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Abstract: Both ketogenic diets (KD) and time-restricted feeding (TRF) regimens have the ability
to influence several parameters of physical health, including gut microbiome composition and
circulating cytokine concentration. Moreover, both of these dietary interventions prevent common
impairments associated with the aging process. However, significantly altering macronutrient intake,
which is required for a KD, may be unappealing to individuals and decrease compliance to dietary
treatments. In contrast to a KD, TRF allows individuals to continue eating the foods they are used to,
and only requires a change in the time of day at which they eat. Therefore, we investigated both a
KD and a diet with a more Western-like macronutrient profile in the context of TRF, and compared
both diets to animals allowed access to standard chow ad libitum in young adult and aged rats.
While limited effects on cytokine levels were observed, both methods of microbiome analysis (16S
sequencing and metagenomics) indicate that TRF and KDs significantly altered the gut microbiome
in aged rats. These changes were largely dependent on changes to feeding paradigm (TRF vs. ad
libitum) alone regardless of macronutrient content for many gut microbiota, but there were also
macronutrient-specific changes. Specifically, functional analysis indicates significant differences
in several pathways, including those involved in the tricarboxylic acid (TCA) cycle, carbohydrate
metabolism and neurodegenerative disease. These data indicate that age- and disease-related gut
dysbiosis may be ameliorated through the use of TRF with both standard diets and KDs.

Keywords: ketogenic diet; intermittent fasting; gut; 16S; cytokine

1. Introduction

While extensive work indicates that ketogenic diets (KD) improve several markers of
health, long term compliance can be difficult to achieve [1–3]. This is an important barrier
to a longer health span, as adherence to a higher-quality diet increases the likelihood of
successful aging [4]. Time-restricted feeding (TRF; also referred to as intermittent fasting)
confines the period during which food is consumed to specific hours of the day (typically a
6–8 h window). TRF or intermittent fasting both refer to a variety of dietary paradigms,
each of which incorporates short periods of fasting ranging from hours to a whole day,
with many options therein [5]. However, unlike a KD, the macronutrient composition of
the diet is not altered. Compliance with TRF is generally higher, even in older adults [6],
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who typically struggle with various dietary interventions that are more restrictive in nature,
such as those that restrict carbohydrates or restrict feeding to a certain number of calories
per day [7,8]. Therefore, using a well-characterized rodent model of aging, the Fisher344 x
Brown Norway (FBN) rat, we investigated both a KD and a diet with a more Western-like
macronutrient profile in the context of time-restricted feeding (TRF), and compared both
diets with animals allowed access to standard chow ad libitum. The KD was given as a
TRF diet to delineate differences in changing macronutrient composition from changes
in consumption patterns, as it is already well established that KDs themselves influence
peripheral health and gut microbiome composition [9–14].

TRF may provide an alternative dietary paradigm providing similar benefits to KDs
regarding gut microbiome changes, without requiring large shifts in macronutrient con-
sumption, making them more easily translatable and maintainable for humans. Advanced
age is associated with changes in the composition and density of the gut microbiome [15],
known as dysbiosis, which can negatively influence peripheral health and quality of life [16].
Recent evidence has shown that TRF not only results in significant weight loss in obese in-
dividuals, but is also able to improve several measures of physiological function, including
insulin regulation [17]. Additional improvements include improved mitochondrial func-
tion in older individuals [18], as well as delayed tumor onset and reduction in tumor-like
lesion quantity [19]. Moreover, TRF decreases the circulating levels of pro-inflammatory
cytokines, including tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β) [20].

While modulating dietary macronutrients, such as a KD, is known to have a profound
impact on microbiome composition [9–14], significantly less is known about the impact
of TRF on microbial composition and diversity. While one group reports no significant
differences in alpha diversity or phylum-level abundance in obese humans undergoing
TRF for 12 weeks despite improved body condition, this group did not offer additional
analyses at lower taxonomic levels nor were beta diversity measures explored, leaving
many questions on the impact of TRF on gut microbiome composition unanswered [21]. A
second group investigating TRF in healthy, young adult males did find that gut microbial
richness was significantly enhanced and microbial community makeup differed post dietary
intervention [22,23]. Yet a third group demonstrated that the highly dynamic nature of the
gut microbiome includes daily cyclical fluctuations in composition, which can be altered by
TRF [24], and may account for differences across studies. The influence of TRF on the gut
milieu of aged individuals, however, remains under investigated.

Several animal models of disease have demonstrated the utility of utilizing TRF to
manipulate the gut microbiome and ameliorate or prevent physiological decline, though
these studies are limited in number and do not encompass the full treatment potential of
gut microbiome manipulations. For example, TRF resulted in significantly longer survival
and reduction in diabetic retinopathy end points through altered gut microbiome compo-
sition (increased Firmicutes, Bacteroidetes and Verrucomicrobia) in the db/db diabetes
mouse model [25]. Moreover, TRF in these mice improved microbial metabolites related
to cognitive function, an affect ameliorated by antibiotic administration [26]. These data
demonstrate the strong link between gut microbiome structure and distal organ systems,
including the central nervous system. Moreover, in the autoimmune encephalomyelitis
(EAE) mouse model of multiple sclerosis (MS), TRF (or even receipt of the microbiome taken
from a TRF mouse) increased microbial diversity, resulting in altered metabolic pathway
function and correlating with the amelioration of MS pathology [27]. TRF alterations in gut
microbiome composition also mediated the reduction in blood pressure in spontaneously
hypertensive stroke-prone rats [28]. Additionally, the large role gut health and microbiome
composition play in energy homeostasis and metabolic function greatly influences cognitive
performance [29–31]. Therefore, the gut may be one potential avenue through which we can
target neurobiological health, along the gut–brain axis [32,33] through novel therapeutic
interventions. While there is extremely limited information on the combination of TRF
with a KD in humans, limited data from case studies [34] and small clinical trials [35]
indicate that the combination may provide therapeutic relief for uncontrollable diabetes or
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insulin resistance. However, there were notable differences in seizure relief in children who
differed in response to the two dietary paradigms [36].

Interest in the effects of TRF on gut microbiome composition and health extend beyond
those interested in weight loss or therapeutic intervention. For example, individuals who
observe Ramadan, during which the participants fast from sun up to sun down for 29 days,
exhibit increased alpha and beta diversity, as well as changes in the abundance of several
major phyla [37–39]. Specifically, alterations in Lachnospiraceae abundance were observed in
one of these groups, which may help prevent some of the deleterious aspects of the aging
process through enhancing butyrate production [40].

The gut microbiome greatly influences several systems, including neurological func-
tion, cardiovascular function, immune system function and more. Therefore, to better
investigate the differential, or possibly synergistic, effects of KDs and TRF on physiological
parameters, we collected fecal samples from animals that underwent each dietary paradigm
(TRF Keto, TRF Control, and ad libitum rodent chow) and assessed changes in microbial
composition through 16S sequencing. Chronic delivery of these diets (28 weeks) was used
to prevent alterations due to dietary acclimation. Additional metagenomic analyses were
utilized to assess potential functional outcomes of observed microbial shifts.

2. Materials and Methods
2.1. Subjects

A total of 20 young (5 months) and 13 aged (21 months) male Fisher 344 x Brown
Norway hybrid F1 rats were used in this study. Rats were split across 3 diet groups: one
group (ad lib; 6 young and 4 aged) was given ad libitum access to standard rodent chow
(18% fat, 24% protein, 58% carbohydrate; Envigo, Teklad 2918), a second group (TRF
Keto; 7 young and 4 aged) was given a ketogenic diet (75.85% fat, 20.12% protein, 3.85%
carbohydrate; Lab Supply; 5722, Fort Worth, TX, USA; see [3,41] for additional diet details)
fed to them once daily (time-restricted feeding; TRF) and the third group (TRF Control;
7 young and 5 aged) was given a diet similar in macronutrient ratio to the control diet,
but also fed to them once daily (16.35% fat, 18.76% protein, 64.89% carbohydrate; Lab
Supply; 1810727, Fort Worth, TX, USA; see [3,41] for additional diet details). Rats in both
TRF groups were fed approximately 7 h after the onset of their dark (active) phase, which
may be considered comparable to late-TRF [42]. Each group remained on their respective
diets for 7 months (28 weeks).

2.2. Tissue Collection

At the time of euthanasia, rats were placed in a bell jar containing isoflurane-saturated
cotton (Abbott Laboratories, Chicago, IL, USA) until righting reflex was lost. Rats were
immediately decapitated and tissue was immediately extracted. Trunk blood was collected,
allowed to sit at room temperature for at least 20 min and then spun at 4 ◦C. Supernatant
was collected and stored at −80 ◦C until use. Fecal samples were collected directly from
the distal colon, placed in Para-Pak (Meridian Bioscience Inc., Cincinnati, OH, USA) and
immediately stored at −80 ◦C until use.

2.3. Nutritional Ketosis

Nutritional ketosis was determined via circulating glucose (mg/dL) and ketone body
(β-hydroxybutyrate; BHB; mmol/L)) concentration using the Precision Xtra blood moni-
toring system (Abbott Diabetes Care, Inc, Alameda, CA, USA). These values were utilized
to calculate a glucose ketone index (GKI), in which lower values indicate a higher level of
nutritional ketosis, using the formula: glucose

( mg
dL

)
/18.016

BHB (mmol
L )

.

2.4. Cytokine Analysis

Circulating concentration of the cytokines TNFα, interferon gamma (IFN-γ) and
interleukins (ILs) 4, 6 and 10 were quantified from blood samples utilizing a Meso Scale
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Discovery (MSD; Rockville, MD, USA) Rat Proinflammatory Panel 2 and a Quick Plex SQ
120 imager (MSD, Rockville, MD) using electrochemiluminescence technology.

2.5. Fecal Microbiome Taxonomy

Analysis of fecal microbiome was performed via 16S rRNA gene sequencing as previ-
ously described [43,44]. Briefly, a Zymo Research Fecal DNA isolation kit (Zymo Research,
Irvine, CA, USA; catalog # D6010) was used for DNA isolation. Isolated DNA was then
quantitated and barcoded via polymerase chain reaction (PCR) amplification of the V4
region of the 16S rRNA gene [45] using degenerate primers with slight modifications
as described [46] from the original Capaoraso primer sequences [47]. As previously de-
scribed [46,48], PCR products were resolved on agarose gels; DNA was isolated and purified
using Qiagen kits (Qiagen, Hilden, Germany); and then quantitated. The products were
sequenced on the Illumina MiSeq platform (Illumina, San Diego, CA, USA), a single-flow
cell, single-lane instrument.

Following quality control, exact amplicon sequence variants (ASVs) were resolved
and taxonomy was assigned using the SILVA small subunit ribosomal RNA database
version 132 (Max Planck Institute for Marine Microbiology and Jacobs University, Bremen,
Germany) [49]. Alpha diversity, or the diversity within samples, was quantified for age, diet
group and feeding paradigm utilizing the microbiome package in R [50] with the following
measures: Richness was evaluated utilizing the Chao1 index [51], which estimates the
number or species in a community. Diversity was evaluated using the inverse Simpson
index, which measures the dominances of a multispecies community [52]. Evenness was
then determined utilizing Simpson’s index, which accounts for the number of species
present as well as relative abundance of each of those species. Dominance was also
found using Shannon’s index, as the dominance index gives the abundance of the most
abundant species transformation [53]. The rarity index characterizes the concentration of
species at low abundance, using the skewness of the frequency distribution of arithmetic
abundance classes [54] and using the log-modulo transformation [53]. Beta diversity
was determined via permutational multivariate analysis of variance (PERMANOVA) on
Bray–Curtis, weighted Unifrac [55], and unweighted Unifrac distance matrices using the
Phyloseq package [56] in R [57]. Analysis of Compositions of Microbiomes (ANCOM) with
Bias Correction was used to test for differential abundance at several levels across diet
and feeding paradigm treatment groups using modified versions of previously published
ANCOM scripts [58,59]. Briefly, raw counts were filtered for any sequence present in at
least 30% of all samples. The ANCOM detection limit was set to the default value of 0.7 and
was run on centered log ratio transformed (CLR) count data using a Benjamini–Hochberg-
corrected significance level of 0.05 and adjusting for cohort grouping as a covariant.

2.6. Metagenomics

Metagenome libraries were generated by using the Illumina NextSeq 500 sequencer
platform (Illumina, San Diego, CA, USA) on 4 aged samples per diet group. Quality control
was performed using the MG-RAST v4.0.3 pipeline quality control filter [60], which resulted
in an average of 24,425,398 reads to be included in further analysis. Of those, ~55% of
the proteins were annotated to an assigned function or specific gene by the MG-RAST
v4.0.3 pipeline.

2.7. Statistical Analysis

Cytokine, GKI, and alpha diversity data were analyzed with two-way ANOVAs,
with the between-subjects factors of age and diet. Post hoc analyses were conducted via
Tukey’s multiple comparisons test, when appropriate. T-tests were utilized for post hoc
analyses when statistically indicated via main effect of any between-subjects variable. See
microbiome and metagenomics methods above for related statistical analysis. All analyses
were performed with GraphPad Prism v9.2.0 (GraphPad Software, San Diego, CA USA), R
v4.1.1, or IBM SPSS v25 (SPSS Inc., Chicago, IL, USA). Statistical significance was considered
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at p values less than 0.05, unless the Benjamini–Hochberg method [61] of correcting for
false discovery rate was applied as stated within the text.

3. Results
3.1. Confirmation of Nutritional Ketosis

At the time of euthanasia, circulating glucose and ketone body levels were quantified
to calculate a glucose ketone index (GKI), in which lower values indicate a higher level
of nutritional ketosis (Figure 1). While there were no effects of age on GKI (F(1,27) = 0.66;
p = 0.42), there was a significant effect of diet (F(2,27) = 44.24; p < 0.0001), as both the ad
libitum (T(27) = 7.12; p < 0.0001), and TRF Control-fed (T(27) = 8.92; p < 0.0001) rats had
significantly higher GKI levels than TRF Keto-fed rats. Ad libitum and TRF Control-fed
rats did not have significantly different GKI levels (T(27) = 1.43; p = 0.42).
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Figure 1. Circulating biomarkers following dietary intervention. (A) The glucose ketone index (GKI) 
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3.2. Cytokine Analysis 

Figure 1. Circulating biomarkers following dietary intervention. (A) The glucose ketone index
(GKI) was significantly lower in Time restricted fed (TRF) Keto-fed rats than in either ad libitum or
TRF Control-fed rats. (B–F) Levels of circulating cytokines remained largely unaffected by either
age or diet, with the exception of TNFα, for which a significant effect of diet (p = 0.04) was found.
Abbreviations: TNFα: tumor necrosis factor alpha; IFN-γ: interferon gamma; IL4/6/10: interleukin
4/6/10. All values represent the mean ± the standard error of the mean (SEM), * indicates p < 0.05.

3.2. Cytokine Analysis

Circulating cytokine concentrations were quantified in serum collected at the time of
sacrifice. For all five cytokines assessed, there were no significant effects of age, though
there was a strong trend for an increase with age in TNFα (F(1,27) = 4.05, p = 0.05; p > 0.24
for all others). Moreover, there were no effects of diet on any of the cytokines aside from
TNFα (F(2,27) = 3.63, p = 0.04; p > 0.40 for all others). Post hoc analysis for TNFα revealed
that while aged rats fed ad libitum had significantly higher cytokine levels than young rats
(t(29) = 2.52, p = 0.03), this was not the case for TRF-fed rats (t(29) = 0.69, p > 0.99) regardless
of macronutrient profile. There were no significant interactions between age and diet for
any cytokines (p > 0.26 for all comparisons).
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3.3. 16S Microbiome Analysis
3.3.1. Diversity

Alpha diversity was calculated through several common measures, as described above.
The results of two-way ANOVAs with the between-subjects factors of age and diet group,
with post hoc assessment of age within each diet group are displayed in Table 1. Moreover,
this table also includes the results of two-way ANOVAs with the between-subjects factors
of age and feeding paradigm (with both TRF groups combined), with post hoc assessment
of feeding paradigm within each age group. The Inverse Simpson measure of diversity was
the only measure indicating significant differences across feeding paradigm (F(1,29) = 26.28;
p < 0.0001; Figure 2).

Table 1. Two-way ANOVAs with the between-subjects factors of age and diet group, with post hoc
assessment of age within each diet group on five distinct alpha diversity measures.

3 Diet Comparison x Age Feeding Paradigm x Age

F (df, Error) p t DF p F (df, Error) p t DF p

Chao1

Interaction F (2, 27) =
1.339 0.2791 TRF

Control 0.461 27 0.9566 Interaction F (1, 29) =
2.432 0.1297 Young 1.448 29 0.2917

Age F (1, 27) =
1.211 0.2808 TRF Keto 0.4362 27 0.9628 Age F (1, 29) =

2.512 0.1238 Aged 3.185 29 0.0069

Diet F (2, 27) =
5.507 0.0099 Ad libitum

Chow 1.836 27 0.2147 Feeding
Paradigm

F (1, 29) =
11.46 0.0021

Diversity
(Inverse

Simpson)

Interaction F (2, 27) =
2.385 0.1112 TRF

Control 1.413 27 0.426 Interaction F (1, 29) =
4.531 0.0419 Young 2.378 29 0.0479

Age F (1, 27) =
8.091 0.0084 TRF Keto 3.909 27 0.0017 Age F (1, 29) =

11.44 0.0021 Aged 4.673 29 0.0001

Diet F (2, 27) =
14.15 <0.0001 Ad libitum

Chow 5.134 27 <0.0001 Feeding
Paradigm

F (1, 29) =
26.28 <0.0001

Evenness
(Simpson)

Interaction F (2, 27) =
0.2374 0.7903 TRF

Control 1.469 27 0.393 Interaction F (1, 29) =
0.3164 0.5781 Young 1.374 29 0.3276

Age F (1, 27) =
1.989 0.1699 TRF Keto 1.367 27 0.4544 Age F (1, 29) =

2.327 0.138 Aged 1.84 29 0.1462

Diet F (2, 27) =
3.718 0.0375 Ad libitum

Chow 2.725 27 0.0331 Feeding
Paradigm

F (1, 29) =
5.265 0.0292

Dominance
(Simpson)

Interaction F (2, 27) =
0.4912 0.6173 TRF

Control 2.065 27 0.1388 Interaction F (1, 29) =
0.009902 0.9214 Young 2.089 29 0.089

Age F (1, 27) =
1.947 0.1743 TRF Keto 1.432 27 0.4148 Age F (1, 29) =

1.460 0.2367 Aged 1.568 29 0.239

Diet F (2, 27) =
5.718 0.0085 Ad libitum

Chow 3.356 27 0.0071 Feeding
Paradigm

F (1, 29) =
6.425 0.0169

Rarity

Interaction F (2, 27) =
0.1713 0.8435 TRF

Control 0.6629 27 0.8845 Interaction F (1, 29) =
0.3796 0.5426 Young 1.512 29 0.2625

Age F (1, 27) =
2.187 0.1508 TRF Keto 2.493 27 0.0563 Age F (1, 29) =

1.495 0.2313 Aged 2.022 29 0.1023

Diet F (2, 27) =
3.253 0.0543 Ad libitum

Chow 1.782 27 0.2363 Feeding
Paradigm

F (1, 29) =
6.365 0.0174
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than altered macronutrient ratio alone. All values represent the mean ± the standard error of the
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Beta diversity was calculated using the Bray–Curtis (BC) Dissimilarity, unweighted
Unifrac (UWU) and weighted Unifrac (WU) analyses (Figure 3). For each of these meth-
ods, a PERMANOVA comparing all three diet groups indicated a significant effect of diet
(BC: F(2,30) = 5.94; p = 0.001; UWU: F(2,30)

= 4.96; p = 0.001; WU: F(2,30) = 8.24; p = 0.001).
Similarly, a PERMANOVA comparing the ad libitum to TRF feeding paradigms also re-
vealed a significant effect of feeding paradigm on beta diversity (BC: F(1,31) = 5.23; p = 0.001;
UWUF(1,31) = 5.53; p = 0.001; WU: F(1,31) = 5.55; p = 0.001).
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Figure 3. Beta diversity across diet and age groups. All three methods utilized, which includes
the (A) Bray–Curtis Dissimilarity, (B) unweighted Unifrac Dissimilarity and (C) weighted Unifrac
Dissimilarity demonstrated significantly different beta diversities based on diet and feeding paradigm
(TRF versus ad libitum) groups. PC: Principle Component.

3.3.2. Differential Abundance

Analysis of composition of microbiomes (ANCOM) was utilized to examine taxa that
had statistically different abundance between dietary (Figure 4A) and feeding paradigm
groups (Figure 4B), each adjusted for age. At the phylum level, five phyla (Actinobacte-
ria, Cyanobacteria, Deferribacteres, Patscibacteria and Verrucomicrobia) are significantly
influenced by diet (Figure 4C) and three phyla (Actinobacteria, Patscibacteria and Verru-
comicrobia) are significantly influenced by feeding paradigm (Figure 4D).

ANCOM was also repeated at the genus level, which demonstrated that 22 genera
were significantly altered by diet group, and 9 genera were significantly altered by feeding
paradigm (Figure 5). Interestingly, all genera significantly affected by feeding paradigm
were also significantly altered by diet group. The difference in centered log ratio (CLR)-
transformed counts utilized in the ANCOM analysis between each TRF group and the
ad libitum group were plotted against the W statistic, which represents the number of
times the ratio between the given taxon and each of the other taxa in the community was
significantly different between the two treatment groups (Figure 5B,C).



Nutrients 2022, 14, 1758 8 of 17
Nutrients 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. Diet and feeding paradigm influence on gut microbe abundance at the phylum taxonomic 

level. Relative abundance at the phylum taxonomic level (A) by diet group and (B) feeding 

paradigm (TRF versus ad libitum). Significantly different phyla are shown by (C) diet group and 

(D) feeding paradigm. All values in C–D represent the mean ± the standard error of the mean (SEM). 

ANCOM was also repeated at the genus level, which demonstrated that 22 genera 

were significantly altered by diet group, and 9 genera were significantly altered by 

feeding paradigm (Figure 5). Interestingly, all genera significantly affected by feeding 

paradigm were also significantly altered by diet group. The difference in centered log ratio 

(CLR)-transformed counts utilized in the ANCOM analysis between each TRF group and 

the ad libitum group were plotted against the W statistic, which represents the number of 

times the ratio between the given taxon and each of the other taxa in the community was 

significantly different between the two treatment groups (Figure 5B,C). 
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paradigm. All values in C–D represent the mean ± the standard error of the mean (SEM).
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Figure 5. Diet and feeding paradigm (TRF versus ad libitum) influences on gut microbe abundance
at the genus taxonomic level. (A) Heat map of genera relative abundance by diet group. Analysis of
composition of microbiomes (ANCOM) differential abundance volcano plots at the bacterial genus
level for (B) TRF Control and (C) TRF Keto relative to ad libitum-fed rats. ANCOM analysis utilized
the centered log ratio (CLR)-transformed ASV count table. Only significantly different genera are
colored, non-significant taxa are displayed in black.

3.3.3. Metagenomics

In addition to taxonomical differences, metagenomic analyses were used to identify
functional differences (Figure 6). Community-wide functional representation was assessed
by mapping metagenomic reads to the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Orthology (KO) database via MG-RAST. Within each level 2 subgroup, level 3 group-
ings were investigated via two-way ANOVA with diet group and level 3 classification as
between-subjects factors. Based on our a priori hypothesis that metagenomic data would
significantly differ based on feeding paradigm regardless of macronutrient composition,
post hoc analysis was performed for each TRF diet group relative to ad libitum rats us-
ing Dunnett’s Multiple Comparisons. Significant differences at level 3 were then further
investigated at the functional level in pertinent pathways.
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Figure 6. Cluster of Kyoto Encyclopedia of Genes and Genomes (KEGG)-based annotation analysis by
diet group. (A) Level 1 KEGG classification relative abundance across diet groups. (B–D) Within each
level 2 subgroup, level 3 groupings were investigated and significantly affected level 3 classifications
are displayed here.

Several KEGG pathways involved in metabolic processes were altered by both dietary
interventions. Firstly, within the carbohydrate metabolism level, components of the tri-
carboxylic acid (TCA) cycle were significantly upregulated by TRF relative to ad libitum,
including citrate synthase (CS), pyruvate carboxylase subunit B (pycB), 2-oxoglutarate
ferredoxin oxidoreductase subunits alpha and beta (korA and korB), and malate dehydroge-
nase (mdh). Secondly, amino acid metabolic pathways were also altered by TRF, including
glycine, serine and threonine metabolism and alanine, aspartate and glutamate metabolism.



Nutrients 2022, 14, 1758 11 of 17

Within alanine, aspartate and glutamate metabolism, several pathways were specifically
upregulated by TRF Keto, but not TRF Control, including asparagine synthase (asnB),
carbamoyl-phosphate synthase large subunit (carB), glutamate dehydrogenase (NADP+;
gdhA), amidophosphoribosyltransferase (purF) and glutamate synthase (NADPH/NADH)
large and small chains (gltB and gltD). Only one pathway was significantly upregulated
by TRF Control but not TRF Keto, alanine dehydrogenase (ald). Within the glycine, serine
and threonine metabolism level, dihydrolipoamide dehydrogenase (DLD), glycine dehy-
drogenase (GLDC) and glycine C-acetyltransferase (GCAT) were all upregulated by both
TRF diets. However, ilvA, tdcB; threonine dehydratase (ilvA), 2,3-bisphosphoglycerate-
dependent phosphoglycerate mutase (PGAM), tryptophan synthase beta chain (trpB) and
phosphoserine aminotransferase (serC) were significantly upregulated by TRF Keto alone.
Moreover, aminomethyltransferase (gcvT) and bifunctional aspartokinase/homoserine de-
hydrogenase 1 (thrA) associated pathways were significantly upregulated by TRF Control
alone and glycine hydroxymethyltransferase (glyA) was significantly downregulated by
TRF Control alone. Thirdly, within the energy metabolism level, oxidative phosphorylation
was significantly upregulated by the TRF Keto, but not TRF Control, demonstrating that
not all effects are due to feeding paradigm alone.

Relatedly, within the environmental information processing level, signal transduction
along the PI3K–Akt pathway was significantly upregulated by TRF Keto, but not TRF
Control. This pathway is vital to cellular and organismal function, as it is involved in
cell proliferation and survival by phosphorylating (and thereby modulating) a variety
of substrates. This includes, but is not limited to, glycogen synthase kinase-3 (GSK3),
GLUT4 (resulting in translocation to the membrane), cyclin-dependent kinase inhibitors,
P21/Waf1/Cip1 and P27/Kip2 and mammalian target of rapamycin (mTOR) [62]. Con-
versely, several neuroactive ligand–receptor interactions were significantly downregulated
in both TRF-fed diets relative to ad libitum. Both TRF diets significantly downregulated
several receptors and receptor subunits, including formyl peptide receptor-like (FPRL),
gamma-aminobutyric acid receptor subunit epsilon (GABRE), metabotropic glutamate
receptor 6/7/8 (GRM_6_7_8), 5-hydroxytryptamine receptor 1 (HTR1), trypsin (PRSS),
neuropeptide Y receptor type 1/4/6 (NPY1R_4R_6R) and trace amine associated receptor
(TAAR). Two additional receptors, the benzodiazepine receptor (BZRP) and glutamate
[NMDA] receptor subunit epsilon-2 (GRIN2B), were significantly lowered by TRF Control
only; and one, prostaglandin D2 receptor (PTGDR), by TRF Keto only.

Within the human diseases level, pathways associated with neurodegenerative dis-
eases, in particular Alzheimer’s disease, were significantly downregulated following TRF.
Interestingly, the pathway associated with amyloid beta A4 protein (APP) was downregu-
lated by TRF Keto only, as was F-type H+-transporting ATPase subunit alpha (ATPeF1a)
and NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 (NDUFB4), though NADH
dehydrogenase (ubiquinone) 1 beta subcomplex 3 (NDUFB3) was significantly affected by
both TRF groups. Both TRF groups also significantly reduced pathways associated with
F-type H+-transporting ATPase subunit a (ATPeF0A), insulin-degrading enzyme (IDE), and
cytochrome c oxidase subunit 1 (COX1), though cytochrome c oxidase subunit 3 (COX3)
was influenced by TRF Control only.

At the systemic level, protein digestion and absorption were significantly influenced
by the diets. Specifically, the pathway associated with dipeptidyl-peptidase 4 (DPP4) was
upregulated by both TRF diets. Two main areas of transport and catabolism within the
cellular processes level were significantly upregulated by both TRF diets: the peroxisome
and lysosomes. Long-chain acyl-CoA (ACSL) and catalase (CAT), both associated with the
peroxisome, and glucosylceramidase (GBA), hexosaminidase (HEXA_B) and sialidase-1
(NEU1), associated with the lysosome, were all significantly upregulated by both TRF diets.

4. Discussion

In this cohort of male FBN rats, it appears that feeding paradigm (TRF vs. ad libitum)
had a significant effect on gut microbiome composition, in addition to macronutrient
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composition. While others have observed differences in gut microbiome composition
following ketogenic diets (KD; reviewed in [63]), we aimed to both replicate this finding
as well as expand upon the dearth of information regarding TRF and gut microbiota
composition (GMC).

Our data indicate that while the level of most cytokines remained stable throughout
adulthood, aged rats randomized to consume chow ad libitum demonstrated excessive
TNFα levels in circulation. This effect was prevented in the rats consuming either the KD
or CD with TRF. However, significant differences were observed in microbial diversity
across both diet groups (i.e., differing macronutrient ratio) and feeding paradigm groups
(i.e., TRF vs. ad libitum consumption).

Both diet group and feeding paradigm yielded significantly different GMC. More-
over, differential abundance analysis revealed 22 genera were significantly altered by diet
group, and 9 genera were significantly altered by feeding paradigm. Gut microbiome
(GMB) diversity assessed by Simpson’s inverse index, which quantifies biodiversity by
taking into account richness and evenness, was increased by TRF compared to ad libitum
feeding. Consumption of either the TRF Keto or TRF Control diets prevented elevated
TNFα levels in circulation that occurred in aged rats consuming the ad libitum diet. This
indicates that these changes in GMB diversity and composition documented with TRF
feeding paradigm may alter the proinflammatory status in older animals. While it is not
surprising that diet macronutrient composition altered the composition and function of the
GCM, it is interesting that a TRF feeding paradigm had strong effects on GCM diversity
and composition.

Our microbiome analysis supports the efficacy of TRF to significantly alter metabolite
production and utilization. Specifically, altering food consumption pattern in this study re-
sulted in changes in gut microbes associated with short-chain fatty acid (SCFA) production.
These changes are interesting in light of recent work demonstrating that over-production of
gut microbiota-produced acetate (GMPA) leads to insulin over-secretion and obesity symp-
toms [64]. This accumulation of acetate, which occurs following consumption of a high-fat
diet, results in parasympathetic nervous system activation and over-secretion of insulin and
ghrelin. Conversely, the accumulation of gut microbiota-produced butyrate (GMPB), but
not GMPA, enhances AMPK signaling, reducing expression of lipogenesis-associated genes
and triggering insulin sensitivity [65]. Thus, a shift from acetate-producing to butyrate-
producing bacteria may improve obesity-related gut dysbiosis and metabolic health.

Akkermansia muciniphila has recently been described as “a next-generation beneficial
microbe” [66]. Our data indicate that TRF enriches for the genus Akkermansia, though
increases in abundance only reached significance for rats also consuming a TRF Keto, and
not the TRF Control, relative to ad libitum-fed rats. Akkermansia influences many aspects of
metabolic health, including glucose metabolism, lipid metabolism, and intestinal immunity.
The anti-diabetes drug Metformin enhances Akkermansia levels [67], which is one possible
mechanism by which Metformin appears to be protective against cognitive decline in aged
subjects with type II diabetes [68]. Moreover, Akkermansia muciniphila is necessary for the
anti-seizure effects of the KD [11], strongly demonstrating the link between neurobiological
function and gut microbiome composition.

In addition to Akkermansia muciniphila, there are many ways by which the gut micro-
biota influence cognitive function. Our metagenomic analysis revealed that in addition
to metabolic and other cellular processes, several neurobiological pathways were affected
by the diets utilized herein. Firstly, pathways involved in the development of neurode-
generative diseases were significantly different across groups. The pathway associated
with amyloid beta A4 protein (APP) production was significantly reduced in TRF Keto-fed
rats relative to ad libitum-fed rats, but not TRF Control-fed rats. While the full range of
functions of APP remains unknown, cleavage of APP generates neurotoxic β-amyloid
peptide (Aβ), which accumulates within the brains of individuals with Alzheimer’s disease
(AD) [69]. KDs have been suggested to be efficacious in the treatment of AD by numer-
ous groups [70–73] and recently reviewed in [68] and our data indicate that a potential
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mechanism by which it is influencing brain pathology may be altered gut microbiome
composition. Additionally, mitochondrial dysfunction, particularly defects in cytochrome C
oxidase (COX), is widely reported within AD [74,75]. Our metagenomic analysis indicates
significant alterations in COX subunits 1 and 3 with both TRF diets and TRF Control only,
respectively. Moreover, TRF Keto significantly altered ATPase activity through subunit a,
which would also affect a cell’s ability to function normally. Insulin-degrading enzyme
(IDE) strongly links metabolic function with AD, as it not only degrades insulin but also
Aβ [76], and was significantly decreased following TRF in our dataset.

Secondly, many pathways related to neuroactive ligand signaling were significantly
decreased following TRF. This includes pathways related to gamma-aminobutyric acid
receptor subunit pi (GABRP), melanocortin 3 receptor (MC3R), nicotinic acetylcholine
receptor gamma (CHRNG), glycine receptor beta (GLRB) and prostaglandin E receptor 2
(PTGER2). However, whether these changes are limited to localized effects or influence
neurotransmitter signaling processes within the brain remains to be determined.

Thirdly, several key pathways involved in the tricarboxylic acid (TCA) cycle were
significantly upregulated following the TRF diets. Specifically, malate dehydrogenase
(mdh) and 2-oxoglutarate ferredoxin oxidoreductase subunits alpha and beta (korA and
korB) were significantly upregulated by both TRF diets, fumarate hydratase class I (fumA
and fumB) and citrate synthase (CS) were upregulated by TRF Keto only and pyruvate car-
boxylase subunit B (pycB) was upregulated by TRF Control only. Relatedly, other pathways
involved in carbohydrate metabolism were significantly altered following dietary interven-
tion, which can influence TCA cycle function. Several aspects of both the alanine, aspartate
and glutamate metabolic pathway and the glycine, serine and threonine metabolic pathway
were significantly altered by one or more of the TRF diets. Some of these aforementioned
changes in the GMB following TRF may begin to provide mechanistic explanation for
the plethora of mental health changes (including depression, cognitive impairment, sleep
disorders, dementia and AD) following TRF, as reviewed in [77].

One caveat to this study, which likely prevented any age-related differences in mi-
crobial composition, is that the ‘young’ rats were fully developed adults at the onset of
this study, and the chronic nature of the dietary paradigm resulted in rats being closer to
middle aged (13 months of age) at the time of sample collection. Future studies initiating
diet interventions at earlier time points are needed to resolve age-related differences in the
efficacy of TRF paradigms versus macronutrient composition. Moreover, chronic dietary
interventions such as this one may have lower translational potential and the utility of
other paradigms, such as cycling on and off the ketogenic diet, may be better targets for
future studies [78,79].

There are several possible mechanisms by which TRF would change GMB composition.
Firstly, TRF elicits some amount of ketone body production in the liver as soon as 8 h after
beginning a fast [80], providing different nutrient sources than typical eating paradigms.
Altered nutrient sources for gut microbes significantly influence production of many
metabolites, including neurotransmitters and other key enzymes [81,82]. The degree to
which ketones directly influence health outcomes via the gut microbiota remains largely
unknown, but likely correlates with the abundance of ketotic- vs. glucose-related fuel
sources in the gut. In fact, recent work demonstrated that ketone production by KD
and TRF affected the gut microbiota and disease progression differently in a rat model
of AD [83]. Secondly, the timing of food consumption modulates circadian rhythms,
which then modulates a host of other physiological functions [84]. This includes the gut
microbiota, which undergoes significant restructuring throughout the day [85]. Moreover,
this leads to fluctuations in the concentration of key bacterial metabolites, including acetate,
propionate and butyrate [86]. Thirdly, TRF is often, though not always, accompanied
by weight loss. Obese individuals have significantly altered gut microbiota [87], thus
restoration of a more lean phenotype may restore obesity-related gut dysbiosis. Moreover,
TRF promotes browning of adipose tissue, which may further decrease obesity and/or alter
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GCM composition [88], though a combination of TRF and Keto reduces brown adipose
tissue volume [41].

5. Conclusions

Both macronutrient composition and feeding paradigm result in significant alteration
in gut microbiome composition. These changes may mediate improved physiological
and cognitive outcomes following dietary implementation, both in healthy individuals
and in disease. Moreover, our data indicate that this could be equally effective in older
populations, who experience greater cognitive decline and higher incidence of metabolic
and neurological disorders. Given the lack of evidence using pharmaceutical interven-
tions to prevent aging and age-related disease, this new concept of manipulating the gut
peripherally to target distal organ health and function may serve as both a first line of
evidence-based, low-risk intervention for health care providers seeking to increase patients’
health span, as well as an adjuvant to clinical therapies, through relatively simple dietary
intervention. Our data indicate that both types of dietary interventions are capable of
altering the gut microbiome in different ways, and selection of dietary interventions may
rely on both physiological outcomes and patient preference.
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