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Preventable ATII Proliferation after Hyperoxia: The “Tempo” of Folate
Metabolism in the Neonatal Lung

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that
occurs at high rates in survivors of premature birth (1). BPD was
originally described in 1967 by Northway and colleagues as an airway
and parenchymal lung injury in preterm infants with a history of
respiratory distress syndrome concurrent with exposures to oxygen
andmechanical ventilation (2). More than 50 years later, the clinical
features of BPD have evolved, together with abilities to care for
extremely premature and low birthweight infants born in the late
canalicular/early saccular phases of lung development. Th�ebaud and
colleagues recently highlighted the complex intersection of lung
development, plasticity, injury, and repair in the clinical disease BPD
(1). Despite marked advances in our understanding of the disease, no
significant progress has been made in reducing its prevalence (3), and
therapeutic options remain limited.

Hyperoxia-induced neonatal lung injury (4) is used to model
BPD, as supraphysiologic oxygen exposure is a common source of
lung injury in premature infants (5, 6) and the pathophysiology
induced by early oxygen exposure parallels that seen with BPD.
Murine models also offer unique opportunities to evaluate early
effects of oxygen exposure, as newborn mice exhibit immature
morphometry resembling the saccular phase of lung development (7).
Understanding how hyperoxia inflicts injury and compromises
ongoing alveolar and vascular (8, 9) development is paramount to
understanding BPD pathogenesis.

Distal airspace alveoli are lined by alveolar epithelial type I and II
(ATI and ATII) cells. ATI cells are squamous epithelial cells that
facilitate gas exchange and serve barrier functions. ATII cells, which
normally cover 5% of the alveolar surface area, produce surfactants
that decrease surface tension and thereby protect against atelectasis.
ATII cells normally proliferate in the healthy mouse lung from
Postnatal day 0 (PN0) to PN14, with a peak of proliferation at PN7.
After lung injury, ATII cells become both proliferative and resistant
to apoptosis, with increased telomerase activity (10–12). These
characteristics, in addition to their ability to repopulate ATI cells lost
after lung injury (13), identify ATII cells as a critical progenitor
population and a key contributor to the developmental phenotype
observed with BPD.

A significant knowledge gap remains in understanding the
contribution of neonatal hyperoxia to the number and complement
of alveolar epithelial cells in simplified alveoli that are pathognomonic
for modern BPD (1). Multiple studies have demonstrated oxygen-
induced alterations of alveolar epithelial proliferation, apoptosis, and/
or cell-cycle regulation (14–16). Using Sftpc-EGFP transgenic mice,
Yee and colleagues previously demonstrated that mice exposed to a
fraction of inspired oxygen of 1.0 during PN0–4 exhibited increased
proliferating (Bromodeoxyuridine1) ATII cells starting at PN1, with
rapid expansion of the ATII cell population by PN4 (17, 18). This

expanded ATII population is not static, as they identified fewer ATII
cells in lungs of adult mice 8 weeks after neonatal hyperoxia
exposure (19).

In this issue of the Journal, Yee and colleagues (pp. 402–414)
now identify a novel—and targetable—mechanism by which
hyperoxia causes atypical proliferation of ATII cells in the newborn
mouse lung (20). First, the authors demonstrate that an early and
aberrant wave of ATII cell proliferation (PN1–4) after neonatal
hyperoxia exposure is associated with genetic programs directing
serine synthesis and one-carbon–coupled folate metabolism. These
metabolic pathways affect cell proliferation throughmultiple
mechanisms, nicely outlined by the authors to include redox defense,
epigenetic maintenance, and biosynthesis. Second, they show that
these gene expression pathways were also associated with the normal
wave of postnatal ATII proliferation that peaks at PN7.

Narrowing in onmechanism, the authors focused onMthfd2
(methylenetetrahydrofolate dehydrogenase 2), an enzyme in
mitochondrial folate metabolism expressed by proliferative cells (21),
and the ATII mitogen Fgf7/Kgf (22–24). In this study, Mthfd2 is
found to be a central mediator of alveologenesis, induced in aberrant
(hyperoxia-treated) and normal (room air) proliferating neonatal
ATII cells and in Fgf7/Kgf-treated proliferating adult ATII cells.
Third, the authors identify a mechanism of serine/one-
carbon–coupled folate metabolism gene expression through
mitochondrial stress–related expression of Atf4 (activating
transcription factor 4).Mthfd2 is required for Fgf7/Kgf-induced ATII
proliferation and Atf4 induction.

An exciting finding is that the early and aberrant ATII
proliferation during hyperoxia exposure was mitigated by
concurrent administration of the SOD (superoxide dismutase)
mimetic/antioxidant mitoTEMPO. MitoTEMPO did not affect
normal ATII proliferation in control experiments. These results
strengthen previous studies showing preservation of lung
development during neonatal hyperoxia using transgenic
expression of human extracellular SOD or treatment with
mitoTEMPO (25, 26). Interestingly, a recent study also showed the
therapeutic potential of mitoTEMPO to attenuate cardiac injury
after nicotine exposure associated with mitochondrial oxidative
stress in rats (27).

Finally, the authors identified increased ATII proliferation and
increased expression of ATF4 andMTHFD2 in lungs of human
patients with severe type 2 BPD. Though not specified, these patients,
by definition, had histories of significant hyperoxia exposure
associated with a diagnosis of severe disease (28). These translational
findings mirror those in premature baboons, where oxygen and
mechanical ventilation treatments were associated with ATII
proliferation (Reference 29 and current manuscript).
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Correlation of aberrant neonatal ATII proliferation (20) with
short- and long-term functional consequences would be of great
interest. To this end, lung function testing of mice that have
recovered from their brief hyperoxia exposure, with and without
mitoTEMPO treatment, would provide insight. It will also be
important to follow the cellular fates after the early wave of ATII
proliferation, as the authors previously demonstrated reduced pro
SP-C expression and decreased ATII cell numbers after exposure to
hyperoxia from PN1 to PN4. Finally, the authors acknowledge that a
limitation of their study is the unknown effects of chronic hyperoxia
on these mechanisms, which remain interesting given the prolonged
oxygen dependency in severe BPD.

Another goal would be to clarify the effect of FGF7/KGF on
ATII proliferation in BPD, as Fgf7 is associated with early ATII
proliferation in rabbits but not mice. Increased pulmonary
FGF7/KGF concentration is protective in human infants, as tracheal
concentrations are increased in those who do not develop BPD
compared with those who do (30). Finally, future directions may
include elucidating a specific role of Atf4with loss-of-function
experiments in vivo and/or in vitro. The authors are well poised to
address these and other important questions in subsequent basic and
translational studies.

In summary, this study elucidates a novel mechanism by which
hyperoxia results in mitochondrial oxidative stress–dependent
induction of folate metabolism programs as well as ATII proliferation
in the developing lung. The combination of multiple preclinical
models and samples from patients with BPD strengthen the
translational significance of this work by identifying possible clinical
implications for mitigation of alveolar maldevelopment in premature
infants with BPD.�
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