine/threonine kinase (STK11, also named as LKB1)

and p53 by its C2-domain [19–21]. Interaction of PTEN with p53

facilitates transactivation of p53 and autoregulation of its own

expression and this function is independent of the PTEN-

phosphatase function [22]. Thus, C2-domain of PTEN is crucial

for its biological function.

Other phosphatases of PTEN-family include TPTE and TPIP.

TPTE is a testis-specific gene expressed from the human chro-

mosome 21, while TPIP is expressed from the human chromo-

some 13. Both TPTE and TPIP have multiple splice-variants i.e.,
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TPTEa, b, c, d [23–26] and TPIP a, b, c and d [25,26] reported

so far. TPTE is a testis-specific phosphatase, while TPIPa is highly

expressed in testis and brain and at low levels in stomach and

TPIPb is expressed in the testis. The human TPIPc, TPTEa,

TPTEb and TPTEc have four putative transmembrane domains;

TPIPa and TPTEd have three and two putative transmembrane

domains, respectively, whereas TPIPb has no transmembrane

domain. TPIPa and c are localized in the endoplasmic reticulum

(ER) and Golgi, respectively, TPIPb is cytosolic. All TPTE

derivatives are restricted to the ER and Golgi, except TPTEd,

which shows a more diffused pattern of expression. TPTE and

TPIP proteins are expressed in secondary spermatocytes and/or

pre-spermatids. TPIP and TPTE have similar domain-organiza-

tion. TPIPa is reported to be a lipid-phosphatase like PTEN and

has phosphatase activity against the lipid substrates: PI(3,4,5)P3,

PI(3,5)P2, PI(3,4)P2 and PI(3)P, which are second messengers in

cellular signaling pathways [23–26].

In the present study, we have isolated a novel TPIP splice-

variant (TPIP-C2) mRNA from a human testis cDNA library.

TPIP-C2 mRNA can code for a 193 aa putative C2-domain-

like protein. It is produced from the human TPIP-locus on

chromosome 13 by alternative RNA-splicing and expressed in

human testis and mouse tissues. The TPIP-locus of mouse genome

is expressed as TPIP-C2 mRNA in the tissues. Functional assay

showed that ectopic expression of TPIP-C2 cDNA caused up to

85% suppression of cell growth/proliferation and induced apo-

ptosis in human cervical carcinoma (HeLa) cells. Therefore, the

alternatively spliced TPIP-C2 mRNA encoding an isolated C2-

domain-like protein may exist in mammalian cells and tissues and

negatively regulate signaling events involved in regulation of cell

growth/proliferation.

Results

Isolation and characterization of TPIP-C2 cDNA from
human testis

The TPIP-C2 cDNA was isolated as a 1.019 kb cDNA from a

lgt11 human testis cDNA library [27] by screening with a 227 bp

rat genomic simple repeat DNA probe (GenBank Accession No. X

97459) as described in the materials and methods section during

an investigation to look for repeat sequence containing RNAs from

the human genome. Analysis of the 1.019 kb TPIP-C2 cDNA

sequence (GenBank Accession No. FJ969729) was carried out

using standard bioinformatics tools and the summary of the results

is schematically shown in Figure 1A, B, C and Figure S1A, B, C. It

contains a 59-97 nt. (145–241) Alu-repetitive SINE element

belonging to AluSx-class, a 61 nt. (268–328) LINE sequence

belonging to L3CR1 class followed by a 582 nt (340–921)

encoding a 193 aa ORF (Figure 1A). The genomic organization

of TPIP-C2 cDNA was deduced by comparison with the TPIP

locus of human genome sequence, as shown in Figure 1B. TPIP-

C2 is a novel isoform belonging to PTEN-C2 superfamily, though

similar in many ways with the TPIPa, c and d isoforms. It has

some distinct characteristics, such as presence of a repeat-rich 59-

UTR (46% of the 59-UTR is composed of SINE and LINE

sequences) and a 14 nucleotide unique sequence at 39-end, which

has been incorporated from outside the TPIP-locus (Table S1,

Figure 1A, B, C). This may involve trans-splicing, a less frequent

RNA-processing mechanism. In silico analysis mapped the 59-end

of TPIP-C2 to the intron 15 of the human TPIP locus on

chromosome 13 (Figure 1B, Figure S1D). The TPIP-C2 SINE is

unique because it is present in the 59-untranslated region (59-

UTR). In contrast, similar SINE elements are present in 39-UTRs

of several human transcripts (Table S2). It is likely that it may be a

target of small non-coding RNA.

We checked the presence of TPIP-C2 sequence in the human

genomic DNA. Southern blot analysis of genomic DNA from

human peripheral blood lymphocytes using BamH I, EcoR I and

Hind III digestions followed by hybridization of 32P-TPIP-C2-

ORF (603 bp) DNA probe identified genomic DNA fragments of

expected sizes based on in silico analysis of the genomic

organization of the locus (Figure 2A, B). As shown in Figure 2

B, the expected sizes of fragments, which can be detected by TPIP-

C2-ORF probe were calculated from the 119.33 kb human

genomic sequences on chromosome 13 (NT_024524.13). A search

of the cDNA database revealed homology of TPIP-C2 with

TPTE2 and TPTE cDNAs (Table S1). TPTE2 and TPIP-C2

cDNAs contain exactly identical coding region, but differ

significantly with respect to their 59-UTR and 39-UTR regions,

thus suggesting possible differential regulation at RNA level with

respect to expression and translation of these transcripts in cells.

Expression of TPIP-C2 mRNA in human tissues
Expression of TPIP-C2 mRNA was studied by using a human

multiple tissue northern (MTN) blot and 32P-TPIP-C2-ORF DNA

probe. A poly(A)+ transcript of 2.5 kb was specifically detected in

the human testis RNA but not in the spleen, thymus, prostate,

ovary, small intestine, colon and peripheral blood leukocytes RNA

(Figure 2C). A similar experiment was carried out using a human

multiple tissue expression (MTE) array. A prominent signal was

again specifically detected in the human testis (Figure 2D, row F,

column 8), while RNA from other tissues (Figure 2) was either

negative or showed very low levels of expression. This is in

agreement with the northern blot result. A number of human

cancer cell lines and tissues were negative for TPIP-C2 mRNA

expression (Figure 2D, Figure S2A). The full-length 32P-TPIP-C2

cDNA probe detected strong signals in almost all tissues because of

the SINE and LINE sequences present in the full-length TPIP-C2

cDNA and expression of RNAs containing the SINE and possibly

LINE RNAs in the human cells and tissues, this served as an

internal control (Figure S2B). These results indicate that TPIP-C2

mRNA is predominantly expressed in human testis.

Expression of TPIP-C2 mRNA in mouse tissues
We checked TPIP-C2 mRNA expression in mouse tissues. RT-

PCR analysis was carried out to check whether TPIP-C2-like

mRNA is expressed in mouse tissues or not, although no TPIP

RNA/cDNA has been reported from mouse till date. We developed

a specific RT-PCR assay to distinguish TPIP-C2 transcript from

RNAs produced from other TPIP-isoforms. Based on the sequence

homology, the ORF-primers (P1 and P2) (Figure S1B) are expected

to amplify a 603 bp TPIP-ORF from TPIPa, c, d and -C2

transcripts. Therefore, TPIP-C2-specific primers (P3 and P4) were

designed to specifically amplify a 733 bp product from cellular

TPIP-C2 transcript but not from other related transcripts. Figure

S3A (left panel) shows that TPIP-ORF is negative for P3+P4

primers (lane 4) but positive for P1+P2 primers (lane 3). Hence, the

733 bp amplicon (lane 6) is specific for TPIP-C2 cDNA/mRNA.

Analysis of RNA from the brain, heart, testis, liver and kidney of

adult male mice by RT-PCR showed differential expression of

TPIP-C2 mRNA in the mouse tissues (Figure S3A, right panel). The

testis and brain showed higher expression of TPIP-C2 mRNA than

heart, liver and kidney. The RT-PCR was again carried out for 20,

25, 30, 35 cycles and normalized to GAPDH and b-actin signals.

This semi-quantitative RT-PCR analysis showed higher levels of

TPIP-C2 mRNA expression in brain and testis in comparison to

heart, liver and kidney of mice under normal physiological

Expression and Cell Growth Inhibition by TPIP-C2
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conditions (Figure 3A, B). The RT-PCR products from brain, heart,

testis, liver and kidney were purified, cloned and sequenced to

confirm their identity. The TPIP-C2 cDNA sequence (GenBank

Accession No. FJ969730) from mouse testis is identical to that

obtained from human testis, while other tissues showed single

nucleotide changes (Figure S3B, C). These single nucleotide/amino

acid changes such as A350G = Thr 99 Ala, G288A = Arg 78 His in

heart and T612C = Val 186 Ala in kidney may potentially change

Figure 1. TPIP-C2 cDNA, genomic organization of TPIP-locus and PTEN, TPIP, TPTE protein isoforms. (A) TPIP-C2 cDNA (1019 nt)
contains a SINE belonging to the AluSx class and a LINE belonging to the L3CR1 class in its 59-untranslated region (59-UTR) followed by a 193 aa. ORF.
The P1 and P2 primers amplify a 603 bp TPIP-C2 ORF, the P3 and P4 primers are TPIP-C2-specific and amplify a 733 bp product. (B) Comparison of
TPIP-C2 exons with TPIP-isoforms. The 1–23 exons of TPIP gene on the human chromosome 13 and the corresponding exons of TPIP-isoforms are
shown. TPIP-C2 cDNA is shown below and the 59-UTR in shaded box indicates its origin from intron 15. The line below the exons represents CDS and
the corresponding ORF, the extended exon 16, the 15 nt unique sequence to exon-23 of TPIP-C2 are shown. (C) Schematic representation of TPIP-C2
and the related protein isoforms. The 193 aa. TPIP-C2 ORF has a partial phosphatase domain (1–56) and a C2-domain (57–193) identical to TPIPa, c, d
and homologous to PTEN. The structural and functional regions are indicated.
doi:10.1371/journal.pone.0028433.g001
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the TPIP mRNA coded amino acid sequence in the protein, while

some other changes such as T241 T/C, G706A, A665G make no

change in the amino acid sequence. Expression of TPIP-C2 mRNA

was also confirmed by northern blot hybridization in different

mouse tissues by using the TPIP-C2-specific 180 bp (BamH I-Dde

I) DNA probe generated from the mouse testis-derived 733 bp RT-

PCR product (Figure 3C). It detected a prominent mRNA species of

,3.48 kb and some additional smaller transcripts of ,1.45, 1.2 and

0.9 kb in the brain, heart, testis, liver and kidney (Figure 3C). All

these results taken together suggest that the TPIP-C2 transcript is

expressed at different levels in different tissues of mouse under

normal physiological conditions.

Overexpression of TPIP-C2 in HeLa cells caused inhibition
of cell growth/proliferation and induction of apoptosis

We checked possible cellular function of TPIP-C2 mRNA in

human cells. TPIP-C2 cDNA was expressed from pCDNA-TPIP-

C2 plasmid in HeLa cells by stable transfection followed by G418-

selection resulting into G418-resistant colonies expressing TPIP-

C2 mRNA. Overexpression of TPIP-C2 mRNA caused up to 85%

decrease in the number of G418-resistant colony formation. This

is shown by two independent experiments with two different DNA

concentrations (2.5–10 mg DNA per 10 cm plate and 1–5 mg DNA

per well of 6 well plate). The suppression of cell growth/

proliferation increased from 12% to 85% with increasing amount

of cDNA transfected into the cells showing a DNA-dose-

dependent effect (Figure 4A, B). The magnitude of cell growth/

proliferation suppression (Figure 4A, B) can be correlated with the

level of TPIP-C2 mRNA expression measured by RT-PCR in a

DNA dose-dependent manner (Figure 4C). Endogenous expres-

sion of TPIP-C2 mRNA in HeLa cells is also detected by RT-PCR

(Figure 4C lower panel, lane C). The colony morphology and size

also significantly changed due to TPIP-C2 mRNA expression and

there is a direct correlation between the level of TPIP-C2 mRNA

expression and changes in the morphological features of the cells

(Figure 4D). TPIP-C2 cDNA transfected colonies are significantly

Figure 2. Genomic organization and expression of TPIP-C2 mRNA. (A) Southern blot analysis of genomic DNA from human peripheral blood
lymphocytes (PBL) is shown after BamH I (B), EcoR I (E), Hind III (H) digestions and hybridization with [32P] labeled 603 bp TPIP-C2 ORF-DNA probe.
The cDNA plus ORF is used as a positive control. (B) Restriction map of the human TPIP-C2 gene derived from TPIP-C2 genomic locus spanning
,15.3 Kb. Restriction enzymes (RE) used for the study are: E-EcoR I, H-Hind III, B-BamH I. The expected sizes of respective restriction fragments to be
detected by the TPIP-C2-ORF probe are calculated from the genomic sequence and are given in the table from left to right as per the map. (C) Testis-
specific expression of TPIP-C2 mRNA: Multiple tissue northern (MTN) blot of poly(A+) mRNAs from the human tissues was hybridized with [32P]
labeled 0.603 kb TPIP-C2 ORF-DNA probe. A distinct transcript of ,2.5 kb is observed in the human testis. (D) MTE array of poly(A+) mRNAs from the
human tissues and human cancer cell lines were hybridized with [32P] labeled 0.603 kb TPIP-C2 ORF-DNA probe. The testis showed strongest signal
while other tissues showed very weak signal. PBL: Peripheral blood leucocytes.
doi:10.1371/journal.pone.0028433.g002
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Figure 3. Expression of TPIP-C2 mRNA in mouse tissues. (A) RT-PCR of TPIP-C2 from the mouse tissue RNA. RT-PCR of cellular GAPDH and b-
actin mRNAs are shown as internal reference. (B) Normalized RT-PCR signals: the TPIP-C2 mRNA signal was normalized to GAPDH (TPIP-C2/GAPDH)
and b-actin (TPIP-C2/b-actin) mRNA signals and plotted. The data represents average of two independent experiments. (C) Schematic representation
of the mouse TPIP-C2 probe. The 733 bp mouse TPIP-C2 RT-PCR product was purified, cloned and digested by restriction enzymes (as shown) and the
180 bp BamH I/Dde I DNA fragment was used as the probe. Northern blot hybridization shows TPIP-C2 mRNA expression in the mouse tissues by

Expression and Cell Growth Inhibition by TPIP-C2

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28433



reduced in size with fewer cells. A quantitative representation of

these morphological changes in the colonies as a function of

increasing amount of TPIP-C2 mRNA expression is shown in

Figure 4D (lower panel). The number of defined colonies

decreased, the number of single cells increased and the number

of loose colonies remained similar suggesting the cell growth/

proliferation suppression effects of TPIP-C2 mRNA. The cells

appeared to be growth-arrested. The level of endogenous TPIP-

C2 mRNA did not alter even after 10 mg vector DNA transfection

indicating there was no effect on the cells due to the method of

transfection or the vector DNA.

From these results it is clear that TPIP-C2 mRNA is a splice

variant (SV) from the human TPIP-locus and the TPIP-C2 protein

product is completely identical with the C2-domain of other TPIP

isoforms (TPIPa, c, d). Therefore, we inserted a HA-tag to make

pCDNA-TPIP-C2-HA expression plasmid so that upon transfec-

tion, the protein can be detected by western blot using anti-HA

antibody. Expression of HA-tagged TPIP-C2 protein is shown in

HeLa cells transfected with the HA-tagged plasmid (Figure 4E).

Antibody against the HA-tag identified a band of approximately

30 kDa size demonstrating that the TPIP-C2 mRNA was expressed

into the TPIP-C2 protein after transfection of the cells. To correlate

the cell growth/proliferation suppression effect with over-expression

of TPIP-C2 protein, we looked for specific expression of active

caspase 3 (17 kDa protein). Caspase 3 is found as an inactive

32 kDa proenzyme and during apoptosis, initiator caspase cleaves

the procaspase 3 into 17–19 kDa and ,12 kDa active forms of

caspase 3. Immunoblot analysis of the vector and TPIP-C2-HA

transfected cell extracts showed expression of activated caspase 3 in

the TPIP-C2-HA transfected cells, which is a hallmark of apoptosis

(Figure 4E). The caspase 3 antibody used here is specific for the

cleaved 17 kDa protein. Expression of endogenous b-actin protein

is shown as internal control. Therefore, the cell growth/prolifera-

tion suppression effects can be correlated with expression of the

TPIP-C2 protein from the transfected cDNA and TPIP-C2 can

cause apoptosis in HeLa cells.

To further validate the growth/proliferation suppressive effect

of TPIP-C2 in HeLa cells, cell proliferation was measured by a

cell viability assay (MTT) in TPIP-C2 transfected HeLa cells. The

transfection efficiency was ,40% to 50% as determined by

transfection of 1 mg of pEGFP-N2 plasmid in HeLa cells

(Figure 5A). As shown in Figure 5B, the cell viability/proliferation

inhibition increased from 45% to 62% with the increase in amount

of TPIP-C2-HA DNA transfected (0.25 to 1.0 mg) into the cells. As

described above, over-expression of TPIP-C2-HA protein caused

activation of caspase 3 protein, which is actively involved in

apoptosis. The cell cycle status was also analyzed by flow

cytometry by measuring the fluorescence from the cells stained

with propidium iodide. With the increase in TPIP-C2-HA DNA

transfection, the percentage of cells in the G1-phase decreased and

the percentage of apoptotic cells in the sub-G1 region increased

from 8.7% to 29.5% (Figure 5C). The morphology of the cells

transfected with increasing amount of TPIP-C2-HA DNA was

observed by bright field microscopy. These cells showed altered

morphology in comparison to the vector DNA-transfected cells.

The number of floating cells also increased with the increase in

amount of transfected DNA (Figure 5, lower panel). These results

clearly demonstrate that TPIP-C2 is a potent activator of cell cycle

arrest and apoptosis in HeLa cells.

Discussion

TPIP-C2 mRNA and its expression in human and mouse
tissues

In this study, we report a new isoform of TPIP mRNA, which

was isolated from the human testis cDNA library and we named it

as TPIP-C2 mRNA, this is in addition to the previously described

TPIPa, b, c and d isoforms. Mammalian genome maintains the

genomic DNA as the blue print of the organism with high degree

of consistency and transcribes it into large numbers of RNAs with

high degree of fidelity and variability. Primary transcripts from

many human genes are processed by different posttranscriptional

mechanisms to produce isoforms of RNAs and proteins for

carrying out various cellular functions [28]. One of such examples

is the human TPIP locus, which is capable of generating multiple

mRNA isoforms by alternative splicing. Since there is only a single

copy of TPIP gene in the human genome, TPIP-C2 mRNA must

be generated by alternative splicing of the TPIP pre-mRNA

utilizing cryptic or alternative splice sites. TPIP-C2 cDNA has

retrotransposon-derived repeat sequences in the 59-end (1–324 nt)

region, which has no homology with the TPIP and TPTE isoforms

but it shows very high sequence similarity with the 2727 nt of

TPIP-pseudogene present on chromosome 13. There is also a

processed TPIP pseudogene on chromosome 13 (ref|NR_

002815.1|). The exon 16 of TPIP-C2 transcript is extended into

intron 15 and it also includes a part of the intron 15 in the mature

transcript. Thus, it represents an ‘‘exon-extended’’ model of

alternative splicing. The extended 59-exon 16 into the intron 15

forms the 59-UTR and genomic Southern hybridization with

TPIP-ORF probe detected corresponding chromosomal fragments

suggesting that TPIP-C2 transcript has been generated by

alternative splicing (Figure 1, 2). Alterations in splicing and

differential expression of splice-variants (SVs) have been reported

for many other genes involved in various cancers and also in other

diseases. Novel SVs of PTEN retaining part of introns also have

been reported. The PTEN-SVs showed differential expression in

heritable and sporadic breast cancers, CS patients and normal

healthy controls. Some PTEN-SVs showed higher expression in

human fetal tissues in comparison to adult tissues. This is one

example showing functional regulation and inactivation of the full-

length gene in the inherited cancer syndromes by its splice variants

[29].

The TPIP-C2 SINE is also present in 39-UTR of many other

human transcripts indicating its functional significance. Since Alu

sequences are abundant and polymorphic in the human genome

and most of the human genome is transcriptionally active, we

expect presence of Alu sequences in several RNAs. This may have

functional consequences and evolutionary significance. SINE and

LINE elements located in promoters of some human genes have

been reported to contain high-affinity binding sites for hormone

receptors, their presence in enhancers suggest role of these mobile

DNA elements in regulation of gene expression [30,31]. The

functional significance of LINE and SINE sequences in the 59-

UTR of TPIP-C2 mRNA needs to be further investigated.

TPIP-C2 mRNA is strongly expressed in human testis as a

2.5 kb mRNA and weakly expressed in other tissues (Figure 2). It is

differentially expressed in major mouse tissues; the testis shows

maximum expression followed by the brain, kidney, heart and

liver (Figure 3). TPIP-C2 mRNA expression in mouse tissues

using random-primed [32P] labeled 180 bp TPIP-C2-specific DNA probe. 32P-labeled random-primed GAPDH (452 bp) probe was used as an internal
control. Methylene blue staining of the ribosomal RNAs on the RNA-filter was used as a loading control. M: Marker, Lc: 20 ng of 0.74 kb DNA as
loading control, B: brain, H: heart, T: testis, L: liver and K: kidney.
doi:10.1371/journal.pone.0028433.g003
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differs from expression of other TPTE family members, where the

expressed RNA is restricted to testis. The mouse TPIP-C2 mRNA

is detected as a 3.5 kb RNA and is distinctly different from

PTEN2, a testis-specific RNA of 2.7 kb [32] and other TPTE-

isoforms of mouse. As there is no TPIP mRNA reported from

mouse yet, this is the first study to identify a TPIP mRNA

expressed in a wide variety of mouse tissues under normal

physiological conditions. The nucleotide sequence of TPIP-C2

cDNAs generated by RT-PCR from mouse and human testis are

highly homologous indicating their evolutionary conservation.

However, the relationship of the 1 kb human TPIP-C2 cDNA, the

2.5 kb human mRNA and the 3.5 kb mouse mRNA need further

investigation. It will be interesting to study the localization and

function of TPIP-C2 isoforms in human cells and mouse tissues.

Figure 4. Cell growth/proliferation-suppression by TPIP-C2 cDNA in HeLa cells. (A) HeLa cells were transfected with pCDNA-TPIP-C2
plasmid DNA (2.5, 5.0 and 10 mg DNA in a total of 10 mg of DNA per 6-well plate or with pCDNA-TPIP-C2 plasmid (1, 2, 3 and 5 mg DNA) in a total of
5 mg DNA per well in 6-well plate in duplicates, stable G418-resistant colonies were selected by 0.6 mg/ml G418 for three weeks, and their number
was counted. (B) The TPIP-C2-transfected G418-resistant colonies of HeLa cells with respect to transfection of 10 mg of vector DNA (V); 2.5, 5.0, 7.5,
10 mg of TPIP-C2 DNA and negative control (no DNA). (C) Expression of TPIP-C2 mRNA by RT-PCR in the untransfected and transfected HeLa cells.
Cells were transfected with the indicated amount of plasmid DNA (total amount of DNA was made 10.0 mg with vector). RT-PCR of cellular GAPDH
and b-actin mRNA are shown as internal reference. (D) Morphology of the G418-resistant TPIP-C2 cDNA transfected and vector transfected HeLa cell
colonies (upper panel). Quantification of TPIP-C2 transfected G418-resistant HeLa cells showed decrease in the number of defined colonies and
increase in the number of single cells with increasing DNA (1, 2, 3 and 5 mg/well) (lower panel). *: Data represent average values of duplicates from
two independent experiments. (E) Expression of HA-tagged TPIP-C2 protein in TPIP-C2-HA transfected HeLa cells by Western blot. HeLa cells were
transfected with pCDNA-TPIP-C2-HA plasmid (1 and 2 mg) or pCDNA vector (2 mg). Expression of active caspase 3 (cleaved caspase 3) was detected in
cell extracts by Western blot analysis. Expression of cellular b-actin protein is shown as an internal reference.
doi:10.1371/journal.pone.0028433.g004
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Differences in the size and expression pattern of TPIP-C2 mRNAs

in the mouse and human tissues may indicate that they may have

different functions in the two species. However, it may be possible

that TPIP-C2 mRNA has a generalized function required for

normal cellular physiology thus expressed in many cell types/

tissues of mouse in contrast to PTEN2, which is a Golgi-associated

lipid phosphatase and may have a specialized function during

development and differentiation of sperms in testis [32].

TPIP-C2 protein and its effect
The TPIP-C2 protein belongs to the PTEN-C2 superfamily of

phosphatases. The three-dimensional structure of PTEN provides

a deep insight into potential mechanisms by which the PTEN

phosphatase can recognize and dephosphorylate its 3-phosphate-

containing phospholipid substrates. The PTEN-C2 domain lacks

the canonical Ca2+ ligands, and thus it is similar to the C2 domains

of the Ca2+-independent protein kinase C (PKC)-isotypes [11].

Classically, C2 domains have a stable b-sheet scaffold, which

allows them to fold autonomously. This scaffold allows the

emergence of variable loops at the top and bottom of the domain.

The b-scaffold probably allows them to bind phospholipids in a

Ca2+-dependent manner as shown for C2A-domain of synapto-

tagmin I [33]. PTEN is known to bind phospholipid membranes in

vitro via its C2-domain and mutation of basic residues in this region

reduces PTEN’s membrane affinity and its ability to suppress

growth of glioblastoma tumor cells [11]. The CBR3 loop in

PTEN-C2 domain plays central role in membrane interaction,

binding and function of PTEN [34]. TPIP-C2 has a partial

phosphatase domain and a C2-domain. It has two conserved

hydrophobic residues, Lys-140 and Tyrosine-141 at the CBR3 tip

Figure 5. Cell growth/proliferation-suppression and apoptosis by expression of TPIP-C2 in HeLa cells. (A) HeLa cells were transfected
with 1 mg CMV-enhanced GFP (pEGFP-N2) plasmid and the transfection efficiency (,40%–50%) was calculated by counting ,1000 cells/well. (B) HeLa
cells were transfected with pCDNA-TPIP-C2-HA plasmid DNA (0.25, 0.5 and 1.0 mg DNA in a total of 1.0 mg of DNA per 24-well plate in triplicates).
Viable cells were quantitated by using MTT assay. Data plotted shows means 6 SEM of triplicate wells. (C) Flow cytometric analysis of HeLa cells
transfected with TPIP-C2-HA plasmid. DNA was stained with propidium iodide and DNA content was determined by flow cytometry 36 h post-
transfection. Data are presented as percentage apoptotic (M1), G1 phase (M2), S phase (M3) and G2/M phase (M4). Morphology of HeLa cells after
transfection with TPIP-C2-HA plasmid (1.0, 2.0 and 4.0 mg), showing attached and floating cells visualized under a bright field microscope. This is
representative of three independent experiments. AP: Apoptotic, Vector: transfected with 2 mg pCDNA 3.1 plasmid. All experiments were performed
36 h post-transfection.
doi:10.1371/journal.pone.0028433.g005
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and hydrophobic residues are known to be crucial for insertion in

lipid bilayer, therefore, probably it can act in a similar fashion like

the PTEN-C2 domain. PTEN causes negative regulation of cell

growth/proliferation by downregulating the effects of PI-3kinase.

Recent studies have highlighted PTEN as an inducer of apoptosis

in cancer cells [35] and the p73/PTEN protein complex can act as

a co-activator of apoptosis [36].

Interestingly, over-expression of TPIP-C2 mRNA in HeLa cells

also showed similar effects like cell cycle-arrest, suppression of cell

growth/proliferation and induction of apoptosis like PTEN

(Figure 4 and 5). The effect of TPIP-C2 was observed in a

caspase-3 dependent manner as shown by the expression of

activated caspase 3 protein (Figure 4). The TPIP-C2 cDNA

transfected G418-resistant cells showed more loose colonies and

hardly any well defined colony. The morphology of the transfected

cells at higher magnification looked more like growth-arrested cells

and after transfection, there was hardly any cell proliferation

indicating TPIP-C2 mRNA is a potent inhibitor of cell growth and

proliferation. Over-expression of TPIP-C2 by transient transfec-

tion caused increase in the number of floating cells with severe

altered morphology and increased sub-G1 apoptotic population of

cells in a dose-dependent manner indicating that TPIP-C2 is a

potential inducer of apoptosis (Figure 4 and 5). It was also

observed that HeLa cells have endogenous TPIP-C2 mRNA as

detected by RT-PCR. This result is in correlation with the MTE

blot, where testis showed highest level of expression but other cell

types expressed very low levels of TPIP-C2 mRNA (Figure 2).

It has been reported that isolated PTEN C2-domain can inhibit

cell migration in U373 cells [18] and during epithelial-to-

mesenchymal transition (EMT) of developing chick embryonic

mesoderm [37]. It has been also reported that the double

phosphatase-deficient PTEN (C124S) [38] and the lipid-phospha-

tase-dead PTEN (G129E) [39] also inhibited cell invasion in case

of glioma cells and bladder cancer cells similar to the wild type

PTEN. Recently, it has been reported that PTEN-C2 domain can

decrease angiogenesis and VGEF-expression suggesting phospha-

tase-dependent and -independent functions of PTEN in HepG2

cells [40]. Interestingly, more than 40% of mutations in PTEN

have been mapped to the C2-domain [14]. Recently, the PTEN-

C2 domain has been reported to cause inhibition of transcription

of U6 snRNA [41]. Similarly, the C2 domain of perforin has been

shown to mediate Ca2+-dependent membrane binding [42].

Natural killer cells and cytotoxic T lymphocytes produce perforin

and granzyme. Perforin binds to cell membrane, oligomerizes,

makes pores in the membrane and delivers the proapoptotic

granzyme to kill virus-infected and neoplastic cells. This example

links C2 domain to cell growth inhibition, cytotoxicity and

apoptosis. All these observations suggest that C2-domain may be

crucial for regulation of cell migration, cell invasion and cell death.

The present study shows function of TPIP-C2-domain in negative

regulation of cell growth/proliferation and as a potential inducer

of apoptosis. TPIP-C2 mRNA/protein may negatively regulate

cell growth/proliferation by cell cycle arrest and apoptosis in

mammalian cells. Endogenous expression of the TPIP-C2 protein

needs to be studied in mammalian cells and tissues for its function.

Taken together, TPIP-C2 may be a Ca2+-independent PTEN-like

C2-domain protein, probably membrane localized, and it induces

apoptosis and negatively regulates cell growth/proliferation

possibly as a dominant negative molecule by interfering with

proteins involved in the interactions of extracellular matrix

(ECM) and cell surface associated as well as intracellular proteins.

The detailed molecular mechanism of the cell growth/prolifer-

ation inhibition by TPIP-C2 mRNA/protein needs further

investigation.

Materials and Methods

Sequence analysis, Database searches
The 1.019 kb TPIP-C2 cDNA was sequenced and analyzed

online using BLAST, ORF finder and RepeatMasker for genomic

localization, possible ORF and repeats. CLUSTAL-W amino acid

sequence alignment and Kyte and Dolittle hydropathy score were

carried out, genomic organization of TPIP-C2 was found by

comparing with the 119.33 kb human genomic sequence on

chromosome 13 (NT_024524.13) by BioEdit online. The 59 splice

site was identified by comparing TPIP-C2 cDNA with the

genomic contig (NT_024524.13). Prediction and comparison of

domains was carried out by ELM, SMART through ExPASy

Proteomics tools.

Reagents, cDNA library and antibodies
Molecular biology and tissue culture grade materials and

reagents were purchased from Sigma-Aldrich (U S A), New

England Biolabs and Promega (U S A), synthetic oligonucleotides

were from Life Tech. (U S A) and Microsynth (Switzerland),

LipofectamineTM 2000 (Invitrogen), the human testis lgt11 cDNA

library, the human RNA-blots for expression analysis and pEGFP-

N2 plasmid were from Clontech (U S A). The radioisotope,

[a-32P]dATP (specific activity = 4000 Ci/mmole) was from BRIT,

India. Anti-b-actin monoclonal antibody (A5316), anti-HA-

antibody (H9658), anti-caspase 3 active (C8487), MTT (M2128),

Propidium iodide (P4170) were from Sigma-Aldrich.

DNA constructs, oligonucleotides, genomic DNA, cells
and mice

The 1.019 kb TPIP-C2 cDNA was isolated from a lgt11

human testis cDNA library [27] by a 227 bp rat genomic simple

repeat DNA probe isolated in this laboratory [43]. The l-clone

was digested by EcoR I and subcloned into EcoR I site of

pBluescript vector (pBS-TPIP-C2 plasmid). The TPIP-C2 cDNA

was also subcloned into EcoR I site of pCDNA3.1 vector

(pCDNA-TPIP-C2 plasmid) for expression in mammalian cells.

To check the expression of TPIP-C2 protein, nine aa HA-tag was

introduced in the pCDNA-TPIP-C2 plasmid just before the stop

codon in the TPIP-C2 ORF by circular PCR using Pfu Turbo

DNA polymerase (Stratagene) and Dpn I digestion to make

pCDNA-TPIP-C2-HA tagged plasmid. The PCR reaction

contained 16 PCR buffer, 25 pmole primers (TPIP-C2-HA

primers), 1.0 ng pCDNA-TPIP-C2 template, and 2.5 U Pfu DNA

polymerase. The PCR cycle parameters were: initial denaturation

at 95uC for 4 min followed by 35 cycles of denaturation at 95uC
for 45 sec, annealing at 54uC 45 sec, polymerization at 68uC for

15 min and a final extension of 10 min at 72uC. The 733 bp

TPIP-C2 RT-PCR products (described below) from the mouse

tissues were cloned into pTZR/T TA-vector (pTZ-TPIP-C2

plasmids). The pBS-TPIP-C2 and pTZ-TPIP-C2 plasmids were

used for DNA sequencing. The following forward (f) and reverse (r)

oligonucleotides were used as primers for PCR and RT-PCR.

GAPDH: 59-ACCACAGTCCATGCCATCAC-39 (f) and 59-

TCCACCACCCTGTTGCTGTA-39 (r); b-actin: 59-TTCTA-

CAATGAGCTGCGTGT-39 (f) and 59-AGGATCTTCATGA-

GGTAGTC-39 (r); TPIP-ORF: 59-AAGAATAAGCTTATGG-

TTTGTGCCCTCCTTATTG-39 (P1), 59-TCATTGAAGCTT-

CATTTCTCGCCAAAAAGTATCTCCA-39 (P2); TPIP-C2: 59-

ATACCATGTATGTTCTTGAACT-39 (P3) and 59- GGATTG-

GAGAGCGGGGATT-39 (P4). TPIP-C2-HA: 59-TACCCA-

TACGATGTTCCAGATTACGCTTGACTTCCAATGATGT-

TGTAG-39 (f) and 59-TCAAGCGTAATCTGGAACATCG-

TATGGGTATTTCTCGCCAAAAAGTATCTC-39 (r).
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Human genomic DNA was purified from human peripheral

blood lymphocytes, human cervical carcinoma (HeLa) cells were

from ATCC (U S A) and 12–14 weeks old Swiss albino male mice

were obtained from the Animal house of Jawaharlal Nehru

University. All experimental protocols involving the use of animals

were reviewed by the Institutional Animal Ethics Committee

(IAEC); registration No. 19/1999 (CPCSEA), dated 10.03.1999,

IAEC code No 14/2006, Jawaharlal Nehru University, New

Delhi, India. The molecular biology methods were followed as

described earlier [44].

Northern blot hybridization
Total cellular RNA was isolated from fresh mouse tissues with a

few modifications. Northern blot hybridization was carried out as

described earlier [43]. Briefly, 20 mg of total RNA was denatured

and resolved in 1.5% formaldehyde-agarose gel, transferred to

nylon membrane (Biodyne A, Pall) by vacuum-blotting and the

RNA-filter was pre-hybridized and hybridized in 50% formamide-

based hybridization mixture with random-primed 32P-labeled

mouse TPIP-C2-specific 180 bp cDNA probe (specific activity

.108 cpm/mg) for 16–18 h at 42uC. The RNA-filter was

stringently washed and exposed to X-ray film with intensifying

screens at 280uC for 2–3 days and developed for autoradiogra-

phy. The human multiple tissue northern (MTN, Clontech, 7759-

1) and multiple tissue expression (MTE, Clontech, 7775-1) array

RNA blots (Clonetech, U S A) were hybridized with 32P-labeled

TPIP-C2-ORF DNA probe as per the manufacturer’s instructions.

The amount of RNA per lane on Poly A+ MTN blot used in

Figure 2B is adjusted to obtain consistent signal for a house

keeping gene across all lanes. For this reason, the actual amount of

RNA loaded may vary slightly between samples.

Southern blot hybridization
Genomic DNA was isolated from human peripheral blood from

healthy individual with consent. Twenty microgram genomic

DNA was digested by BamH I, EcoR I and Hind III, elec-

trophoresed by agarose gel and southern hybridized with random

primed 32P-TPIP-C2-ORF DNA probe and detected by autora-

diography [44].

Transfection of HeLa cells
HeLa cells were seeded at 0.156106 cells/ml density in 2 ml in

6-well plates, 18 h before transfection and transfected by calcium

phosphate or LipofectamineTM 2000 in duplicates with pCDNA-

TPIP-C2 plasmid DNA (i.e., 2.5, 5.0 and 10 mg) in a total amount

of 10 mg DNA per 10 cm plate or 0, 1, 2, 3 and 5 mg DNA in a

total amount of 5 mg DNA per well in six-well plate for 12 h by

calcium phosphate method. The pCDNA3.1 (+) vector DNA was

used to compensate the total amount of DNA up to equal amount

per well. The transfection medium was replaced by fresh medium

and cells were allowed to grow for 24 h followed by addition of

selection medium containing 0.6 mg/ml geneticin (G418, Life

Tech., U S A) for 3 weeks. The medium was changed every third

day until G418-resistant colonies developed, which were then fixed

by methanol, stained with Giemsa stain, observed, counted and

photographed by a phase-contrast microscope. HeLa cells were

transiently transfected in duplicates with different amounts (1 to

10 mg) of pCDNA-TPIP-C2 plasmid DNA in a total amount of

10 mg of DNA compensated with the vector DNA by calcium

phosphate method and 24 h post-transfection, cells were harvest-

ed, total cellular RNA was isolated and used for RT-PCR. HeLa

cells were also transiently transfected with pCDNA-TPIP-C2-HA

plasmid DNA, pEGFP-N2 or pCDNA 3.1 (vector) with 2 mg and

4 mg DNA per well in six-well plate for 6 h in serum free medium

by using LipofectamineTM 2000 reagent as per the supplier’s

instructions. After 36 h post-transfection the cells were visualized

and photographed in bright field and fluorescence settings of the

microscope. Cells were harvested and processed for western blot

analysis or cell cycle analysis by FACS.

Western blot analysis
The HeLa cells were harvested 36 h after transfection, washed

with cold PBS and extracted in lysis buffer (20 mM Tris-HCl,

pH 8, 250 mM NaCl, 1 mM DTT, 2 mM EDTA, 0.5% NP-40,

1% Triton X-100, 10 mg/ml leupeptin, 10 mg/ml aprotinin,

0.5 mg/ml benzamidine, 100 mM PMSF and 2 mM sodium

orthovanadate). After 30-min incubation on ice, the lysates were

cleared by centrifugation at 12000 rpm for 30 min at 4u C.

Protein concentration was estimated using Bradford assay.

Approximately, 30–60 mg protein was resolved by 12% SDS-

PAGE, transferred to nitrocellulose membrane (Bio-Rad). Western

blots were carried out by using anti-HA antibody for TPIP-C2-HA

protein, anti-caspase 3 for active caspase 3 and anti-b-actin

antibody. The blots were developed by Super Signal West Pico

Chemiluminescence reagent (Pierce).

RNA isolation and RT-PCR
RNA was isolated from mouse tissues and human cells. First

strand cDNAs were synthesized from 1.0 mg of total RNA with

0.5 mg of oligo dT [59-(dT)15-39] primer, 0.5 mM dNTPs, 20 U

RNasin and 100 U of M-MLV Reverse Transriptase in 16 M-

MLV RT-reaction buffer in 25 ml. First strand cDNA mixture was

used as template and pCDNA-TPIP-C2 plasmid was used as

positive control (Pc) for PCR. The reaction contained 16 PCR

buffer (75 mM Tris.Cl pH 9.0, 50 mM KCl, 20 mM (NH4)2SO4,

0.2 mM dNTPs, 2.0 mM MgCl2, 25 pmole primers (12.5 pmole

each), 1.0–5.0 ml 1st strand cDNA templates and 1.0 U Taq DNA

polymerase. The PCR cycle parameters were initial denaturation

at 94uC for 4 min followed by 20–35 cycles of denaturation at

94uC for 45 sec, annealing at 68uC (TPIP-ORF) or 51uC (TPIP-

C2 and b-actin), 60uC (GAPDH) for 45 sec-1 min, polymerization

at 72uC for 1 min and a final extension of 10 min at 72uC. TPIP-

ORF primers amplified a 603 bp C2-ORF from human TPIPa, c
and d, TPTEa, b, c mRNAs, whereas, TPIP-C2 primers are

specific for the TPIP-C2 transcript and amplified a 733 bp

amplicon. The 311 bp b-actin and 452 bp GAPDH products

were used as control and normalization signals. The PCR products

(1/10th for GAPDH, b-actin and 1/5th for TPIP-C2) were

electrophoresed in 1.5% agarose-TBE gels, photographed by an

AlphaImager 3400 gel-documentation system and densitometry of

specific DNA bands was carried out (Integrated Density Value or

IDV) by the AlphaImager software.

Cell proliferation measurement by cell viability assay
(MTT)

Seventy thousand cells were plated per well in 24 well plate and

transfected in triplicates with 0.25 mg, 0.5 mg and 1.0 mg of TPIP-

C2-HA plasmid for 6 h by using LipofectamineTM 2000 reagent in

serum free medium as per the supplier’s instructions. After 36 h

post-transfection 100 ml MTT (5 mg/ml) was added to each well

and incubated at 37uC. After 2 h MTT was solubilized by

addition 500 ml of MTT solvent (5 mM HCl, 0.1% Nonidet P-40

in isopropanol) and incubated for another 1 h at 37uC. The

absorbance was measured spectrophotometrically at 590 nm and

plotted. The data were represented as mean 6 SEM from three

independent transfection experiments and each experiment was

repeated twice.
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Cell cycle analysis
HeLa cells were transfected with TPIP-C2-HA plasmid in six

well plates as described above and harvested 36 h post-

transfection. Cells were trypsinized, washed twice with ice-cold

PBS, fixed in 70% ethanol in ice-cold PBS for 2 h at 4uC. For flow

cytometric analysis, the cells were incubated with 0.1 mg/ml

RNase A at 37uC for 1 h, stained with 50 mg/ml propidium iodide

for 15–20 min on ice, and then measured by flow cytometry using

FACSCalibur (Becton Dickinson, San Jose, CA, U S A) Cell Quest

software for acquisition and analysis. A minimum of 20,000 events

were recorded for each sample.

Supporting Information

Figure S1 (A) TPIP-C2 cDNA (1.019 kb inserted DNA) is

cloned at EcoR I site of pBSKII+ (pBluescript) vector. (B) TPIP-C2

cDNA nucleotide sequence and predicted amino acid sequence.

(C) TPIP-C2-SINE and TPIP-C2-LINE sequences are compared

with AluSx and LINE (L3/CR1) repeat sequences, respectively.

The transition and transversion in the sequences are indicated. (D)

Comparison of TPIP-C2 with the TPIP genomic contig on human

chromosome 13. TPIP exons and introns with respect to human

DNA sequences from the clone RP11-408K19 on chromosome 13

[AL590076]. The introns are depicted as dotted line and exons as

black boxes. The number below the exons represents length of

respective exon. The exon sequences corresponding to the

chromosome 13 genomic regions are mentioned (upper panel).

TPIP-C2 exons and introns are with respect to human DNA

sequence from the clone RP11-408K19 on chromosome 13

[AL590076] (lower panel).

(PDF)

Figure S2 (A) Sources of human cells and tissues for the mRNAs

used in the dot blots. (B) Hybridization of the MTE-blot with [32P]

labeled 1.019 kb full length TPIP-C2 cDNA probe showing

homologous RNA expressions due to presence of SINE/LINE

sequences present in the full length TPIP-C2 cDNA. Almost all

samples show the signals. A number of controls are indicated at

the right hand side of the MTE blot.

(PDF)

Figure S3 Expression of TPIP-C2 mRNA in mouse tissues. (A)

TPIP-ORF amplicon is 605 bp (339–921 nt) and TPIP-C2

amplicon is 733 bp (285–2017 nt) as shown by PCR/RT-PCR

products amplified by using P1+P2 and P3+P4 primers,

respectively. TPIP-ORF primers contain extra flanking sequences

and Hind III site at their 59-ends, thus, instead of 582 bp

amplicon, it amplifies 605 bp DNA. Establishment of TPIP-C2-

specific PCR assay (top panel), Lane 1 and 2: pCDNA-TPIP-C2

plasmid control for TPIP-ORF and TPIP-C2 PCR, lane 3 and 5:

TPIP-ORF PCR with ORF 339–921 and ORF 285–1087

templates, lane 4: ORF 339–921 and b-actin templates were

mixed and PCR-amplified for TPIP-C2 and b-actin (311 bp)

products with respective primers, lane 6: TPIP-C2 PCR from

ORF 285–1087 template, TPIP-C2 plasmid PCR with 104–101

copies of the plasmid template (bottom panel) showing the

sensitivity of PCR reaction at 101 copy number. (B) Chromato-

grams of DNA sequencing of one each type of representative RT-

PCR products cloned from the mouse tissues showing single

nucleotide changes from the expected sequence. (C) The amino

acid changes with respect to the single nucleotide changes in

TPIP-C2 193 aa. ORF are shown. M: Marker, Pc: positive

control, Lc: 20 ng of 0.74 kb DNA as a loading control for

densitometric measurements, B: brain, H: Heart, T: testis, L: liver

and K: kidney of mouse.

(PDF)

Table S1 Homology of TPIP-C2 CDNA with human genome.

(DOC)

Table S2 Presence of TPIP-C2 SINE and LINE in human

transcripts.

(DOC)
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