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Abstract: Productivity of Indian mustard, an important oilseed crop of India, is affected by several
pathogens. Among them, the hemibiotroph Sclerotinia sclerotiorum, which causes sclerotinia rot
disease, is the most devastating fungal pathogen causing up to 90% yield losses. The availability
of host resistance is the only efficient approach to control and understand the host–pathogen
interaction. Therefore, the present investigation was carried out using six Indian mustard genotypes
with contrasting behavior towards sclerotinia rot to study the antioxidant resistance mechanism
against S. sclerotiorum. The plants at post-flowering stage were inoculated with five-day-old pure
culture of S. sclerotiorum using artificial stem inoculation method. Disease evaluation revealed
significant genotypic differences for mean lesion length among the tested genotypes, where genotype
DRMR 2035 was found highly resistant, while genotypes RH 1569 and RH 1633 were found highly
susceptible. The resistant genotypes had more phenolics and higher activities of peroxidase, catalase
and polyphenol oxidase which provide them more efficient and strong antioxidant systems as
compared with susceptible genotypes. Studies of antioxidative mechanisms validate the results of
disease responses.

Keywords: Sclerotinia sclerotiorum; Indian mustard; lesion length; resistance; susceptible; antioxidant
system; genotypes

1. Introduction

Oilseed crops play a crucial role in the agricultural-based economy of India [1]. Among the
nine major oilseed crops widely cultivated in India, rapeseed-mustard occupies the foremost position
because of its greater sustainability under varied agro-ecological situations. India is ranked 3rd in
world after China and Canada both in acreage (19.3%) and production (11.3%) of brassica oilseeds.
Despite this, India meets ~57% of its interior comestible oil requirements through import from other
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countries [2]. Productivity of brassica oilseed is mainly hampered by various fungal diseases viz. white
rust, Alternaria blight, sclerotinia rot, and downy mildew [3]. Among these, sclerotinia rot caused
by Sclerotinia sclerotiorum (Lib.) de Bary, a cosmopolitan soilborne fungal pathogen, is the utmost
devastating disease in the present climate [4]. This pathogen does not have any specific host and causes
disease in >600 plant species including important oilseed crops viz. soybean, groundnut, sunflower,
and brassica oilseeds including Indian mustard (Brassica juncea (L.) Czern & Coss) [5,6]. It causes up
to 90% yield losses in Indian mustard besides affecting oil quality [7]. S. sclerotiorum shows bimodal
infection in their hosts by carpogenic and myceliogenic means (Figure 1). The sclerotia overwinter
inside the soil and either germinate myceliogenically to form mycelia which infect basal stems (soilborne
infection) or germinate carpogenically to form apothecia to infect any part via appressoria formation
(air borne infection) [8]. Sclerotinia rot symptoms, particularly those due to carpogenic infection,
are visible after flowering stage. It causes infection in plant parts including stem with typical symptoms
of initially soft and white-grayish lesions which then extend throughout the stem and lead to plant
collapse [6]. S. sclerotiorum has a typical hemibiotrophic lifestyle [9] and shows a triphasic model for
infection on host plants. This infection process includes the (i) opportunistic–saprophytic phase in
which the pathogen makes contact and penetrates the host tissue, (ii) pathogenic phase in which it
releases chief virulence factor (oxalic acid) and cell wall-degrading enzymes like pectinases which
cause necrosis in host tissue, and (iii) saprophytic phase in which a pathogen takes nutrients from the
host necrotic tissue for completing its life cycle and develops sclerotia which completely collapse the
infected tissue [10]. Stems are most affected by this devastating disease and damage to stems is directly
related to major field losses. The fungal infection generally leads to the development of lesions on stems
which consistently extend longitudinally throughout the stem as the disease progresses. Resistant host
restricts the lesion extension on stems over time with the help of callose development, lignification,
and cambium formation at the edge of lesion for delaying growth of a pathogen [11,12]. Therefore,
stem lesion length, rate of lesion development over time, and Area Under Disease Progression Curve
(AUDPC) are very good parameters for assessing resistance and disease progression over time.

Metabolism of the host plant also gets modulated post-pathogen attack which leads to elevated
levels of reactive oxygen species (ROS) viz. hydrogen peroxide (H2O2), superoxide radicals (O2

−),
hydroxyl radicals (OH−), and singlet oxygen (O−) near the pathogen infection site. These molecules
are essential for plants to combat against phytopathogens [13].

However, production of ROS above its threshold level is deleterious for both the pathogen and host
cells and causes oxidative stress [14]. Plants have very complex antioxidant defense mechanisms and
systems to circumvent the oxidative stress [15,16]. They comprise antioxidative and defense enzymes
as well as some non-enzymatic components. This system maintains cellular homeostasis, helps in
exploiting its favorable role to plants against pathogenic infection and is very useful biochemical
indicator for disease resistance [17–21]. The host plant illustrates a unique defense response during a
different phase of hemibiotrophs infection. This response supported by host-hemibiotrophs interaction
suggests that high ROS accumulation in host during initial phase of infection is inhibitory to pathogen
while it is beneficial for pathogen during the later phase [22]. Therefore, timing and strength of
defense response activation determine host plant resistance level against hemibiotrophs. However,
understanding of the host-pathogen interaction and resistance mechanism involved in Indian mustard
against S. sclerotiorum is still very scanty and needs further elucidation. Therefore, present study was
designed and executed to evaluate the antioxidative response and resistance behavior at early, mid,
and later stages of S. sclerotiorum infection in contrasting Indian mustard genotypes.
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Figure 1. Lifecycle of S. sclerotiorum on Indian mustard.

2. Results

2.1. Disease Assessment

Inoculated plants showed characteristics symptoms of sclerotinia rot as white-greyish lesions
on stems while uninoculated plants were healthy with no symptoms. Statistical analysis showed
significant genotypic differences for mean stem lesion length at 6, 12, and 18 days after inoculation
(DAI) (Table 1). Based on mean lesion length at 18 DAI, genotype DRMR 2035 showed highly resistant
response with <2.5 cm mean lesion length while the genotypes viz. RH 1222-28 and EC 597328 showed
resistant response with mean lesion length between 2.5 to 5.0 cm. However, majority of the plants
of resistant genotypes (DRMR 2035 and RH 1222-28) were asymptomatic at 6 DAI and showed slow
resistance phenomenon. Among susceptible genotypes, RH 1566 was found susceptible with mean
lesion length between 7.5 and 10.0 cm, while the other two genotypes viz. RH 1569 and RH 1633
exhibited highly susceptible response with >10.0 cm mean lesion length. AUDPC varied from 25.26 to
113.37 with lowest (25.26) in DRMR 2035 and highest (113.37) in RH 1569. Rate of increase per day in
lesion length varied from 0.07 to 0.87 cm day−1 with maximum (0.87 cm day−1) in RH 1566 at 6 DAI
and minimum (0.07 cm day−1) in DRMR 2035 at 18 DAI (Table 2).
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Table 1. Analysis of variance for mean lesion length on stems due to S. sclerotiorum inoculation.

Source of Variation df p Value

Lesion length (6 DAI) 5 <0.0001
Lesion length (12 DAI) 5 <0.0001
Lesion length (18 DAI) 5 <0.0001

DAI-Days After Inoculation, df-degree of freedom.

Table 2. Disease progression characterization parameters for different Indian mustard genotypes at 6,
12, and 18 days after inoculation (DAI).

Genotype Mean Lesion Length (cm) Rate of Increase in Lesion
Length (cm day-1) AUDPC * Disease Response **

6 DAI 12 DAI 18 DAI 6 DAI 12 DAI 18 DAI
RH 1222-28 0.72 d 2.58 b 4.16 c 0.12 0.31 0.26 32.28 Resistant
DRMR 2035 0.91 d 2.06 b 2.48 c 0.15 0.19 0.07 25.26 Highly Resistant
EC 597328 1.70 c 3.19 b 4.73 c 0.28 0.25 0.26 43.53 Resistant
RH 1566 5.22 a 7.30 a 8.91 b 0.87 0.35 0.27 101.85 Susceptible
RH 1569 4.68 b 8.24 a 11.95 a 0.76 0.59 0.62 113.37 Highly Susceptible
RH 1633 4.39 b 7.40 a 10.81 ab 0.73 0.50 0.57 103.17 Highly Susceptible

Treatment means in the same columns with different letters differ significantly (p < 0.05). * AUDPC—Area Under
Disease Progress Curve, ** Disease response was measured on the basis of mean lesion length at 18 DAI as per scale
given by Garg et al. [23].

2.2. Biochemical Analysis

2.2.1. Peroxidase (POX) Activity

Analysis of variance (ANOVA) revealed highly significant interactions for POX activity among
variables viz. sampling times (ST), plant inoculation (PI), and genotypes with different responses
to sclerotinia rot (G) (Table 3). Data presented in Table 4 show the highest POX activity (5.98 µmol
min−1 mg−1 protein) in DRMR 2035 inoculated with S. sclerotiorum at 6 DAI (6DAI/I/R2) and lowest
(2.19 µmol min−1 mg−1 protein) in RH 1566 at 18 DAI (18DAI/UI/S1). There was no significant difference
for POX activity in uninoculated plants of all genotypes, but activity increased in all the genotypes
after pathogen inoculation at all duration (6, 12, and 18 DAI). However, it was significantly higher in
resistant genotypes as compared with susceptible genotypes at 6 DAI while significantly higher in
susceptible genotypes at 18 DAI (Table 4). The increase in POX activity after inoculation was manifold
higher in resistant genotypes at 6 and 12 DAI, whereas at 18 DAI it was higher in susceptible genotypes
(Figure 2). Pearson correlation between percent increase in POX activity and mean lesion length
(Table 5) showed significantly negative association (p < 0.05) at 6 DAI.

Table 3. Analysis of variance of the effect of sampling times (ST), plant inoculation (PI), and Indian
mustard genotypes with different response to sclerotinia rot (G) and their interactions on the peroxidase
activity (POX), catalase activity (CAT), polyphenol oxidase activity (PPO), total soluble phenolics (TSP),
and total soluble sugar (TSS) content.

p Values

Sources of Variation df POX CAT PPO TSP TSS

ST 2 <0.0001 <0.0001 <0.0001 0.0283 <0.0001
PI 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
G 5 0.0002 <0.0001 <0.0001 <0.0001 <0.0001

ST X PI 2 0.0002 NS NS NS NS
ST X G 10 <0.0001 NS 0.0077 NS 0.0120
PI X G 5 0.0003 <0.0001 NS 0.0001 <0.0001

ST X PI X G 10 <0.0001 NS NS NS NS

NS—Nonsignificant, df—degree of freedom.
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Table 4. Mean comparison for interaction of sampling time (ST), plant inoculation, and Indian mustard
genotypes (G) with contrasting behavior to sclerotinia rot on the peroxidase activity (POX), catalase
activity (CAT), polyphenol oxidase activity (PPO), total soluble phenolics (TSP), and total soluble
sugar (TSS).

DAI/PI/G POX µmol min −1

mg −1 Protein
CAT µmol min −1

mg −1 Protein
PPO µmol min −1

mg −1 Protein
TSP mg g −1

DW
TSS mg g −1

DW

6DAI/UI/R1 2.96 e–g 6.60 ab 1.03 a−c 0.98 b−d 46.37 c

6DAI/UI/R2 2.87 e−g 7.08 a 1.38 a−c 1.00 b−d 48.30 b

6DAI/UI/R3 3.21 d−g 6.22 a−c 1.21 a−c 0.94 b−d 49.74 a

6DAI/UI/S1 3.02 d−g 5.98 b−d 0.79 bc 0.79 cd 48.60 b

6DAI/UI/S2 2.86 e−g 6.05 b−d 0.69 bc 0.71 cd 46.64 c

6DAI/UI/S3 2.98 e−g 5.84 b−f 0.59 bc 0.63 d 47.82 b

6DAI/I/R1 5.32 ab 5.45 c−h 1.56 ab 2.06 a 41.07 f−h

6DAI/I/R2 5.98 a 6.01 b−d 1.90 a 1.68 a−d 40.62 gh

6DAI/I/R3 5.16 ab 4.93 e−i 1.60 ab 1.31 a−d 39.51 i

6DAI/I/S1 3.64 c−e 3.71 k−m 0.93 a−c 0.96 b−d 31.81 p

6DAI/I/S2 3.21 d−g 2.86 mn 0.83 bc 0.95 b−d 32.50 op

6DAI/I/S3 3.11 d−g 3.11 l−n 0.66 bc 0.84 b−d 28.73 q

12DAI/UI/R1 2.63 e−g 5.56 c−g 0.94 a−c 1.09 a−d 41.34 fg

12DAI/UI/R2 2.75 e−g 5.87 b−e 1.27 a−c 1.18 a−d 40.33 hi

12DAI/UI/R3 2.98 e−g 5.35 c−h 0.92 a−c 1.03 b−d 44.08 d

12DAI/UI/S1 2.54 fg 5.13 d−h 0.80 bc 0.91 b−d 42.50 e

12DAI/UI/S2 2.70 e−g 5.48 c−h 0.63 bc 0.78 cd 40.62 gh

12DAI/UI/S3 2.89 e−g 4.93 e−i 0.66 bc 0.75 cd 41.92 ef

12DAI/I/R1 4.97 b 4.96 e−i 1.26 a−c 1.89 ab 38.16 j

12DAI/I/R2 4.49 bc 5.35 c−h 1.54 ab 1.74 a−c 35.41 l

12DAI/I/R3 3.21 d-g 4.12 i−k 1.14 a−c 1.58 a−d 37.45 j

12DAI/I/S1 3.28 d−f 2.39 no 0.96 a−c 1.24 a−d 27.52 r

12DAI/I/S2 3.64 c−e 2.48 no 0.70 bc 1.05 a−d 21.42 t

12DAI/I/S3 3.99 cd 2.33 no 0.72 bc 0.88 b−d 24.46 s

18DAI/UI/R1 2.51 fg 4.86 f−j 0.78 bc 1.17 a−d 34.35 m

18DAI/UI/R2 2.39 fg 5.31 c−h 0.96 a−c 1.23 a−d 36.61 k

18DAI/UI/R3 2.43 fg 4.67 g−k 0.67 bc 1.06 a−d 40.78 gh

18DAI/UI/S1 2.19 g 4.53 h−k 0.59 bc 0.98 b−d 35.33 l

18DAI/UI/S2 2.51 fg 4.12 i−k 0.46 c 0.90 b−d 34.43 m

18DAI/UI/S3 2.30 fg 4.81 g−j 0.55 bc 0.84 b−d 35.32 l

18DAI/I/R1 2.85 e−g 4.51 h−k 0.93 a−c 1.60 a−d 33.28 no

18DAI/I/R2 2.53 fg 5.12 d−h 1.21 a−c 1.49 a−d 34.43 m

18DAI/I/R3 2.75 e−g 3.89 j−l 0.89 a−c 1.36 a−d 33.87 mn

18DAI/I/S1 3.06 d−g 2.29 no 0.67 bc 1.34 a−d 18.11 u

18DAI/I/S2 3.16 d−g 1.71 op 0.58 bc 1.14 a−d 12.43 w

18DAI/I/S3 2.94 e−g 1.23 p 0.64 bc 1.02 b−d 14.48 v

Treatment means in the same columns with different letters differ significantly (p < 0.05). The design consisted of
three sampling times (ST) (6, 12, and 18 days after inoculation (DAI)), two inoculation treatment (PI) (uninoculated
plants (UI) and inoculated plants (I)), and six Indian mustard genotypes with contrasting behavior to sclerotinia rot
(G) (3 Resistant (R1, R2, and R3) and 3 susceptible (S1, S2, and S3)) (R1-RH 1222-28, R2-DRMR 2035, R3-EC 597328,
S1-RH 1566, S2-RH 1569, S3-RH 1633).

2.2.2. Catalase (CAT) Activity

Resistant genotypes had higher CAT activity as compared with susceptible genotypes at both
inoculation treatments and all sampling times, but it significantly decreased after pathogen inoculation
in a genotype-specific manner (Table 4). Percent decrease in CAT activity after inoculation was
significantly higher in susceptible genotypes than resistant genotypes, and became linearly pronounced
with disease progression (Figure 3). Highest CAT activity (7.08 µmol min−1 mg−1 protein) was observed
in uninoculated plants of DRMR 2035 at 6DAI/UI/G2 while the lowest (1.23 µmol min−1 mg−1 protein)
was observed in RH 1633 at 18DAI/I/S3. Activity decreased at later stages in all genotypes and in
both treatments (Table 4). Percent decrease in CAT activity after inoculation also showed significantly
positive correlation (p < 0.05) with mean lesion length at 6, 12, and 18 DAI (Table 5).
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Table 5. The Pearson’s product-moment correlation matrix between mean lesion length (cm) and
percent deviation (PD) for peroxidase (POX), catalase (CAT), polyphenol oxidase (PPO) activities, total
soluble phenolics (TSP), and total soluble sugar (TSS) in inoculated plants over uninoculated plants at
different sampling times viz. 6, 12, and 18 DAI.

Per Cent Deviation (PD)
Mean Lesion Length (cm)

6 DAI 12 DAI 18 DAI

POX −0.943 * −0.407 NS 0.801 NS

CAT 0.999 * 0.976 * 0.965 *
PPO −0.862 * −0.742 NS

−0.436 NS

TSP −0.697 NS
−0.768 NS

−0.045 NS

TSS 0.887 * 0.972 * 0.976 *

* Significant linear relationship (p < 0.05) between PD in inoculated plants over uninoculated plants for enzymes
(POX, CAT, PPO) activities and metabolites (TSP, TSS) contents with sclerotinia rot resistance. NS—Nonsignificant.
Negative values indicate negative correlation of PD with mean lesion length (cm) and vice versa. Higher PD in POX,
PPO, and TSP is directly associated with resistance (lesser mean lesion length) while positive values indicate positive
correlation of PD with mean lesion length (cm) and vice versa. Lower PD in CAT and TSS is directly associated with
sclerotinia rot resistance (lesser mean lesion length).
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2.2.3. Polyphenol Oxidase (PPO) Activity

Analysis of variance (ANOVA) showed that all interactions except sampling times by genotypes
with different response to sclerotinia rot (ST X G) were not significant but all the variables viz. sampling
times (ST), plant inoculation (PI), and genotypes with contrasting behavior to sclerotinia rot (G) were
highly significant for PPO activity (Table 3). Data shows that PPO activity significantly increased after
inoculation (Table 4). The highest activity (1.90 µmol min−1 mg−1 protein) was observed in resistant
genotype (DRMR 2035) at 6DAI/I/R2 and thereafter it decreased in all genotypes and treatments.
Increase in PPO activity after inoculation was ~2.4- and ~2.0-fold higher in resistant genotypes as
compared with susceptible genotypes at 6 and 12 DAI, respectively. The linear curve shows a decrease
in PPO activity as the plants matured after inoculation (Figure 4) and also reflects significantly negative
association (p < 0.05) with mean lesion length at 6 DAI (Table 5).
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2.2.4. Total Soluble Phenolics (TSP)

Total soluble phenolics in resistant and susceptible genotypes significantly varied with respect
to plant inoculation (Table 3). Resistant genotypes had significantly higher TSP as compared with
susceptible genotypes in both the treatments along with all sampling times, and it increased with age
of the plant (Table 4). Maximum TSP content (2.06 CE mg g−1 DW) was observed in resistant genotype
(RH 1222-28) in treatment 6DAI/I/R1, while minimum (0.63 mg CE g−1 DW) in susceptible genotype
(RH 1633) in treatment 6DAI/UI/S3 (Table 4). The overall increase in TSP after inoculation was higher
in resistant genotypes as compared with susceptible genotypes, but it accumulated by ~2.4-fold in
resistant genotypes as compared with susceptible genotypes at 6 DAI. Figure 5 depicts a declined per
cent increase in TSP after 6 DAI.

2.2.5. Total Soluble Sugar (TSS)

Analysis of variance (ANOVA) shows that interactions of sampling times and plant inoculation
by genotypes with contrasting behavior to sclerotinia rot (ST X G; PI X G) along with individual
variables like sampling times (ST), plant inoculation (PI) and genotypes with contrasting behavior
to sclerotinia rot (G) were significant (Table 3). There was no significant difference between resistant
and susceptible genotypes for TSS in uninoculated plants but there was a significant reduction in
TSS in susceptible genotypes as compared with resistant genotypes after inoculation at all sampling
stages (Table 4). Maximum TSS (49.74 mg GE g−1 DW) was found in resistant genotype EC 597328 in
treatment 6DAI/I/R2 while minimum (12.43 mg g−1 DW) was recorded in susceptible genotypes RH
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1569 at 18 DAI (18DA/I/S2). TSS declined 6 DAI in all genotypes, with more decrease in susceptible
genotypes and highest difference was observed at 18 DAI (Table 4). Linear curve shows that percent
decrease in TSS was more pronounced with post-inoculation passage of time (Figure 6) and it exhibited
significantly positive correlation (p < 0.05) with mean lesion length at 6, 12, and 18 DAI (Table 5).
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3. Discussion

Disease resistance and susceptibility are governed by genetics of host plants and fungal pathogens
and depend on the exchange of multifaceted signals and the responses among them [24]. One of the
major genotypic differences between disease resistant and susceptible plants is quick identification of
infection and immediate activation of defense mechanisms [25]. Therefore, in the present study, we
have investigated the activities of antioxidant enzymes viz. POX, CAT, and PPO as well as contents
of non-enzymatic metabolites viz. TSP and TSS in six Indian mustard genotypes with contrasting
behavior to sclerotinia rot for unraveling the biochemical basis of B. juncea–S. sclerotiorum interaction
and antioxidant defense mechanism in Indian mustard against S. sclerotiorum.
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High relative humidity (>80%); maximum and minimum temperatures of ~25 and 5–12 ◦C,
respectively; and high soil moisture represent ideal conditions for S. sclerotiorum infection and disease
progression in rapeseed-mustard crops [26]. Similar weather conditions were favorable for pathogenic
infection on host during current field study (Table S1). Present investigation shows significant genotypic
differences for mean lesion length at different DAI which revealed it a host genotype-dependent
trait. Lesion length and size during initial appearance to subsequent expansion have been used by
crop scientists to categorize genotypic resistance against pathogens for a long time [27]. Therefore,
we categorized our genotypes based on mean lesion length at 18 DAI where genotype DRMR 2035
was found highly resistant (<2.5 cm mean lesion length) while genotypes viz. RH 1222-28 and EC
597328 (<5.0 cm mean lesion length) were found resistant. This study also validates the results of
Sharma et al. [28], where they tested these genotypes using stem inoculation techniques and found
resistant against sclerotinia rot. Rate of increase in lesion length (cm day−1) is often used to observe
pathogen aggression against host. It significantly affects the shape of disease progress curve (AUDPC
values) and severity of disease [27]. During the present study, comparatively lower pace of lesion
length (cm day−1) was shown by resistant genotypes which reveals a slow infection rate and lesser
aggression of S. sclerotiorum against resistant genotypes as compared with susceptible genotypes.
These genotypes were also differentiated based on AUDPC values which are very useful to summarize
disease progression over time and to determine quantitative resistant phenotypes. Lower AUDPC
values (<50) represent slower disease progression over time with greater resistance whereas higher
AUDPC values (>100) represent faster disease progression and higher susceptibility against pathogens.
Our study also revealed an interesting fact that some plants of resistant genotypes viz. DRMR 2035
and RH 1222-28 also showed purple coloration on stems near inoculation site which often extended up
to 10 cm (Figure 7). It has earlier also been reported in resistant genotypes of Brassica carinata against
this disease [29]. This observed variation for purple coloration and lesion length within the genotypes
might be due to partial resistant nature of host. The genetic system controlling partial resistance is as
diverse as phenotypes and there is no single genetic and phenotypic model to explain it. It is believed
to be a blend of plant architecture escape and functional resistance. Partial resistance mechanism
against S. sclerotiorum has earlier been reported in many oilseeds crops viz. oilseed rape [30,31],
soybean [32–34], and sunflower [35,36]. The appearance of purple coloration near the infection site
in resistant genotypes might be due to deposition of anthocyanin and comparatively higher TSS
content as recently explained by Liu et al. [37] in oilseed brassica. Anthocyanin is a potent secondary
metabolite and robust non-enzymatic antioxidant in plants which not only directly inhibits a pathogen
but also protects the plants from elevated ROS accumulation in response to biotic stresses [38,39].
Inhibitory effect of anthocyanin against S. sclerotiorum has been well documented in soybean [40] and
oilseed rape [37]. In present study, purple coloration in resistant genotypes after inoculation might be
responsible for delaying S. sclerotiorum infection by inhibiting mycelial expansion.

One of the earliest responses of plants against pathogenic exposure is production of massive
ROS in infected tissue [19], and although it seems to be the most efficient approach by a resistant host
against biotrophs [41], it creates a dilemma for host plants infected by hemibiotrophs. The elevated
ROS is not only injurious to the biotrophy to necrotrophy transition phase of hemibiotrophs but
also equally destructive to host cells near infection site. It further benefits the necrotrophic phase
because elevated ROS kills host cells which in turn are often fit for survival of hemibiotrophs during
necrotrophic phase [42]. To maintain the ROS homeostasis, resistant hosts must have proper, efficient
and timely regulated antioxidant machinery to utilize the ROS in their own beneficial way against the
hemibiotrophs. Therefore, strength and timing of enzymatic antioxidant components viz. POX, CAT,
PPO, and non-enzymatic components viz. phenolics and soluble sugar are vital in plant-pathogen
interaction, especially in the case of pathogen having a hemibiotrophic lifestyle.
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Figure 7. Resistance response of different Indian mustard genotypes against Sclerotinia sclerotiorum.
(a) Extreme resistance shown by genotype RH 1222-28 and (b) DRMR 2035 with purple coloration
extending on both sides of the inoculation site. (c) Typical susceptible response with lesion length
>7.5cm shown by genotype RH 1566. (d) Stem breakage and high degree of susceptibility in genotype
RH 1569 (plant collapsed).

Analysis of variance showed significant effects of genotypes (p = 0.0002), plant inoculation
(p < 0.0001), sampling times (p < 0.0001) and their interactions (p < 0.0001) on POX activity indicating
it a host/genotype-dependent pathogen-mediated trait. Effect of genotypes and pathogen on its
change with time is possibly because of dual feeding nature (biotrophy to necrotrophy) of a pathogen.
POX is a well-recognized class of pathogenesis related (PR) protein and a potent plant protective
enzyme against fungal pathogens. It is quick responsive and induce immediately near the infection
site to catalyze detoxification of elevated H2O2 to protect the adjacent living cells from oxidative
damage. Additionally, POX also causes lignification and suberization of cell wall to create a physical
barrier against invading pathogens to locally restrict them. It also oxidizes the phenolic compounds
to generate antifungal intermediates like phytoalexins and iso-flavonoids [43,44]. We observed an
elevation of POX activity after S. sclerotiorum inoculation both in resistant and susceptible genotypes,
but significantly higher in resistant genotypes especially during early infection stage. Percent deviation
in POX activity after inoculation in resistant genotypes was significantly negative correlated with mean
lesion length indicating its role in delaying S. sclerotiorum mediated lesion development by reducing
mycelium expansion rate. It might be due to delay of transition from biotrophy to necrotrophy phase.
However, at 18 DAI, POX activity was significantly higher in susceptible genotypes as compared with
resistant genotypes. Therefore, it can be postulated that susceptible genotypes also evolve strategy of
POX elevation to cope up with a pathogen and only difference between resistance and susceptible
mechanism is the temporal activation of defense responses. It can also be linked with hemibiotrophic
nature of a pathogen. ROS elevation during early stages is inhibitory to transition from biotrophy
to necrotrophy phase while at later stage beneficial to necrotrophic phase as they survive and get
their food from dead cells during necrotrophy. Our results reveal a strong link of POX activity with
resistance and corroborate with previous reports on many important crops including soybean [45,46],
common bean [47], sunflower [48–51], and oilseed rape [52,53].

CAT is another key enzyme which protects living cells by detoxifying H2O2 into water and
molecular oxygen near pathogenic infection site. Its activity significantly changed depending on
genotypic variation (p < 0.0001), plant inoculation (p < 0.0001) and their interaction (p < 0.0001)
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indicating it a genotype-specific and pathogen-dependent trait. Hydrogen peroxide, the chief substrate
of CAT, is known to inhibit biotrophic but favor necrotrophic pathogens during host-pathogen
interaction. The higher CAT activity observed in resistant genotypes as compared with susceptible
genotypes before inoculation stipulates their higher H2O2 detoxifying capability. After inoculation,
the decrease in CAT activity in inoculated plants over uninoculated plants was more pronounced in
susceptible genotypes (Figure 3). It is apparent that there is a lesser decrease in resistant genotypes as
compared with susceptible genotypes and elevated H2O2 might have helped in delaying infection
during biotrophic phase. Shetty et al. [54] also found that hemibiotrophic phytopathogens are highly
sensitive to H2O2 just after inoculation. In the case of susceptible genotypes, comparatively higher
decrease in CAT activity and elevated H2O2 level cause oxidative burst in living cells adjoining the
infection site and finally cell death to benefit the necrotrophic phase of S. sclerotiorum. Previous
reports also demonstrate the role of CAT in resistance against S. sclerotiorum in important crops viz.
sunflower [49–51,55], oilseed rape [52] and non-heading Chinese cabbage [56].

Analysis of variance revealed significant effects of genotype (p< 0.0001), sampling times (p < 0.0001)
and their interaction (p = 0.0077) on PPO activity and showed it a genotype and duration specific
traits. PPO catalyzes oxidation of phenolics compounds to highly reactive antimicrobial compounds
like o-quinones and also takes part in defense mechanism against phytopathogens through several
ways. Direct toxicity of o-quinones against phytopathogens, alkylation of plant cellular proteins,
cross-linking of quinones with proteins and other phenolic compounds ultimately form a physical
barrier against pathogens [57,58]. PPO activity in present study was significantly higher in resistant
genotypes as compared with susceptible ones at 6, 12, and 18 DAI (Figure 4). Observation reveals that
its increased activity causes higher production of toxic products (o-quinones and H2O2) and induces
cell wall lignification after S. sclerotiorum infection and therefore, provides greater resistance. Increase
in PPO activity after inoculation showed a significant negative correlation with mean lesion length at
6 DAI which reveals its impact in delaying biotrophy to necrotrophy transition phase of a pathogen.
It can be suggested that high PPO activity is involved in constitutive resistance mechanism against a
pathogen which is in agreement with previous reports on various important crops including oilseed
rape [53,59,60], non-heading Chinese cabbage [56], sunflower [48] and soybean [46,61].

In this study, we found that TSP is also a host genotype-specific and pathogen mediated trait
(Table 3). Its accumulation was significantly higher in resistant genotypes as compared with susceptible
genotypes in both uninoculated and inoculated conditions. These phenolic compounds provide
resistance to hosts by neutralizing elevated ROS produced after a pathogenic attack. Being structural
components of cell wall to provide rigidity (lignin and suberin), TSP retards the activity of cell wall
degrading enzymes of fungal pathogens during pathogenesis [62–69]. Increase in TSP after inoculation
was higher in resistant genotypes than susceptible genotypes especially at 6 and 12 DAI. It provides
the plant enough time for adoption of secondary strategies like phytoalexins synthesis and lignin
depositions which might further restrict the invasion of S. sclerotiorum and spread to uninfected cells.
It can be predicted that TSP are key metabolites for genotypic resistance in Indian mustard. Relatively
higher phenolics content associated with S. sclerotiorum resistance in sunflower and Phytophthora
infestans resistance in potatoes have been reported [70–73].

Sugars, besides their typical role as carbon and energy source, also take part in many metabolic
and signaling pathways in plants [74]. They act both as oxidant and antioxidant and have capability
to maintain ROS homeostasis in cells under stressful conditions. Sugars not only participate in ROS
production, but are also involved in NADPH-producing pathways like oxidative pentose phosphate
pathway to detoxify them [20]. The present study shows insignificant genotypic difference for TSS
in uninoculated plants, but it decreased after a pathogen infection which was higher in susceptible
genotypes at all stages. Decrease in TSS content in inoculated plants over uninoculated plants was also
significantly higher in susceptible genotypes at 6 DAI and continued to be higher as disease progressed.
Decline in TSS content at inoculation site might be either due to their utilization by a pathogen or
due to diminished photosynthetic rate. A comparatively higher TSS level under diseased conditions
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in resistant genotypes shows better sugar resistance mechanism as it stimulates flavonoids and PR
proteins synthesis against a pathogen [75]. A significant positive correlation between percent deviation
of TSS content and mean lesion length reveals that TSS variation significantly affects mean lesion length
(disease amount) as high sugar reduction is associated with susceptibility (high mean lesion length)
and vice versa. Similar findings against S. sclerotiorum in sunflower [50], Colletotrichum higginsianum
in thale cress [76], Phomopsis theae in tea [77], Macrophomina phaseolina and Fusarium moniliforme in
sorghum [78], and Plasmopara viticola in grapes [79] have previously been reported.

Biological processes are very complex and metabolic pathways are often interlinked together.
Therefore, it is worthy to discuss all above parameters together because they are highly linked with
each other to provide resistance against S. sclerotiorum. Cell wall reinforcement through lignification
and suberization is a H2O2-dependent POX-mediated mechanism, and phenolics and sugars are
involved at least partially in both. Besides, CAT is a chief competitor of POX for H2O2 scavenging and
PPO is involved in phenolics oxidation. Therefore, we can suggest that above biochemical indices are
inter-linked together and a combination of these mechanisms is possibly associated with resistance
against S. sclerotiorum in Indian mustard.

4. Materials and Methods

4.1. Plant Materials

Six Indian mustard genotypes with contrasting response to sclerotinia rot were used in present
study. Three resistant genotypes viz. RH 1222-28, DRMR 2035, and EC 597328 and three susceptible
genotypes viz. RH 1566, RH 1569, and RH 1633 were obtained from Directorate of Rapeseed-Mustard
Research, Bharatpur (Rajasthan) and Oilseeds Section, Department of Genetics and Plant Breeding,
CCS Haryana Agricultural University, Hisar (Haryana), respectively [28]. All genotypes were raised
in Randomized Complete Block Design (RCBD) during Rabi season of 2019–2020 with plot size of
4 rows of 5 m length in three replications having row to row spacing of 30 cm. Crops were raised
at the research farm of Oilseed Section, Department of Genetics and Plant Breeding, CCS Haryana
Agricultural University, Hisar.

4.2. Sclerotinia Sclerotiorum Inoculum Preparation and Disease Assessment

Sclerotia of S. sclerotiorum (Hisar isolate) were collected from sclerotinia rot-infected plants of
Indian mustard, rigorously washed in tap water, and surface sanitized by immersing in 0.1% HgCl2
solution for 80–90 s. They were then rinsed 3–4 times with sterilized water to remove traces of
disinfectant and aseptically transferred into Potato Dextrose Agar (PDA) containing Petri plates. Plates
were incubated for seven days in BOD incubator at 25 ± 1 ◦C. PDA slants were used for maintenance of
sclertoia’s mycelium pure culture. Five-day-old cultures of S. sclerotiorum were artificially inoculated
on stems of ten randomly selected plants from middle of each row at post-flowering stage as per
method followed by Li et al. [80]. Stem lesion length (cm) was recorded at 6, 12, and 18 days after
inoculation (DAI) using a linear ruler. The genotypes were classified into five different groups based on
mean lesion length (cm) on stems at 18 DAI as per scale suggested by Garg et al. [23]. The groups were
highly resistant (mean lesion length <2.5), resistant (2.5–5.0), moderately resistant (5.0–7.5), susceptible
(7.5–10.0), and highly susceptible (≥10.0) with their respective rating 0, 1, 2, 3, and 4, respectively.

4.3. Sample Collection and Biochemical Analysis

Samples were collected from stems immediately next to infection sites at 6, 12, and 18 DAI.
The collected samples were immediately frozen in dry ice box and stored in liquid nitrogen until
further biochemical studies.
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4.4. Determination of Defense-Related Antioxidant Enzymatic Activities

Stem tissue (0.2 g) was homogenized in 3 mL of 0.1 M potassium phosphate buffer (pH 7.0) and
centrifuged for 15 min at 10,000 rpm (4 ◦C). Supernatant was used for assaying peroxidase (POX),
catalase (CAT), polyphenol oxidase (PPO), and total soluble protein [81]. Total soluble protein was
assayed as per standard protocol of Lowry et al. [82] using bovine serum albumin (BSA) as standard.
POX activity (EC 1.11.1.7) was assayed as per method of Maehly [83] with slight modifications. Reaction
mixture (3.25 mL) contained 50 µL enzyme extract, 0.1 M potassium phosphate buffer (pH 7.0), 0.5 M
H2O2, and 0.9 M guaiacol. Increase in absorbance was recorded at 470 nm after every 15 s interval for
2 min. Enzyme activity was calculated by employing molar extinction coefficient (26.6 mM−1 cm−1)
and expressed as µmol of tetra guaiacol formed per min per mg protein. CAT activity (EC 1.11.1.6) was
assayed as per method given by Aebi [84]. The reaction mixture (3.55 mL) contained 50 µL enzyme
extract, 0.1 M potassium phosphate buffer (pH 7.0), and 0.1 M H2O2. Decrease in absorbance was
recorded at 240 nm for 2 min after every 15s interval. Enzyme activity was calculated using molar
extinction coefficient (39.4 mM−1 cm−1) and expressed asµmol of H2O2 oxidized per min per mg protein.
PPO activity (EC 1.10.3.2) was calculated according to method described by Gauillard et al. [85] with
minor modifications. Reaction mixture contained 100 µL enzyme extract, 0.1 M potassium phosphate
buffer (pH 7.0) and 0.025 M catechol. Increase in absorbance was recorded at 410 nm for 2 min after
every 15 s interval. Enzyme activity was estimated using molar extinction coefficient (2.9 mM−1 cm−1)
and expressed as µmol of quinone produced per min per mg protein.

4.5. Quantification of Total Soluble Phenolics (TSP) and Total Soluble Sugar (TSS)

Stem tissue (0.2 g) was extracted with 5 mL of 80% methanol (v/v) at 80 ◦C for one hour and
centrifuged at 10,000 rpm for 10 min. Procedure was repeated twice. Supernatants were pooled,
concentrated to 1 mL using vacuum evaporator and used for quantification of TSP and TSS. TSP was
estimated following the method of Bray and Thorpe [86] using catechol as standard and expressed
as mg catechol equivalent per gram tissue on dry weight basis (mg CE g−1 DW). TSS was estimated
following the method of Dubois et al. [87] and expressed as mg glucose equivalent per gram tissue on
dry weight basis (mg GE g−1 DW).

4.6. Statistical Analysis

Mean lesion length (cm) was measured by taking sum of each lesion length divided by number.
Data was subjected to analysis of variance (ANOVA). For analysis of biochemical parameters,
experiment was conducted under factorial design (3 × 2 × 6) consisting of three sampling times
(ST) (6, 12, and 18 DAI), two inoculation treatments (PI) [uninoculated (UI) and inoculated plants (I)]
and six Indian mustard genotypes with contrasting behavior to sclerotinia rot (G) (three resistant (R1,
R2, and R3) and three susceptible genotypes (S1, S2, and S3)). The Duncan Multiple Range Test (DMRT)
was used for multiple comparisons of means. Additionally, Pearson product-moment correlation
analysis was performed to assess correlation between mean lesion length and percent deviation for
biochemical parameters in inoculated plants over uninoculated plants. All data were analyzed using
SAS version 9.4 Statistical Package (SAS Institute Inc., Cary, NC, USA). AUDPC was calculated by using
mean lesion length at 6, 12, and 18 DAI. Percent deviation for biochemical parameters in inoculated
plants over uninoculated plants was calculated using the formula given below.

Percent Deviation =
Mean values in inoculated plants −mean values in uninoculated plants

Mean values in uninoculated plants
× 100 (1)

5. Conclusions

The findings from this study reveal that resistant genotypes have comparatively quicker, timely
regulated, and strong antioxidant systems. They could restrict disease progression by higher activities
of antioxidant enzymes and accumulating pigments after S. sclerotiorum infection. Higher TSP and
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highly induced POX activity especially during early infection and lesser depletion in TSS might be
responsible for sclerotinia rot resistance in Indian mustard. This study improves upon the existing
knowledge on antioxidant defense mechanisms; however, the transcriptomic profiling will be further
line of research to confirm it.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/11/892/s1.
Table S1: Data on weather-related parameters viz. temperature, relative humidity and rainfall from the date of
inoculation (20th January 2020) to date of last observation (6th February 2020).
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