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ABSTRACT

Temperature sensitive (Ts) mutants of proteins pro-
vide experimentalists with a powerful and reversible
way of conditionally expressing genes. The tech-
nique has been widely used in determining the role
of gene and gene products in several cellular pro-
cesses. Traditionally, Ts mutants are generated by
random mutagenesis and then selected though labo-
rious large-scale screening. Our web server, TSpred
(http://mspc.bii.a-star.edu.sg/TSpred/), now enables
users to rationally design Ts mutants for their pro-
teins of interest. TSpred uses hydrophobicity and hy-
drophobic moment, deduced from primary sequence
and residue depth, inferred from 3D structures to
predict/identify buried hydrophobic residues. Mutat-
ing these residues leads to the creation of Ts mu-
tants. Our method has been experimentally validated
in 36 positions in six different proteins. It is an at-
tractive proposition for Ts mutant engineering as it
proposes a small number of mutations and with high
precision. The accompanying web server is simple
and intuitive to use and can handle proteins and pro-
tein complexes of different sizes.

INTRODUCTION

Temperature sensitive (Ts) mutants of a protein are those
whose levels of activity decrease when temperature rises
above a certain restrictive temperature. Below the restrictive
temperature, in permissive temperatures, the mutants and
the wild type protein have similar activity levels. Ts mutants
are powerful tools to study protein function in vivo and in
cell culture (1,2). They provide a reversible mechanism to
lower the level of a protein simply by changing the temper-
ature of growth (3). There are several practical applications

of engineering Ts mutants. In developmental biology, such
mutants would provide valuable insight into the function-
ing of essential genes and those used in multiple phases of
development. Ts mutants have also been utilized in many to
investigate protein folding pathways (4), macro-molecular
assembly (5), controlling the genotype of a cell in vivo (6),
nervous system defects (7), phenotypic effects (8,9), coor-
dination between different genes (9) pinpointing the phase
at which genes are functioning during the cell-division cy-
cle (10), controlled cell-arrest and synchronization of cells
or gene functions by means of reversible cell arrest (11,12)
and conditional expression of genes in Drosophila (13,14).

Ts mutants possess several advantages over other meth-
ods such as CRISPER and RNAi (15,16) in producing con-
ditional expression/induction/repression of genes. The ad-
vantages include fast temporal response, high reversibility
and the applicability to any tissue type or developmental
stage of an organism. Various strategies have been proposed
to construct Ts mutants, such as by fusion to a heat-sensitive
degron (17–19) or insertion of a Ts intein (20). However, Ts
mutants are still most commonly generated by random mu-
tagenesis. The process involves using chemical mutagens, ul-
traviolet (UV) radiation or error prone Polymerase chain re-
action (PCR) techniques to introduce random mutations to
protein-coding deoxyribonucleic acid (DNA). A screening
procedure is then adopted to select Ts mutants (7,21). This
procedure is typically laborious and expensive, as a large
number of mutants need to be screened. For instance, iden-
tifying Ts mutants in the fruit fly Drosophila melanogaster
involves the screening of several hundreds of thousands of
progeny (7). This method is not feasible for model organ-
isms with long generation times, and where it is impractical
to obtain large numbers of progeny (22).

To overcome the difficulties posed by random mutage-
nesis, we have previously demonstrated that it is possible
to accurately predict, purely from protein sequence, a small
subset of candidate positions, that when mutated, are likely
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to result in a Ts mutant (13,14,22,23). The method is based
on the observation that mutations at buried residue posi-
tions can cause large changes in protein thermal stability.
Further, the likelihood of an amino acid residing at a buried
position can be inferred from its hydrophobicity and that of
its flanking residues. Two parameters, namely the average
hydrophobicity (24,25) and hydrophobic moment (26) were
computed to estimate this likelihood. Following prediction
of buried positions, substitutions were suggested at such po-
sitions to generate a Ts phenotype. The mechanisms respon-
sible for temperature sensitive phenotype for different pro-
teins could be case-specific and is dependent on complex
factors, such as the rate of protein synthesis, susceptibility
to proteolysis and whether chaperones are involved in the
folding or degradation of the protein. Instead of speculating
on the exact mechanism, our approach is to suggest muta-
tions with a set of stereochemically diverse amino acids. It
is assumed that these mutations will destabilize the protein
to different extents, and that at least one mutant is likely
to be temperature sensitive. Through large-scale analysis of
known Ts mutants, prediction rules were generated based
on the two parameters described above (22). This strategy
for choosing mutant substitutions has been experimentally
tested previously on CcdB, TBP (TATA binding protein),
T4 lysozyme and Gal4 (13,23).

In addition to the sequence-based method described
above, the present study enhances Ts mutant prediction by
incorporating structural information of the protein. This
structural information can be inferred from existing pro-
tein structures in the Protein Data Bank (PDB) or from
homology models. To determine the degree of burial of an
amino acid in a protein, the residue depth measure was
used. Depth is defined as the distance of any atom/residue
to the closest bulk water (27). It has been shown to ac-
curately measure burial and parameterizes the local pro-
tein environment (28,29). Importantly, the depth measure
correlates well with structural stability (27) and free en-
ergy change of cavity-creating mutations in globular pro-
teins (27,29).

The aim of this study is to predict, a small set of residues
that when appropriately mutated, result in temperature sen-
sitive mutants of a given protein. Our server reports the pre-
dictions by both the sequence- and structure-based meth-
ods. These mutants can be readily tested experimentally. It
should be noted that no attempt is made to identify all pos-
sible Ts mutants.

In the sections below we first describe the methods used
for sequence- and structure-based predictions. This is fol-
lowed by a description of the benchmark results. The server
functionality is then described and illustrated with a case
study.

MATERIALS AND METHODS

In designing Ts mutants we have made use of the observa-
tion that the Ts phenotype correlates with decreased pro-
tein stability (30,31). In general, this reduction in stability,
and hence protein activity, can be attributed to the loss of
thermal stabilization contributed by hydrophobic residues
in the protein core. Accordingly, numerous experimental
studies have shown that significant destabilization in protein

stability and activity can be achieved by mutating buried
residues as compared to mutating residues at the surface
(32–34) .Our strategy to predict Ts mutant positions is to
target buried positions occupied by hydrophobic residues.
We identify such positions using both sequence and 3D
structural information.

Prediction based on primary sequence

The details of the sequence-based predictions have been
described at length in an earlier study (22). Qualitatively,
the method was based on the observations that the seven
residues, Cys, Phe, Ile, Val, Trp, Met and Leu were observed
to have an average side chain solvent accessible area of less
than 20%. Cysteines are not considered, as they could also
be involved with disulphide bond formation or metal ion
coordination. The other six residues are mutation targets
if predicted as buried. Burial predictions were made using
the local average Rose hydrophobicity (22,35) and the hy-
drophobic moment of the target residue and its flanking
neighbours. A set of rules based on these values, predicted
degree of residue burial.

Prediction based on 3D structure

3D structural information would make it easier to identify
hydrophobic residue positions that are buried in the core
of the protein. We estimate degree of burial by the depth
measure (27–29). The depth of a residue (or atom) mea-
sures its distance to the closest bulk molecule of bulk solvent
(water). In earlier studies we have made a convincing case
of how depth gives a more stratified description of residue
burial/environment (27) than the widely used solvent acces-
sibility measure.

The average depths of amino acid residues that corre-
spond to an average of 5% side chain accessibility were
determined from a non-redundant dataset of 561 pro-
teins extracted from the PDB (36). This dataset was non-
redundant to 30% in sequence identity and consisted of sin-
gle domain (chain length of 120–180 amino acids), high-
resolution (resolution ≤ 1.7 Å, R-free ≤ 0.2) protein struc-
tures in the PDB (http://mspc.bii.a-star.edu.sg/TSpred/
supplementary data.html). The threshold depth values of
Val, Ile, Leu, Met, Phe and Trp were determined to be 6.25,
6.75, 6.75, 7.00, 7.00 and 7.00 Å, respectively. Residues with
depths greater than their respective threshold would be pre-
dicted as Ts mutant positions. Note, the 5% accessibility cut
off value was determined in an earlier study (23) as an opti-
mal value to define buried residues.

Homology modeling protocol

When no experimentally determined structure is available
for a protein sequence of interest (query sequence), a ho-
mology model is constructed. Residue burial is then inferred
from the 3D model. The TSpred server makes use of an
automated homology modeling pipeline that includes steps
for template selection, target-template alignment, structure
modeling and model assessment. Suitable structural tem-
plates are searched in the PDB database using three itera-
tions of PSI-BLAST (version 2.2.28) (37) utilizing the BLO-
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SUM62 substitution matrix (38). A stringent e-value cut-
off of 0.0001 was used to identify homologs. Among the
hits, the one with the best e-value is chosen as template.
Next, a sequence alignment between query sequence and
the template sequence was constructed using SALIGN (39).
The resulting alignment is input to the automodel proto-
col of MODELLER (40) to construct a 3D model of the
protein. The model is assessed for accuracy/reliability with
the GA341 (41,42) and Discrete Optimized Protein Energy
(DOPE) statistical potentials (43). Residue burial informa-
tion is only taken from those models that satisfy a strin-
gent GA341 and DOPE cutoff of 0.75 and −1, respectively.
When no suitable templates are available or the constructed
models do not satisfy the GA341 and DOPE criteria, the
burial prediction is made using the sequence-based method
alone.

Suggested mutations

At the predicted positions, we suggest that the original
residue be mutated to Ala, Trp, Asn, Asp or Pro. While the
current program does not rank order amongst these muta-
tions, the suggestion is that one or more of them are likely
to result in a Ts phenotype.

Benchmark datasets

We benchmarked our method by examining the agree-
ment between our predictions with experimentally vali-
dated Ts mutants. Thirty six mutants from a set of six pro-
teins, for which extensive mutagenesis data exists, consti-
tuted our benchmark. The proteins were gene V (PDB:
1YHA), lambda repressor (PDB: 1LMB), T4 Lysozyme
(PDB: 2LZM), CcdB (PDB: 3VUB), Gal4 (PDB: 3CQQ)
and Ura3 (PDB: 1DQW) (13,23,44–49). The performance
of our predictions was assessed by coverage (the number of
predictions) and precision (number of true positives / num-
ber of predictions). Results from both sequence-based and
structure-based methods are reported.

For a query sequence without a PDB entry, structural in-
formation was inferred from a homology model. The accu-
racy of the model is largely determined by sequence iden-
tity to the structural template used. To gauge the effect of
template sequence identity on Ts mutant prediction perfor-
mance, we built models of T4 lysozyme using 15 templates
of varying sequence similarity. The templates were iden-
tified by searching DBAli (http://www.salilab.org/DBAli/)
(50) for structures similar to T4 lysozyme (PDB 2LZM).
We defined similarity as a minimum MAMMOTH P-value
of 10 and at least 100 equivalent positions (61% structure
overlap with T4 lysozyme). The selected templates were be-
tween 22 and 91% identical in sequence to T4 lysozyme and
all identifiable by PSI-BLAST search with an e-value cutoff
of 0.0001.

RESULTS

Performance on experimentally validated benchmark

Our methods successfully predicted all 36 experimentally
validated Ts mutant positions in the six proteins, CcdB,

Lysozyme, gene V, gal4, Ura3 and Lamda repressor (Ta-
ble 1). The sequence-based method correctly predicted 22
and the structure-based method 28 of the 36 cases. The two
methods were correct together in 14 of the cases. In addition
to the correct predictions, the sequence-based method made
one confirmed false positive identification, Val53 in CcdB.
Our methods also made 71 other predictions in these six
proteins that are yet to be experimentally validated (http://
mspc.bii.a-star.edu.sg/TSpred/supplementary data.html).

The amino acids that we target for mutation––Val, Ile,
Leu, Met, Phe and Trp constitute 29.2% (544 residue posi-
tions) of the amino acids in these six proteins. Only 19.8%
(108 residue positions) of these are identified by our predic-
tions as potential Ts mutant positions. The sequence based
method accurately identifies 53% (57 positions) and the
structure-based method identifies 79% (85 positions), while
32% (34 positions) is common to both the methods.

Effect of model accuracy on prediction

In the case of T4 lysozyme, 15 homology models were built
using templates with sequence identity ranging from 22 to
91%. The aim was to determine the efficacy of structure-
based prediction with homology models of varying accu-
racy. Out of five experimentally validated Ts mutant po-
sitions, high accuracy models (template sequence identity
>40%) correctly identified four mutant positions (Table 2).
For models built with low target-template sequence identity
(<25%) templates, their DOPE and GA341 scores failed to
cross the acceptance threshold. These models only predict
one or two of the validated positions. The sequence-based
method, being independent of the model accuracy, pre-
dicted three positions correctly in each of the cases. Note,
for both the structure- and sequence-based methods many
other positions are predicted by our program. As these po-
sitions have not been validated or invalidated as Ts muta-
tion sites, these are not considered as false positives of our
method.

Server description

Our server supports both sequence and structure inputs,
and several options are provided for each. For input
sequences, users could either specify a database, GenBank
(51) or UniProt (52,53), identification number or upload
the protein amino acid sequence in FASTA format. If the
input consists of multiple sequences, Ts mutant predictions
are made for each of the sequences separately. For input
structures, the users could either specify the four-letter PDB
code with optional additional letters to select specific chains
of the protein (the biological unit is used for predictions)
or upload a file in PDB format. User uploaded structures
are used for prediction without any model assessment.

Our server uses sequence and structure information to
make Ts mutant position predictions. The web server out-
puts the residue positions that have been predicted as Ts
mutation targets and prediction method (structure-based,
sequence-based or both). In the case where a homology
model was used, the server only displays the results of the
structure-based method if the models satisfy the assessment
criteria.

http://www.salilab.org/DBAli/
http://mspc.bii.a-star.edu.sg/TSpred/supplementary_data.html
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Table 1. Ts mutant position as predicted by sequence-based, structured-based or both methods

Protein PDB ID Chain length Residue position Residue type Prediction method

gene V 1YHA 87 35 VAL Both
45 VAL Both

47 ILE Structure

63 VAL Structure

81 LEU Structure

78 ILE Sequence

lambda repressor 1LMB 92 51 PHE Both
65 LEU Both

76 PHE Both

84 ILE Both

18 LEU Structure

36 VAL Structure

47 VAL Structure

T4 lysozyme 2LZM 164 6 MET Both
102 MET Both

149 VAL Structure

153 PHE Structure

103 VAL Sequence

CcdB 3VUB 101 17 PHE Both
18 VAL Both

33 VAL Both

34 ILE Both

54 VAL Both

5 VAL Structure

36 LEU Structure

63 MET Structure

50 LEU Sequence

53* VAL Sequence

96 LEU Sequence

97 MET Sequence

98 PHE Sequence

Gal4 3COQ 88 68 PHE Both
69 LEU Sequence

70 LEU Sequence

Ura3 1DQW 267 25 MET Structure
32 LEU Structure

118 ILE Structure

The wild-type residue (three-letter amino acid code) at the position is listed under residue type. * The prediction of VAL53 in CcdB as a Ts mutant position
is a false positive identification.
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Table 2. Ts mutant prediction in T4 lysozyme when homology models (identified by their templates) of different accuracies are used

Template quality Number of predictions Experimentally validated mutant positions

PDB:chain
Sequence ID
(%) DOPE GA341 Sequence Structure Both M6 M102 V103 V149 F153

1pqj:A 90.8 −2.08 1.00 3 (8) 4 (11) 2 (3) Both Both Sequence Structure Structure
1d3n:A 86.1 −1.96 1.00 3 (8) 4 (11) 2 (3) Both Both Sequence Structure Structure
1t8a:A 81.6 −1.65 1.00 3 (8) 4 (13) 2 (3) Both Both Sequence Structure Structure
1cx6:A 79.9 −2.03 1.00 3 (8) 4 (11) 2 (3) Both Both Sequence Structure Structure
1lpy:A 78.8 −1.95 1.00 3 (8) 4 (10) 2 (3) Both Both Sequence Structure Structure
1swz:A 77.5 −2.21 1.00 3 (8) 4 (13) 2 (3) Both Both Sequence Structure Structure
1lwk:A 77.0 −1.74 1.00 3 (8) 4 (12) 2 (3) Both Both Sequence Structure Structure
1swy:A 74.5 −2.22 1.00 3 (8) 4 (12) 2 (3) Both Both Sequence Structure Structure
1sx2:A 72.4 −2.28 1.00 3 (8) 4 (13) 2 (4) Both Both Sequence Structure Structure
1wth:A 43.2 −1.49 1.00 3 (8) 3 (12) 1 (2) Sequence Both Sequence Structure Structure
1k28:A 43.2 −1.43 1.00 3 (8) 5 (15) 3 (5) Both Both Both Structure Structure
2anv:A 24.2 0.54 0.12 3 (8) 1 (11) 1 (2) Sequence Both Sequence

2anx:B 23.9 0.60 0.08 3 (8) 2 (11) 2 (3) Sequence Both Both

2anv:B 23.5 0.49 0.13 3 (8) 2 (11) 2 (3) Sequence Both Both

2anx:A 22.1 0.64 0.13 3 (8) 1 (10) 1 (2) Sequence Both Sequence

The number of predictions made by the sequence-based, structure-based or both methods are listed for each of the models with the number of experimentally validated predictions within brackets. The
performance of the different models on the experimentally validated mutant positions are additionally shown in separate columns.

The user has the option to review details of the hy-
drophobic moment, average hydrophobicity and residues
flanking of predicted mutant positions. In cases where 3D
structural data have been used in making the Ts mutant
predictions, the PDB structure or the homology model
is displayed using a Jmol plugin (http://www.jmol.org/).
The backbone chain trace of the proteins is coloured
according to the residue depth and the mutant posi-
tions are shown as spheres centered on the C� atoms.
The spheres are also coloured according to residue
depth. In the case of homology models, the user is
notified about the target-template sequence identity
and the alignment used in model construction is provided.

Server availability

The server is freely accessible at http://mspc.bii.a-star.edu.
sg/TSpred and has no login requirements.

Case study

We demonstrate the functioning of our server using Es-
cherichia coli CcdB protein as an example. CcdB is a poison
of DNA gyrase and is a potent cytotoxin (10,11). CcdB is
101 amino acid residues long and its functional form (bio-
logical unit) is a homodimer. CcdB was chosen because sat-
uration mutagenesis experiments have been performed (23)
on this protein and can be used for validation.

The sequence-based method identified 10 target positions
(F17, V18, V33, L34, L50, V53, V54, L96, M97, F98) and
the structure-based method identified 14 target positions
(V5, F17, V18, V20, M32, V33, L34, L36, M63, M68, I90,
I94, M97, F98) (Figure 1). Eight Ts mutant targets (V5,
V20, M32, L36, M63, M68, I90, I94) were exclusively pre-
dicted by the structure-based method. All the predictions
were experimentally verified (100% accuracy). Four target
positions were exclusively predicted by the sequence-based
method, viz. L50, V53, V54 and L96. Of these, V53 is a
false positive. V54 (depth 6.18 Å) only marginally missed

the depth threshold (6.25 Å) for structure prediction; L50
and L96 were not buried but their side chains were within 4
Å of active site residues. It was proposed that these residues
were important in maintaining the conformation of active
site residues, and were hence potential Ts mutant positions.
The sequence- and structure-based methods when applied
independently, predict ∼10–15% of all residues to be po-
tential Ts mutant positions, corresponding to 50–75 muta-
tion suggestions (five mutations at each position). There are
six predictions common to both methods––F17, V18, V33,
L34, M97 and F98. All these residues were experimentally
verified Ts mutants (23). The structure-based method helps
reduce the false positives from sequence-based method and
reduces the number of predictions to 6% of all residues or
equivalently ∼30 mutant suggestions in CcdB.

We also compared the coverage between sequence- and
structure-based predictions. The saturation mutagenesis
data shows that CcdB consists of 55 possible Ts positions
(23). As our algorithm aims primarily to predict buried hy-
drophobic residues as Ts mutants, active site (I24, I25, D26,
E87, N88, K91, N92, N95, W99, G100, I101), dimerization
site (Q2, V20, Q21, S22, I25, T27, M32, T66, M68, A69,
I94, N95, M97, F98, W99, G100) and non-hydrophobic
residues were excluded from the analysis. Only 18 residues
(F3, V5, L16, F17, V18, V33, I34, L36, L41, L50, V54, I56,
M63, M64, V80, L83, I90, L96) remain as potential pre-
diction targets. The sequence-based method correctly pre-
dicted seven (39%), and structure-based method predicted
eight (44%) of all targets. Only four (22%) residues were
common between the two methods. Eleven (61%) of all tar-
gets can be identified by either one of the methods.

As saturated mutagenesis experiments have been per-
formed for CcdB, it enabled us to quantify the number of
substitutions at a predicted position that would lead to a
temperature sensitive mutant. On average 6.5 substitutions
led to Ts mutants at the positions predicted by the structure-
based method, as compared to 3.3 substitutions predicted
by sequence-based method (Table 3).

http://www.jmol.org/
http://mspc.bii.a-star.edu.sg/TSpred
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Figure 1. A functionally active CcdB dimer with one monomer in surface representation and the other in ribbon representation. The labeled location
of the predictions made by the sequence-based, structure-based and both predictions are coloured blue, red and purple, respectively. The false positive
identification is shown in green. The figure was rendered using Chimera (54).

Table 3. Number of substitutions that led to a Ts mutant at positions identified by different prediction modes in Escherichia coli protein CcdB

Prediction method Number of predictions Average number of Ts mutants

Exclusively sequence-based 3 3.3
Exclusively structure-based 4 6.5
Sequence-based 7 5.1
Structure-based 8 6.5
Sequence- and structure-based 4 6.5
Sequence- or structure-based 11 5.6

DISCUSSION AND CONCLUSION

Our predictions are based on the assumption that mu-
tating buried hydrophobic residues would destabilize a
protein, hence sometimes rendering it temperature sensi-
tive. We have employed two methods, sequence-based and
structure-based to make these predictions. The sequence-
based method estimates the degree of burial of a residue by
the hydrophobicity and hydrophobic moment of it and its
neighbouring residues. The structure-based method com-
putes residue depth (extent of burial), a 3D structure or
accurate homology model. The aim is to identify a small
number of residue positions in proteins and suggests substi-
tutions that are likely to produce Ts mutants. These poten-
tial Ts mutants can then be constructed and experimentally
screened. Our methods do not attempt to predict either all
buried residues or all possible Ts mutants.

We have shown that, both sequence-based and structure-
based methods are capable of accurately identifying Ts mu-

tants. The overlap between the two methods is however low.
Specifically, the Jaccard index (ratio of the intersection set
to the union set) of the sequence-based and the structure-
based predictions is only 0.32. This motivates us to suggest
that the experimentalists first mutate positions that are com-
mon to the two prediction methods. This strategy substan-
tially reduces (halves) the number of predictions and hence
increases precision (90–100% in the case study).

In our benchmark set, of 36 experimentally verified Ts
mutants, the sequence-based method identified 22 (59%),
and the other 15 (41%) were exclusively identified by
the structure-based method. Furthermore, none of the
structure-based predictions have been invalidated by ex-
periments as yet. However, hydrophobic environments can
also be found on protein surface forming active sites and
protein-protein interaction interfaces (55). Mutating these
non-buried residues could also lead to decreased functional
activity of the protein and a Ts mutant. This is shown in the
case of E. coli CcdB. Both a high-resolution structure and
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an exhaustive set of Ts mutants is available for the protein.
We found that eight Ts mutants correctly predicted with
the sequence-based method did not satisfy structure-based
burial criteria, and most of these residues are part of the
protein active site or are part of a protein-protein interac-
tion interface (23). This suggested that the sequence-based
method can be utilized when no structural prediction are
forthcoming.

The dependency of structure-based prediction on ho-
mology model quality was also investigated. Our results
show that structure-based prediction performance was not
critically dependent on modeling template as long as they
passed the assessment criteria.

As mentioned earlier, the sequence-based method also
predicts mutations in positions spatially close to active site
and protein-protein interfaces to be temperature sensitive
(23). However, our analysis with CcdB reveals that these
positions are more selective to mutations as compared to
buried positions. It is likely that mutations at positions that
are not as deep as core residues are less thermally destabi-
lizing.

Without the availability of large scale and exhaustive
studies of Ts mutants, it is not possible to accurately gauge
the false positive rate of the method. Hence, a rigorous es-
timation of sensitivity and specificity of the method is not
currently possible. However, for practical purpose, usually
one or a few Ts mutants are sufficient to facilitate further
investigation of a biological system. Using our testing set,
we showed that at least a few high confidence predictions
could be made for each case.

Engineering temperature sensitive mutant is a versatile
technique that can be used for a variety of purposes as it en-
ables an easy and reversible manipulation of protein func-
tion. This server has been set up to provide a simple and
intuitive tool to rationally design temperature sensitive mu-
tants. We hope that it will be useful in investigating various
biological systems.
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