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Abstract: The electrocardiogram (ECG) electrode, as a sensor, is an important part of the wearable
ECG monitoring device. Natural leather is rarely used as the electrode substrate. In this paper,
wearable flexible silver electrodes based on cowhide were prepared by sputtering and brush-painting.
A signal generator, oscilloscope, impedance test instrument, and ECG monitor were used to build
the test platform evaluating the performance of electrodes with six subjects. The lossless waveform
transmission can be achieved with our electrodes. Therefore, the Pearson’s correlation coefficient
calculated with input waveform and output waveform of the electrodes based on the top grain
layer (GLE) and the split layer (SLE) of cowhide were 0.997 and 0.998 at 0.1 Hz respectively. The
skin electrode impedance (Z) was tested, and the parameters of the equivalent circuit model of the
skin electrode interface were calculated by a fitting method, indicating that the Z of the prepared
electrodes was comparable with the standard gel electrode when the skin is moist enough. The
signal-to-noise ratio of the ECG of the GLE and the SLE were 1.148 and 1.205 times that of the
standard electrode in the standing posture, which meant the ECG measured by our electrodes was
basically consistent with that measured by the standard electrode.

Keywords: wearable; flexible dry electrode; natural leather; plasma sputtering; skin-electrode impedance

1. Introduction

Cardiovascular diseases (CVDs) are currently the leading cause of death globally [1].
Long-term effective monitoring of electrocardiogram (ECG) can detect most CVDs. Wear-
able devices for ECG monitoring can realize long-term effective monitoring of ECG [2–4].
The ECG signal quality measured with wearable devices within 24 h can be comparable to
that of Holter systems, which are used for clinical ambulatory ECG recording [5–8]. How-
ever, more researches should be done to assess ECG signal quality measured with wearable
devices over 24 h taking the long-term monitoring of wearable devices into consideration.

The ECG electrode is an important part of wearable ECG monitoring device, which
can be divided into the standard Ag/AgCl electrode, micro-needle electrode, non-contact
electrode and flexible dry electrode. Currently, the standard Ag/AgCl electrode with
conductive gel is the most commonly used electrode for ECG measurement in clinic, which
has some problems, such as limited shelf life, sensitization, and cumbersome skin treatment
in use [9]. Microneedle electrodes need to pass through the stratum corneum of the skin,
which can cause some degree of injury or discomfort to the human body. The polymeric
micro-needle electrode made by Conor O’Mahony et al. belongs to this category [10].
He Zhang et al. prepared a flexible micro-needle electrode based on PDMS to record ECG
in daily life. Although it did not cause human discomfort, it still needed to puncture the
skin surface [11]. A non-contact electrode realizes the measurement of human physiological
electrical signals through capacitance without contact [12], which is the current frontier of
electrode research, however, the electrode is not commonly used due to the limitations of
technology and materials. The flexible capacitive ECG measurement electrode based on
MEMS prepared by Long-Fei Wang et al. [13] is such an electrode.
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Flexible electrodes without micro-needles are the most commonly used in wearable
devices for ECG monitoring. The flexible electrode allows as much contact area with
the skin as possible through its flexibility, thus reducing impedance and yielding high-
quality ECG signals. ECG measured by flexible electrodes are consistent with the standard
Ag/AgCl electrodes. There is no risk of sensitization or skin treatment in the process of
ECG measurement. Flexible electrodes can be fabricated utilizing a variety of different
technologies, such as conventional printing technology [14,15], high-resolution lithography
patterning [16], electrostatic flocking technology [17], and so on. At present, more and
more flexible electrodes can measure multiple physiological signals simultaneously [18–22].
Fused sensor information helps the doctor make a more accurate diagnosis [23]. Among
them the most representative one is the graphene electronic tattoo sensors fabricated by
Shideh Kabiri Ameri et al. [24]. Flexible electrodes usually consist of flexible substrate
and conductive layer, sometimes adhesive layer is also needed. The conductive adhesive
layer in some flexible dry electrodes, fusing the conductive and adhesive layer, can offer
stable skin-electrode contact to decrease motion artifacts [25,26]. Moreover, the plastic
hydrogel-based electronic skin fabricated by Xiaofeng Pan et al. fused all the three layers
and was completely soft and deformable [19].

There are also disadvantages in flexible electrodes. For example, the quality and relia-
bility of recorded ECG signals by wearable devices are more sensitive to different factors
such as electrode placement, skin humidity, user activities, and contact pressure [27]. Un-
fortunately, there has not been much research and uniform standard for these factors. Price-
wise, although there are some low-cost wearable devices with excellent performance [28],
most of the available wearable devices which can measure clinical-grade ECG fall within
the price range of luxury products [29]. Also, widely accepted excellent wearable devices
products are not readily available on the market and in clinic although there are many
products that can be used in laboratory environments. Otherwise, the influence of wash-
ing processes, temperature, sweat, moisture, mechanical impacts, repeated bending and
compression, and light (especially sunlight) should be carefully considered [30]. The ECG
measurements during walking or other intense sports are always affected by the motion
artifacts [31].

There are many kinds of substrate materials for flexible dry electrodes, such as carbon-
based materials, artificial fabric [32], papers [33] and so on. However, natural leather
material is rarely used as the substrate. Natural materials have advantages such as simple
processing, high availability and cheap price etc. As a natural material, cowhide not
only has excellent properties such as high tensile strength, tear strength and denaturation
temperature [34]. Moreover, as a common fashion element of clothing [35], it is easily
integrated into wearable devices. In addition, cowhide cleaning is simple, and scrubbing is
the main way to avoid possible damage to the electrodes caused by cleaning. Therefore,
the natural material cowhide is used as the substrate of flexible dry electrode. Like other
wearable devices, there is still no universally recognized evaluation standard for flexible
dry electrodes, which is a serious problem for products that contact human skin for a long
time [36]. Obviously, the standard disposable Ag/AgCl electrode evaluation standard is
not fully applicable to wearable device sensors for long-term ECG monitoring.

In this paper, novel flexible electrodes were prepared, and the natural leather material
cowhide was used as the flexible substrate to demonstrate the potential of the cowhide
for wearable electronic applications. Three experiments were designed to evaluate the
prepared electrodes so that we can find the differences in performances between the flexible
electrodes based on cowhide and the standard Ag/AgCl electrode used in clinic.

2. Materials and Methods
2.1. The Fabrication of Electrodes

Our prepared electrodes had two layers, the flexible substrate and the conductive
layer. As mentioned in introduction, cowhide not only has excellent flexibility, but also
has the advantages of mature processing technology, excellent mechanical properties,
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high availability, low price and so on. Moreover, leather is used in garment making for
long time. Leather garments are often regarded as a symbol of fashion and personality.
Compared with polymer material substrate, leather is easier to be made into wearable
products like smart clothing. The cleaning method of leather products is mild, which can
greatly avoid the damage to the conductivity of electrodes caused by cleaning compared
with artificial fabric. So, the flexible substrate material in this experiment was cowhide
commercially purchased from an online store in Jiaxing, Zhejiang, and protein was the
essential composition of it. Intuitively, the split layer of cowhide is fluffier and rougher
than the top grain layer. Figure 1a–c,d–f are the scanning electron microscope (SEM)
images of the surfaces of the top grain layer and the split layer respectively. As depicted in
Figure 1a–c, the surface pattern of the top grain layer is much more regular than that of the
split layer of cowhide. So, we decided to use the top grain layer and the split layer as flexible
substrates to make electrodes respectively. Silver, which has excellent conductivity and is
often used for physiological signal detection, was selected as the conductive layer material.

The shape of the prepared electrodes is shown in Figure 1g, in which the circular
part with a diameter of 20.0 mm and the rectangular part on the right was 15.0 mm long
and 7.0 mm wide. The electrical signals are detected by the circular part which was
designed according to the study of Flurin Stauffer et al. [26]. The detected electrical signal
is transmitted to the signal processing circuit through the rectangular part to avoid possible
interference caused by welding conducting wires on the electrode surface.

A conductive thin film was formed on the surface of cowhide by plasma sputter-
ing. Figure 1h shows the structural diagram of the standard Ag/AgCl electrode. The
Ag/AgCl circular sheet of diameter 8.5 mm is fixed on the non-woven fabric with diam-
eter of 52.0 mm, and the conductive gel with diameter 15.5 mm is covered on the sheet.
The conductive gel directly contacted with human skin. The silver nanoparticles were
sputtered on the surfaces of substrates with plasma sputtering instrument VTC-16-3HD
from Kejing Materials Technology Co., LTD, Anhui, China. Figure 1i shows the sputtering
process, which lasted only for 10 min to avoid the damage to cowhide caused by the high
temperature due to long-term work. Considering that the sputtering time is not long, in
order to ensure that the conductivity of the electrode, the surface was then brush-painted
with silver paste bought from Sunrise Electronic Materials Co., Ltd., Shanghai, China, as
shown in Figure 1j. Furthermore, conductivity of the electrode was measured to observe
uniformity of the silver paste. If the silver paste is not brushed uniformly, the resistance
difference in different directions will exceed the normal range. Considering the size of the
electrodes, four groups of points were selected to measure the impedance every 45 degrees
to observe the difference of impedance in different directions. As shown in Figure 1g, the
resistances were measured at the red, blue, white, and green points (the main purpose
of these points is to show the position of measurement, there are no such points on the
prepared electrodes) with digital multimeter UT890D from UNI-T in China. Each group
was measured 3 times and the average value was calculated and presented. The average
value (AVG) and the standard deviation (SD) of the four measured resistance values were
calculated to evaluate the resistance difference in different directions. The smaller the SD
was, the smaller the difference was, the more uniform the sliver paste was. Finally, in order
to connect the ECG monitoring device, the rear end of the conductive part of the electrode
was installed with a fastener snap, as shown in Figure 1g,k.
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(h) Schematic diagrams of the standard Ag/AgCl electrode. (i–k) Schematic diagram of sputtering, covering silver paste 
and installation of fixed device in fabrication of electrodes. 
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Figure 1. (a–f) SEM images of surface of cowhide ((a–c) the top grain layer and (d–f) the split layer). (g) Schematic diagrams
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the uniformity of silver paste. The same color points are a pair, but there are no such points on the actual electrode. (h)
Schematic diagrams of the standard Ag/AgCl electrode. (i–k) Schematic diagram of sputtering, covering silver paste and
installation of fixed device in fabrication of electrodes.

2.2. Signal Transmission Experiment

As the sensor of ECG monitoring equipment, the key function of electrode is to trans-
mit physiological electrical signals losslessly. The lossless property in signal transmission
of the electrodes was evaluated by signal transmission experiment. The lossless property
in signal transmission in this paper refers to the shape of the electric signal is not distorted
in the time domain and the passband of signal does not change in the frequency domain
after passing through the interface composed of electrode and other substances. Biphasic
pulse can reduce charge accumulation (avoid electrode polarization phenomenon) and
contain abundant harmonic components, which is conducive to the detection of signal loss
in the frequency domain. Therefore, we choose a fixed biphasic pulse signal as the input
signal. The peak-to-peak value of the signal is 1 V, and the shape is shown in the red dotted
box in Figure 2a. We chose stainless steel as the other side of the interface. This is because
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the interface formed by the stainless steel is stable, unnecessary capacitive reactance and
inductive reactance interference will not be introduced, and the stainless steel has good
conductivity, which can highlight the transfer performance caused by the electrode itself
rather than the stainless steel.
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Figure 2a is the schematic diagram. Figure 2b shows the experimental scene diagram.
The experiment circuit included a signal generator, the interface of electrode and stainless
steel, a voltage divider and an oscilloscope. The former three were connected in series to
form the circuit, and the oscilloscope was connected in parallel to the divider. Tektronix
AFG3102 signal generator generated the biphasic pulse signals with frequencies of 0.01 Hz,
0.1 Hz, 1 Hz, 10 Hz, 100 Hz, and 1000 Hz respectively because physiological electrical
signals are basically distributed in the frequency range. The tested electrode was fixed
on the center of a 140 mm × 60 mm stainless steel plate with the medical tape to form
the interface of electrode and stainless steel, which is connected with a voltage divider in
series in the circuit. As seen in Figure 2a,b, the rectangular part of the electrode, which
transmitted the signal, protruded from the gap of the medical tape cut in advance, which
can not only effectively fix the electrode, but also facilitate the connection of subsequent
equipment. The simple equivalent circuit of the interface is shown in Figure 2b. The value
of the voltage divider was adjustable to obtain the output waveform with appropriate
peak-peak value (at least 400 mV). A Tektronix TDS2024C oscilloscope connected in parallel
on the divider resistor displayed the output waveform. In order to quantitatively analyze
the changes of input and output signals after passing through the interface of electrode
and stainless steel, the Pearson’s correlation coefficient (PCC) of input Si and output signal
So were calculated with MATLB 2018B. The calculation formula is as follows:

PCC = (∑ (Si − Si) (So − So))/
√

(∑ (Si − Si)2 ∑ (So − So)2) (1)

where Si and So represent the average value of Si and So respectively. The closer the value
of PCC is to 1, the smaller the difference between input signal and output signal is, and the
better the lossless property of signal transmission of electrode is.

Apart from the Pearson’s correlation coefficient, the least-mean-squared error (LMSE),
which shows the differences between the original and output waveforms in the time
domain in absolute units (V) was calculated. In this experiment, the changes of signal
shape and passband were underlined, rather than the change of amplitude that can be
effectively solved by subsequent amplification circuit. Therefore, the linear conversion
method in the normalization is used to convert the output waveform to the range of −0.5 V
to 0.5 V (the voltage range of input signal). Then, the LMSE was calculated according to
the following formula.

LMSE = (∑ (Si − So’)2)/n (2)
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The So’ represents the value of So after conversion. The n represents the number of the
values of So. Opposite to PCC, the closer the LMSE is to 0, the better the lossless property
of signal transmission of electrode is.

In order to further clarify the difference of original and output waveform in frequency,
the relative change value R of Fast Fourier Transform (FFT) frequency is calculated by
original signal Si and the output signal So using MATLB 2019B. The calculation process is
as follows:

R = log ((FFT(Si) − FFT(So))/(FFT(Si))). (3)

The FFT transformation points are 2048. The difference value between input signal
and output signal after FFT is the most intuitive manifestation of the difference between
input signal and output signal in frequency domain. In order to further eliminate the
influence caused by the size of the value of the signal itself, the relative difference obtained
by dividing by the value of the input signal can effectively measure the difference of the
input and output signals in the frequency domain. When the value of R is close to 0, the
signal change in the frequency domain is small, and the signal transmission performance
of the electrode is excellent.

2.3. Skin-Electrode Impedance Test

The skin-electrode impedance test reflected the performance of the electrode by mea-
suring the impedance of the skin-electrode interface. The stratum corneum (SC) is a sturdy
protective barrier made up of dead cells that keep most bacteria and viruses out of the
human body. The resistance of stratum corneum is much larger than that of other tissues
in the body. Therefore, the impedance of skin-electrode interface is the main impedance in
ECG measurement, and its value is of great significance [37,38]. If the value is too large,
the measured signal amplitude may decrease, and some signal details are lost. So, the
low skin-electrode impedance was expected. Theoretically, we hope that the skin elec-
trode impedance will not change with the change of frequency, so that the measurement
results will be more stable and reliable. In other words, we hope that the skin electrode
impedance is purely resistive. So, a low phase was what we expected. The impedance–
frequency diagram and phase–frequency diagram were given in Section 3.3. Skin-Electrode
Impedance Test.

In this experiment, the skin-electrode impedance was measured with the E4980A
precision LCR meter from Agilent. There are six subjects (three male and three female) in
the test. The skin was not pretreated before the experiment. Two electrodes were placed
on the left arm. Figure 3a demonstrates the scene of impedance test and Figure 3b shows
the schematic of the experiment. We made the connection according to the manual of the
E4980A precision LCR meter. As shown in Figure 3b(ii), the standard Ag/AgCl electrode
was used as the auxiliary electrode to help form the circuit. The electrode in Figure 3b(i) was
the measuring electrode fixed by the medical tape with the way mentioned in Section 2.2.
Signal Transmission Experiment. In this experiment, the measuring electrode was one
of the three electrodes: the two prepared electrodes based on cowhide and the standard
Ag/AgCl electrode. The equivalent circuits of Figure 3b(i,ii) are shown in Figure 3c,d. The
distance between the two electrodes was set to 7.5 cm. The common frequency range of
physiological electrical signals is from 0.01 Hz to 1000 Hz, but 20 Hz is the lowest frequency
the E4980A precision LCR meter can reach. So, the frequency changes from 20 Hz to
1000 Hz, with a sampling interval of 1 Hz. The measuring voltage was set to 1 V.

Furthermore, in order to explore a simple and effective method to reduce the skin
electrode impedance, after the skin electrode impedance of the three electrodes are all
finished, we tried to use common lotion bought from a local store (mainly composed of
water and glycerin). We applied an appropriate amount of lotion on the arm area shown
in Figure 3b(i), and then spread it evenly. A period of 10 min rest was adopted for the
skin to fully absorb the lotion. Then, the electrode was fixed based on the top grain layer
of cowhide and measured the skin electrode impedance again. After the measurement,
we cleaned the area on the arm where the lotion was applied, gently wiped off the water,
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waited for a period of time for the skin to dry, and then measured the skin electrode
impedance of the electrode based on the split layer in the above steps.
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The equivalent circuit of skin-electrode interface can quantitatively describe the pa-
rameters of skin-electrode interface. Figure 3c,d are the equivalent circuit diagrams of dry
electrode and wet electrode, respectively [39–41]. The equivalent circuit can be divided
into four sections: 1© dermal and subcutaneous tissue, 2© epidermal layer, 3© air gap in
Figure 3c and electrolyte in Figure 3d, and 4© skin-electrode interface from bottom to
top. According to the measured data of impedance test and the equivalent circuit, the
parameters on the right side of Figure 3c,d can be calculated with fitting method.

Z1, Z2, Z3, Z4 stand for the impedance of the 1©, 2©, 3©, 4© section, respectively. Due
to the two electrodes are close on subject’s arm, it can be assumed that the physiological
potential of these areas is the same. Therefore, Us, Ueq are not calculated into the formula.
According to the actual circuit connection in Figure 3b and equivalent circuit diagram in
Figure 3c,d, the following expression can be obtained:

Z1 = Rd, (4)

1/Z2 = 1/(1/jω Ce) + 1/Re, (5)

So, the expression of Z2 is as follows:

Z2 = Re/(1 + (2 π f Re Ce)2) − j (2 π f Re
2 Ce/(1 + (2 π f Re Ce)2)), (6)

Z3, Z4 can be obtained with the same method. The total impedance Z is expressed
as follows:

Z = Z1 + Z2 + Z3 + Z4, (7)

The expression containing Z and f can be obtained by the expression (4)–(7). The
various parameters of the equivalent circuit diagram can be solved with the expression
and the measured impedance and frequency by fitting method using Curve Fitting Tool in
MATLAB R2018B. Z1, Z2, Z3, Z4 are calculated by using the obtained parameter values, the
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expression (4)–(7) and taking f = 20 Hz. The goodness of fit is used to evaluate the fitting
effect. The closer the goodness of fit is to 1, the better the fitting effect is. The formula of
goodness R2 of fit is as follows.

R2 = (∑ (Zi’ − Z)2)/(∑ (Zi − Z)2) (i = −1, 2, 3, . . . , n) (8)

where Zi is the impedance values measured in the skin-electrode impedance test, n is
the number of these values, Z is the average of the impedance values measured, and
Zi’ is the fitting impedance values calculated by the various parameters solved with the
expression (4)–(7).

2.4. ECG Test

High quality ECG measurement is extremely important for wearable ECG elec-
trodes [42]. The quality of measured ECG signals can directly reflect the performance
of electrodes in actual ECG measurement, which is an important standard to evaluate the
performance of electrodes.

In this paper, ECG was measured with Epm10 physiological signal monitor of Mindray
Company in China. There are six subjects (three male and three female) in the test. The
purpose of this experiment is to prove that the electrodes based on cowhide have the
potential to measure ECG with high quality comparable to that of the standard Ag/AgCl
electrode. Our electrodes carried out ECG test firstly, and then disposable cotton swab was
used to dip in appropriate amount of medical alcohol to wipe the area where the electrodes
was placed. Lastly, the disposable ECG electrodes was used for ECG. The electrodes were
placed on the subject’s left arm, right arm and left leg, respectively, and the electrode
on the subject’s left arm was the positive electrode. In order to avoid introducing other
variables in the measurement process, the positive electrode was the only one replaced
each time. The prepared electrodes were fixed by an adjustable elastic bandage. In each
experiment, the stretch length of the elastic bandage was the same to provide equal contact
force between electrode and skin. Three typical daily postures—sitting, standing, and
walking—were selected.

The measured original ECG data was processed with MATLAB R2018B as follows:
first, the baseline drift was filtered by wavelet transform, then the EMG was filtered by
low-pass filter with cut-off frequency of 60 Hz, and finally the 50 Hz power frequency
interference was filtered by IIR trap with the cut-off frequencies of passband are 48.5 Hz and
51.5 Hz respectively [43–45]. The processed ECG measured with the standard Ag/AgCl
electrodes in sitting posture were taken as reference ECG signal ECGref to calculate the
signal-to-noise ratio (SNR) of each ECG, which is defined as the ratio of signal to noise.
Reference ECG signal refers to the ECG signal that we regard as the ECG signal without
noise. The higher the SNR is, the better the signal quality is. The calculation formula is
as follows.

SNR = 10 × log ((∑ECG2)/(∑ (ECG − ECGref)
2)), (9)

Observation only in the time domain is certainly limited, so the ECG power spectrum,
which is defined as the signal power per unit frequency band, is also used in the process
of diagnosing the disease by ECG [46]. In this experiment, the power spectrum of the
measured ECG was calculated with Blackman Window using MATLAB R2018B. P1 is the
first peak except the near direct-current (DC) peak of the measured ECG power spectrum.
On the basis of the theory of power spectrum of ECG, the frequency value of P1 multiplied
by 60 equals the heart rate. Heart rate is one of the important characteristics of ECG [6].

3. Results
3.1. The Fabrication of Electrodes

Figure 4a,e,i shows images of the prepared electrodes based on the top grain layer and
the split layer without the fastener snap and the standard Ag/AgCl electrode. Compared
with the standard Ag/AgCl electrode, these two electrodes can be sewn into clothing



Biosensors 2021, 11, 101 9 of 17

and there is no gel, which is more convenient and comfortable to wear. Unlike the stan-
dard Ag/AgCl electrode, the physiological signal detection part is separated from the
signal transmission part, which can reduce the impact of the transmission part on the
contact between the detection part and the human body. Figure 4b–d demonstrates the
scanning electron microscope (SEM) images of the electrodes based on the top grain layer.
Figure 4f–h are the scanning electron microscope (SEM) images belonging to the electrodes
based on the split layer. Figure 4j–l are the scanning electron microscope (SEM) images
belonging to the standard Ag/AgCl electrode. According to Figure 4, there was almost
no difference between the surfaces of the electrodes based on the top grain and split layer
although the two surfaces of cowhide are very different. The possible explanation is that
we have adopted the same processing scheme for the two surfaces of cowhide. So, we
need further experiments to explore other performances of the two electrodes. However,
compared with the standard electrode, the surfaces of the electrode based on cowhide are
smoother, but also looser. We take the standard Ag/AgCl electrode as the gold standard to
judge whether the performances of the two prepared electrodes can meet the requirements
of ECG measurement.
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The experimental results of the resistance measurement for the assessment of conduc-
tivity and silver paste uniformity are shown in Table 1.

Table 1. The results of the resistance measurement.

Type of
Electrodes

Red
Points

Blue
Points

White
Points

Green
Points

The AVG and SD of the
Resistance of Four Group Points

1© 1 0.23 Ω 0.20 Ω 0.27 Ω 0.30 Ω (0.25 ± 0.04) Ω
2© 2 0.27 Ω 0.33 Ω 0.30 Ω 0.23 Ω (0.28 ± 0.04) Ω

1 1© represents the electrode based on the top grain layer of cowhide.; 2 2© represents the electrode based on the
split layer of cowhide.

The experimental results of the resistance measurement for the assessment of silver
paste uniformity are shown in Table 1. According to Table 1, the AVG of the resistance
values of the four group points of the two electrodes based on cowhide were small com-
pared with the resistance of some conductor, which indicates the conductivities of the
two electrodes are good. The SD was not high compared with the measurement error,
which means that the dispersion of resistance values in four directions was not high, and
the uniformity of silver paste is good.
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3.2. Signal Transmission Experiment

Figure 5a–c shows the output waveform when the frequencies of the input biphasic
pulse signals are 0.01 Hz, 0.1 Hz, 1 Hz, 10 Hz, 100 Hz and 1000 Hz, respectively (the signal
graph at the frequency of 0Hz represents the original waveform). The X-axis represents the
frequency of input signal. The Y-axis and the Z-axis are the time axis and the amplitude
axis of the output waveform. Since frequency of the input signal is different, the time axis
of the output signal is also inconsistent, so the specific time is not marked on the time axis.
Figure 5d shows the result of PCC of input and output signals. The result of LMSE of input
and output signals was shown in Figure 5e. A detailed analysis is discussed in Section 4.1.Biosensors 2021, 11, x FOR PEER REVIEW 11 of 18 
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The FFT frequency relative change (R) diagrams are obtained as shown in Figure 5f–h.
The X-axis of Figure 5f–h is the frequency of the input signal, and the Y-axis and Z-axis
represent the frequency in frequency domain and relative amplitude difference of the input
signal and the output signal after FFT transformation, respectively.

3.3. Skin-Electrode Impedance Test

To minimize skin-related variations (thickness of SC, male–female physiological differ-
ences) among different subjects, the result of the skin-electrode measurements tested on one
subject is shown and discussed. Therefore, subject-to-subject variations of skin-electrode
impedance are not addressed [14]. The results of other subjects are shown in Supplemen-
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tary Figures S1–S5. Figure 6a,b show the relationship between frequency and impedance,
frequency and phase under different conditions (different electrodes and whether lotion is
applied), respectively.
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Figure 6. Diagram of (a) skin-electrode impedance-frequency and (b) skin-electrode phase-frequency
of the first subject. The frequency range is 20–1000 Hz, each electrode is indicated by one color, and
the application of lotion is indicated by a dotted line.

The black, red, and green lines in Figure 6 represent the data of standard Ag/AgCl
electrode, the electrode based on the top grain layer and the electrode based on the split
layer respectively. The dotted line represents the data of applying lotion. In Figure 6b,
because the data of the electrode based on the split layer will be mixed together, green with
different brightness is used to distinguish. A detailed discussion is provided in Section 4.2.
The fitting results are shown in Table 2.

Table 2. Equivalent circuit parameters of skin-electrode interface.

Type of
Electrodes

Goodness
of Fit

Rd
(kΩ)

Re
(kΩ)

Ce
(nF)

RI
(kΩ)

CI
(nF)

Ri
(kΩ)

Ci
(nF)

Z1
(kΩ)

Z2
(kΩ)

Z3
(kΩ)

Z4
(kΩ)

Z
(kΩ)

1© 1 0.99 1.92 252.00 41.90 1.92 N.A.6 16.80 117.00 1.92 152.00 1.92 16.30 172.00
2© 2 0.98 2.72 124.00 25.80 79.30 6.22 1600.00 13,60 2.72 115.00 79.20 542.00 739.00
3© 3 0.92 1.89 122.00 2.01 507.00 5.56 5,000,000.00 5.66 1.89 122.00 478.00 1410.00 2010.00
4© 4 0.99 1.86 157.00 57.50 1.86 N.A.6 24.20 89.30 1.86 104.00 1.86 23.30 131.00
5© 5 0.98 2.45 411.00 47.10 2.63 N.A.6 316.00 13.10 2.45 156.00 2.63 280.00 442.00

1 1© represents the standard Ag/AgCl electrode; 2 2© represents the electrode based on the top grain layer of cowhide; 3 3© represents the
electrode based on the split layer of cowhide; 4 4© represents the electrode based on the top grain layer with lotion; 5 5© represents the
electrode based on the split layer with lotion; 6 There is no CI in the equivalent circuit of wet electrode, so CI is not applicable.

3.4. ECG Test

The result of the first subject is shown in Figure 7, and the results of other subjects are
shown in Supplementary Figures S6–S10. Figure 7a–c are the measurement results of the
standard Ag/AgCl electrode, the electrodes based on the top grain layer and the split layer,
respectively. The measurement results of sitting posture, standing posture and walking
posture are shown from top to bottom in each figure. Figure 7d shows the results of the
signal-to-noise ratio (SNR) of each ECG.

Since the length of the paper, we will not show all the power spectrum here, and the
power spectrum of standing posture of the three electrodes is selected for display and ex-
planation. Figure 7e–g is the power spectrum of standing posture of the standard Ag/AgCl
electrodes, the electrode based on the top grain layer and the split layer, respectively.
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4. Discussion

At present, there are few studies on using natural leather as the material of ECG
electrode. We proposed to use cowhide as the substrate of the ECG electrode, and de-
signed experiments to prove its potential as the substrate material of ECG electrode, so
as to provide another usable material for the development of wearable clothing apart
from textiles.

However, some limitations should be noted. First, there were only six subjects (three
males and three females) in the skin-electrode impedance and ECG test. Second, the
subjects were all young people aged from 21 to 25. Third, limited by the accuracy of the test
instrument, the frequency range of skin electrode impedance test is 20–1000 Hz. Fourth, the
relationship between the surface roughness of the substrates and noise of the skin-electrode
interface needs further exploration. At the same time, the relationship between the quality
of ECG and the flexibility of the electrode, the force taken for fixation and the surface
roughness of the electrodes also needs further exploration. Fifth, integrating electrodes
into a garment will enable the long-term monitoring of bio-signals. However, continuous,
effective, and real-time ECG monitoring needs equipment with high performance, and
sufficient time is needed for subject recruitment, long-time ECG measurement and data
processing. Therefore, we will complete the experiment in the next step. Sixth, concerning
toxicity, cowhide and silver are common in daily life and do not show toxicity, but this
study did not perform a biocompatibility test for human skin uses.

The following are discussions of the experimental results.

4.1. Signal Transmission Experiment

As can be seen from Figure 5d, the correlation coefficients of the standard Ag/AgCl
electrode are far below 1 under 10 Hz while that of the electrodes based on cowhide are
close to 1. In Figure 5a, the output waveform of the standard Ag/AgCl electrode (in dotted
boxes) distorted until the frequency of input signal reaches 10 Hz. However, no serious
distortion occurs in the waveform of the prepared electrodes in Figure 5b,c. The results of
LMSE further proved this phenomenon in absolute units (V).

FFT transform difference graph (Figure 5f–h) can directly reflect the influence of
electrode on different frequency components of waveform. Figure 5f–h show that the
relative amplitude difference all fluctuates around 0. Only the standard Ag/AgCl electrode
shows a high peak (in the red dotted circle) at the low frequency when the frequency of
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input signal is 0.01 Hz in Figure 5f, indicating that even though the standard Ag/AgCl
electrode has a large distortion in the time domain, in fact, not much information is lost
in the frequency domain. The high peak value is probably related to the conductive gel.
After removing the conductive gel, the experimental results are consistent with those in
Figure 5g,h.

It can be concluded that the signals passing through the standard Ag/AgCl electrode
could have a certain degree of distortion in the time domain at low frequency (0.01–10 Hz),
but there is only an obvious peak at 0.01 Hz in the frequency domain. The signals passing
through the electrodes based on cowhide have no distortion in both the time domain and
the frequency domain. Therefore, all the three electrodes can be considered to accurately
transmit signals, and the electrodes based on cowhide have a slight advantage.

4.2. Skin-Electrode Impedance Test

In Figure 6a, both of the skin-electrode impedance of the prepared electrodes is higher
than the standard Ag/AgCl electrode, and the impedance measured with the electrode
based on the split layer can even reach about 10 times of that of the standard Ag/AgCl
electrode. After applying the lotion, the impedance of the prepared electrodes was greatly
reduced. In Figure 6b, the phase angle of the standard Ag/AgCl electrode was higher than
that of the other two electrodes. Lotion produced a great influence on the phase angle of
the electrode based on the top grain layer. After the application, the curve is close to the
standard Ag/AgCl electrode. However, the influence on the phase angle of the electrode
based on the split layer is smaller.

Since the surfaces of the prepared electrodes and the skin are not completely smooth,
when they are in direct contact, there are many high-impedance air gaps, producing smaller
capacitors between them. Therefore, when there is no conductive gel as the paste film
between them, it is reasonable that the skin-electrode impedance is higher. After applying
lotion, the moisture content of the skin is increased, the air gaps between the skin and
electrode shrink or disappear, and the capacitance value decreases or becomes a lower
resistance, so the total impedance decreases, and the phase angle increases. According to
the experimental results, although there is a certain influence of the electrode material on
the skin-electrode impedance, it is the contact interface type (dry electrode contact or wet
electrode contact) of the skin-electrode produce a greater influence [47].

The goodness of fit in Table 2 are all above 0.90, indicating that the fitting effect is good,
and these fitting parameters are a possibility of the actual situation. The difference between
the five values of Z1 and Z2 is smaller due to the impedance of the dermis, subcutaneous
tissue and epidermal layer which represented by Z1 and Z2 is almost constant in a short
time. Z3 represents the impedance of air gap in the dry electrode equivalent circuit, and
the impedance of conductive gel in the wet electrode. Obviously, the former is larger than
the latter. Moreover, due to the difference in water absorption performance and tightness
with skin between electrodes based on the top grain layer and the split layer, the size and
number of air gaps formed in the skin-electrode interface are different. So, the difference
between the five values of Z3 is larger. The difference between the five values of Z4 is larger
because the conductive gel can effectively reduce the skin-electrode impedance. The lotion
is equivalent to gel in the dry electrode, changing the mode of electrical conduction in
skin-electrode interface. The value of Z is mainly determined by Z4, which proves that the
decisive factor of skin-electrode impedance is the contact type of skin and electrode again.

In summary, although the skin-electrode impedance of the electrodes based on the
top grain layer and the split layer are greater than that of the standard Ag/AgCl electrode,
the problem can be successfully solved by simply applying lotion. The results of other
subjects in Supplementary Figures S1–S5 have basically the same trend. Table 2 shows
that the skin-electrode impedance of dry electrode is much greater than that of the wet
electrode, likely because of the air gaps in the skin-electrode interface. Methods to solve
the problem of air gaps, e.g., the high moisture level of the skin or the good fluidity of
electrode material, could reduce the skin–electrode impedance effectively.
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4.3. ECG Test

It can be seen from Figure 7d that in the sitting posture, SNR of the standard Ag/AgCl
electrode and the electrode based on the split layer is basically the same, which is slightly
higher than that of the electrode based on the top grain layer. The results difference of the
three electrodes is likely to be caused by subtle changes of the subject’s state.

In the standing posture, in Figure 7d, the SNR of the electrode based on cowhide is
basically the same, and that of the standard Ag/AgCl electrode is the lowest. In Figure 7a,
the noise of the standard Ag/AgCl electrode is obviously stronger than those of the other
two electrodes, because the electrodes based on cowhide are good flexible, and their shapes
are changed with the shape of the skin.

In the walking posture, the SNR of the electrode based on the split layer is the highest,
and the SNR of the electrode based on the top grain is the lowest in Figure 7d. The skin-
electrode interface of the electrode based on the split layer may be more stable during
the measurement process. So, the relative movement between the skin and the electrode
was not as great as the other two. This may be related to the flexibility of the electrode,
the forces and the contact area between the skin and the electrode, the roughness of the
electrode surface, and so on.

In power spectrum of ECG, the larger the number of spectral lines in power spectrum
is, the more the content (including noise and detailed information) is. In Figure 7e–g, the
ECG signal measured by the standard Ag/AgCl electrode contains most content, and the
electrodes based on the split layer contains the least content. According to Figure 7e–g,
the heart rates of the subject are all 79.8 beats per minute, which is normal. Based on the
Fourier theory, the P1 amplitude at some frequency in the power spectrum is related to
the peak value of the original signal at that frequency. Then, the frequency of the highest
peak of power spectrum should be larger than P1, the standard Ag/AgCl electrode has a
lower value.

Above all, that the SNR of the ECG signals measured by the electrode based on the top
grain layer and the split layer are consistent with that of the standard Ag/AgCl electrode.
In the power spectrum, the ECG measured by all the three electrodes can reflect the signal
characteristics. The results of other subjects in Supplementary Figures S6–S10 have the
same characteristics. However, it is not a common feature that the noise of the ECG signals
measured by our electrodes is lower than that of the standard Ag/AgCl electrode. The
reasons for noise are complex, and changes may be caused by many factors.

5. Conclusions

In this paper, two flexible electrodes based on the top grain layer and the split layer
of cowhide were designed and prepared to fabricate as wearable ECG monitoring sen-
sors. The performance of these two electrodes and the standard Ag/AgCl electrode was
evaluated by signal transmission experiment, skin-electrode impedance test and electrocar-
diogram (ECG) test. In the signal transmission experiment, the correlation coefficients of
the standard Ag/AgCl electrode are well under 10 Hz (it means severe distortion) while
that of the electrodes based on cowhide are close to 1 in the time domain. However, in the
frequency, only the standard Ag/AgCl electrode shows a high peak at the low frequency
when the frequency of input signal is 0.01 Hz. So, all the three electrodes can accurately
transmit signals. However, the signals of the standard Ag/AgCl electrode had distortion
at low frequency, and the dry electrodes based on cowhide had better performance. In the
skin-electrode impedance test, the air gap impedance of our flexible electrodes was larger
than the gel impedance of the standard Ag/AgCl electrode. However, the impedance of
the prepared electrodes (the electrode based on the top grain layer: from 180.85 kΩ to
53.67 kΩ (Figure 6a, f = 200 Hz), the electrode based on the split layer: from 732.06 kΩ to
98.37 kΩ (Figure 6a, f = 200 Hz) was significantly reduced to the same level as the standard
Ag/AgCl electrode (52.51 kΩ (Figure 6a, f = 200 Hz)) after applying a non-allergenic lotion.
In the ECG test, the SNR of the ECG signals measured by the three electrodes in sitting
posture shows no significant difference. The signal-to-noise ratio (SNR) of the electrodes
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based on the top grain layer and the split layer and the standard electrode was 9.446 dB,
8.059 dB, and 6.747 dB in the standing posture, respectively. In the power spectrum of ECG,
the ECG measured by all the three electrodes can reflect the signal characteristics (such as
heart rate). So, cowhide is a potential electrode substrate material.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11040101/s1, Figure S1: the skin electrode impedance result of the second subject,
Figure S2: the skin electrode impedance result of the third subject, Figure S3: the skin electrode
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