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Summary

Haemophilus influenzae transits between niches
within the human host that are predicted to differ in
oxygen levels. The ArcAB two-component signal
transduction system controls gene expression in
response to respiratory conditions of growth and has
been implicated in bacterial pathogenesis, yet the
mechanism is not understood. We undertook a
genome-scale study to identify genes of the H. influ-
enzae ArcA regulon. Deletion of arcA resulted in
increased anaerobic expression of genes of the respi-
ratory chain and of H. influenzae’s partial tricarboxylic
acid cycle, and decreased anaerobic expression levels
of genes of polyamine metabolism, and iron seques-
tration. Deletion of arcA also conferred a susceptibility
to transient exposure to hydrogen peroxide that was
greater following anaerobic growth than after aerobic
growth. Array data revealed that the dps gene, not
previously assigned to the ArcA modulon in bacteria,
exhibited decreased expression in the arcA mutant.
Deletion of dps resulted in hydrogen peroxide sensi-
tivity and complementation restored resistance, pro-
viding insight into the previously uncharacterized
mechanism of arcA-mediated H2O2 resistance. The
results indicate a role for H. influenzae arcA and dps in
pre-emptive defence against transitions from growth
in low oxygen environments to aerobic exposure to
hydrogen peroxide, an antibacterial oxidant produced
by phagocytes during infection.

Introduction

Haemophilus influenzae has no identified natural niche
outside of the human host where it primarily colonizes the
nasopharyngeal mucosa. It can disseminate to other ana-
tomical sites making it a common cause of otitis media,
upper and lower respiratory tract infections, septicaemia
and meningitis in children (Klein, 1997; Moxon and
Murphy, 2000). H. influenzae also frequently colonizes the
respiratory tract of individuals with chronic obstructive pul-
monary disease (Sethi and Murphy, 2001; Murphy and
Sethi, 2002; Murphy et al., 2004) and cystic fibrosis
(Gilligan, 1991; Moller et al., 1995). The incidence of
H. influenzae meningitis has dramatically declined in
populations immunized with an effective vaccine against
the type b capsular polysaccharide [Centers for Disease
Control and Prevetion (CDC), 2002], a major factor pro-
moting bloodstream survival by strains of this serotype.
However, the vaccine has not affected the incidence of
infection with non-typeable strains (NTHi), which lack the
capsule. Although NTHi predominantly cause respiratory
tract infections and otitis media, they have been isolated
from patients with invasive disease such as meningitis in
rare cases, raising the possibility that genes conferring
varying degrees of bloodstream persistence could be dis-
tributed among NTHi strains (Nizet et al., 1996; Cuthill
et al., 1999; O’Neill et al., 2003; Erwin et al., 2005).

We postulate that modulation of gene expression in
response to environmental conditions is required by
H. influenzae to express the repertoire of genes needed
for survival during pathogenesis. H. influenzae likely
encounters varying oxygen levels in diverse environments
in the host such as growth in biofilm structures on
mucosal surfaces or after invasion into the bloodstream.
Signal transduction in response to varied oxygen levels
represents a mechanism by which H. influenzae could
co-ordinate gene expression profiles needed for efficient
colonization and pathogenesis in different environments
encountered within the host. In Escherichia coli, a two-
component signal transduction system designated ArcAB
(for anoxic redox control) responds to respiratory condi-
tions of growth to modulate expression of genes/operons
of the tricarboxylic acid (TCA) cycle and genes involved in
other aspects of respiratory or fermentative metabolism
(Lynch and Lin, 1996a). The ArcB sensor kinase auto-
phosphorylates and transfers a phosphoryl group to ArcA,
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a DNA binding protein that can act as either repressor or
activator depending on the configuration of the target
promoter (Lynch and Lin, 1996a,b). The ArcAB system is
most active under low oxygen conditions and least active
under high oxygen conditions. Recent evidence indicates
that this response is likely not via direct sensing of oxygen
but that ArcB senses the oxidation or reduction (redox)
status of the membrane-bound quinones, central electron
carriers of respiration (Georgellis et al., 2001a; Malpica
et al., 2004). The ArcAB system of H. influenzae pos-
sesses similar biochemical and regulatory functions to
those of its counterpart in E. coli in modulating gene
expression in response to redox conditions of growth. Of
note, expression of H. influenzae ArcB in an E. coli arcB
mutant can restore the response of at least two ArcAB-
regulated promoters, sdh (succinate dehydrogenase) and
lldP (L-lactate permease), to respiratory conditions of
growth (Manukhov et al., 2000; Georgellis et al., 2001b).
Several genes or proteins that are repressed by ArcA
in E. coli have been identified as ArcA-regulated in
H. influenzae, including lldD (L-lactate dehydrogenase)
and certain subunits of formate dehydrogenase and fuma-
rate reductase (Georgellis et al., 2001b; De Souza-Hart
et al., 2003). ArcA is a global regulator in E. coli, however,
the extent of the ArcA regulon of H. influenzae is
unknown.

ArcA has been implicated in pathogenesis as arcA
mutants of both H. influenzae and Vibrio cholerae, a diar-
rhoeal pathogen, exhibit reduced lethality compared with
wild type in mouse mortality studies (De Souza-Hart et al.,
2003; Sengupta et al., 2003). Despite extensive informa-
tion concerning ArcA-mediated control of genes of respi-
ratory pathways and enzymes of the TCA cycle in E. coli,
the mechanism by which this gene regulation could alter
virulence in H. influenzae is not well understood. ArcA
mutants of H. influenzae type b were more sensitive than
wild type to killing by human serum, however, ArcA-
regulated genes encoding cell-surface structures as
potential targets of humoral immune components in
serum, such as complement, have yet to be identified.
V. cholerae ArcA influences production of cholera toxin
which is essential for virulence, yet H. influenzae
produces no exotoxins implicated in pathogenesis. In
Salmonella enterica serovar Enteritidis, ArcA has been
implicated in resistance to reactive oxygen and nitrogen
intermediates (ROI/RNI) (Lu et al., 2002). A role in oxida-
tive stress resistance for a regulator such as ArcA, which
is active under low oxygen conditions, appears to be
paradoxical, and the mechanism and role of ArcA-
regulated genes in this resistance profile has not been
determined.

In the current study, we have extended our analysis of
the H. influenzae ArcAB system to understand mecha-
nisms by which this signalling system can influence

H. influenzae pathogenesis. We analysed the global
expression profile of the H. influenzae arcA mutant grown
under anaerobic conditions to identify genes comprising
the ArcA regulon in this organism. By microarray analysis,
we identified a set of genes whose expression pattern
was influenced by the arcA mutation and restored
by complementation. Northern hybridizations confirmed
ArcA-mediated control of all of the genes that were evalu-
ated by this method. In addition to detecting genes encod-
ing respiratory metabolic enzymes known to be ArcA-
regulated in E. coli, this analysis identified and validated
ArcA-dependent modulation of genes not previously rec-
ognized to be within the ArcA regulon. One of these genes
is a putative homologue of Dps proteins in other species
that participate in oxidative stress resistance yet have not
been previously linked to ArcA-mediated phenotypes.
Thus, the microarray results gave us insight into physi-
ological characteristics of the H. influenzae arcA mutant
that can account for its oxidative stress sensitivity. Muta-
tional analysis of ArcA controlled genes including dps
provided insight into the mechanism of ArcA-mediated
resistance to hydrogen peroxide, and provides support for
a model in which ArcA promotes survival of cells shifted
from low oxygen conditions to oxidative stress exposure,
a transition H. influenzae is likely to experience in the
host.

Results

Global expression profiling of the H. influenzae arcA
mutant

To investigate the role of the ArcAB signal transduction
system in H. influenzae pathogenesis, the ArcA regulon in
H. influenzae Rd was investigated by DNA microarray
analysis. Genomic expression profiles were measured in
four independent samples each of the parent strain, RdV,
the arcA deletion mutant, RAA6V (DarcA), and the
complemented strain, RAA6C (DarcA, arcA +), grown
anaerobically. The complete set of data from these experi-
ments is provided in the web supplement (Table S1 and
S2). Of the 1697 H. influenzae protein coding genes
represented on the array, expression of 19 genes
was increased by greater than or equal to twofold
(P-value � 0.0001) in the DarcA mutant, RAA6V, com-
pared with its parent, RdV (Table 1, RAA6V/RdV column).
Expression of these genes was restored to levels similar
to that of RdV in the complemented strain, RAA6C
(Table 1, RAA6V/RAA6C column) providing a high degree
of confidence in this set of candidate ArcA modulated
genes. Six genes that showed increased expression in
the DarcA mutant include genes encoding putative homo-
logues of E. coli dehydrogenases of the respiratory chain
(fdxH, fdxI, ndh and lldD) or the TCA cycle (sucA and
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sucB). The DarcA mutant also exhibited increased expres-
sion of a putative homologue of lipA, which is involved in
the biosynthesis of lipoate, a cofactor used by several
enzyme complexes involved in oxidative metabolism such
as pyruvate dehydrogenase and a-ketoglutarate dehydro-
genase (Vanden Boom et al., 1991). Two other genes
whose expression was negatively controlled by ArcA are
similar to E. coli genes, lldP and fdhE, that encode lactate
permease and a protein involved in assembly of formate
dehydrogenase, respectively (Dong et al., 1993; Abaibou
et al., 1995; Nunez et al., 2002). Expression levels of five
genes that were decreased in the DarcA mutant com-
pared with its parent, RdV, were restored in the comple-
mented strain, generating a list of ‘high confidence’
candidate arcA activated genes (Table 2). One of the five
genes was arcA itself as expected because the gene was
deleted; three are genomically linked in organization,
HI0590 (potE), HI0591 (speF) and HI0592. The fifth gene,
HI1349, encodes a predicted protein with sequence simi-

larity to Dps proteins that function in protection against
oxidative stress (Almiron et al., 1992; Ilari et al., 2000;
Pulliainen et al., 2005).

To verify the microarray results, we performed Northern
blot hybridizations with genes whose expression as
detected on the arrays either increased in the DarcA
mutant (ndh, lldD, fdxH, fdxI, fdhE, lldP and sucB) or
decreased in the DarcA mutant (HI0592, potE and
HI1349) (Tables 1 and 2; Fig. 1). Northern blots contain-
ing RNA from the parent strain, RdV, the DarcA mutant,
RAA6V, and the complemented strain, RAA6C, grown
anaerobically were analysed with probes specific to these
genes (Experimental procedures). Levels of each of the
ndh, lldD, fdxH, fdxI, fdhE, lldP and sucB specific tran-
scripts were higher in the DarcA mutant compared with its
parent and complementation restored negative control of
these genes (Fig. 1A and C). Levels of the HI0592, potE
and HI1349 specific transcripts were decreased in the
DarcA mutant compared with its parent and transcript

Table 1. Genes increased in expression in the H. influenzae arcA deletion mutant compared with parent strain.

Gene ID Function

RAA6V/RdV RAA6V/RAA6C

Fold change P-value Fold change P-value

HI1218 L-lactate permease (lldP) 44 1.20E-08 26.8 1.69E-08
HI0747 NADH dehydrogenase (ndh) 11 4.06E-11 9.6 5.86E-11
HI0009 FdhE protein (fdhE) 9.7 8.39E-10 9.4 1.53E-09
HI0008 Formate dehydrogenase, gamma subunit (fdxI ) 9.7 5.42E-09 12 3.81E-09
HI0007 Formate dehydrogenase, beta subunit (fdxH) 7.8 1.12E-09 9.2 7.77E-10
HI1731 Conserved hypothetical protein 5.9 2.52E-09 6.2 4.67E-09
HI1444 5,10 methylenetetrahydrofolate reductase (metF) 5.6 4.91E-06 4.1 2.57E-05
HI0608 Conserved hypothetical protein 5.5 3.65E-10 8.3 1.81E-10
HI1727 Argininosuccinate synthetase (argG) 4.8 5.02E-07 4.8 3.56E-07
HI1728 Conserved hypothetical protein 3.5 1.54E-06 3.1 2.58E-05
HI1739.1 L-lactate dehydrogenase (lldD) 3.2 1.79E-10 4.5 1.07E-11
HI1730 Conserved hypothetical protein 3.0 1.48E-06 7.0 3.32E-08
HI1661 2-oxoglutarate dehydrogenase E2 component (sucB) 2.8 5.33E-07 3.0 1.14E-06
HI0026 Lipoate biosynthesis protein A (lipA) 2.6 4.08E-07 2.2 9.63E-06
HI1662 2-oxoglutarate dehydrogenase E1 component (sucA) 2.6 6.71E-07 3.5 1.07E-07
HI0018 Uracil DNA glycosylase (ung) 2.5 1.01E-05 2.2 5.68E-05
HI0890 Dephospho-CoA kinase (coaE) 2.5 4.83E-05 2.4 2.91E-04
HI0889 Serine hydroxymethyltransferase (serine methylase) (glyA) 2.4 4.11E-06 2.5 6.13E-06
HI0174 Conserved hypothetical protein 2.3 1.75E-05 2.1 1.92E-04

List contains genes whose expression levels were increased in the DarcA mutant, RAA6V compared with the parent strain, RdV (column
RAA6V/RdV) and were restored close to parental levels in the complemented strain, RAA6C (column RAA6V/RAA6C). Fold differences are � 2.0
with P � 0.0001.

Table 2. Genes decreased in expression in the H. influenzae arcA deletion mutant compared with parent strain.

Gene ID Function

RAA6V/RdV RAA6V/RAA6C

Fold change P-value Fold change P-value

HI0884 Aerobic respiration control protein ArcA (arcA) -654.8 2.72E-12 -776.7 9.02E-10
HI0592 Conserved hypothetical protein -4.4 4.62E-08 -3.8 6.36E-05
HI0591 Ornithine decarboxylase (speF) -4.0 2.54E-08 -2.7 2.49E-05
HI1349 Conserved hypothetical protein, similar to dps protein family -3.4 1.43E-07 -3.0 5.97E-06
HI0590 Putrescine-ornithine antiporter (potE) -2.5 3.06E-08 -2.8 5.27E-07

List contains genes whose expression levels were decreased in the DarcA mutant, RAA6V compared with the parent strain, RdV (column
RAA6V/RdV) and were restored in the complemented strain, RAA6C (column RAA6V/RAA6C). Fold differences are � 2.0 with P � 0.0001.
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Fig. 1. Differential transcript abundance in the H. influenzae arcA mutant versus parental strain. Northern blots containing 6 mg of total RNA
from anaerobically grown Rd parental strain, RdV, arcA deletion mutant, RAA6V (DarcA) and complemented strain, RAA6C hybridized with
probes corresponding to genes increased (A) or decreased (B) in expression in the DarcA mutant (Tables 1 and 2 respectively). Ethidium
bromide stained gel is directly below each blot. 16S and 23S are the ribosomal RNAs.
C. Schematic representation of the genomic organization of genes modulated in the DarcA mutant (black open reading frames) of which the
genes in bold were evaluated on Northern blots in panels A and B. Numbers in parentheses near each gene represent the fold change in
differential gene expression in the DarcA mutant versus parent comparison (Tables 1 and 2).
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abundance was restored with complementation (Fig. 1B).
Transcript sizes for each of the loci appear to be generally
consistent with the gene lengths annotated by The Insti-
tute for Genomic Research (TIGR) (Fig. 1C). The mRNAs
of multiple sizes that were detected with the fdxH, fdxI and
fdhE specific probes are likely to represent polycistronic
transcripts with the largest ~3 kb transcript potentially
spanning fdxH, fdxI and fdhE. The large mRNA species
(~4 kb) detected with the potE probe is likely to represent
a polycistronic transcript spanning speF-potE or HI0592-
speF-potE. Based on our subsequent results implicating
HI1349 in ArcA-mediated phenotypes (see below), this
gene’s expression pattern was additionally verified by
reverse transcription quantitative polymerase chain reac-
tion (RT-qPCR) and found to be decreased by 4.6-fold in
the DarcA mutant compared with its parent and by 2.7-fold
in comparison to the complemented strain. These results
are in agreement with the microarray data and confirm
ArcA-dependent modulation of these genes in
H. influenzae.

Sensitivity of the H. influenzae arcA mutant to oxidative
stress

The microarray data suggested that the H. influenzae
DarcA mutant might exhibit sensitivity to oxidative stress,
a phenotype of relevance to the role of arcA in bacterial
survival in the host. Our expression analysis detected
putative homologues of eight genes encoding subunits or
assembly factors of respiratory chain dehydrogenases
(fdxH, fdxI, fdxE, ndh and lldD), a dehydrogenase sub-
strate transporter (lldP), or TCA cycle enzymes (sucA and
sucB) that were increased in expression in the
H. influenzae DarcA mutant. An increase in respiratory
activity mediated by these genes in the H. influenzae
DarcA mutant could produce elevated levels of ROI during
a transition from anaerobiosis to an oxygenated microen-
vironment (see Discussion).

Conversely, the candidate ArcA activated genes likely
promote resistance to oxidative stress. Two genes whose
expression levels were lower in the arcA mutant have
potential roles, based on sequence similarity to their
E. coli counterparts, in the biosynthesis of the polyamine
putrescine (speF), or transport of putrescine (potE)
(Table 2). The putative H. influenzae SpeF and PotE show
65% and 77% amino acid identity to E. coli SpeF and
PotE respectively. Polyamines are present in all organ-
isms and are associated with a variety of vital biological
processes such as replication, transcription and cell
growth (Pegg, 1988; Tabor and Tabor, 1985). Addition of
exogenous polyamines can protect polyamine deficient
E. coli from the toxicity of the reactive oxygen species
H2O2 (Tkachenko et al., 2001; Chattopadhyay et al.,
2003; Jung and Kim, 2003). Moreover, HI1349, encoding

a Dps-like protein, was also downregulated in the DarcA
mutant (Table 2). HI1349 has approximately 18% identity
and 20% similarity to E. coli Dps and contains a con-
served iron-binding motif found in Dps homologues (see
Discussion). Members of the ferritin-like Dps protein
family function in iron storage/detoxification (Chiancone
et al., 2004). Dps was first discovered in E. coli as a
DNA-binding protein that protects DNA from hydrogen
peroxide-mediated oxidative damage (Almiron et al.,
1992). Nearly half (11/23) of the detected ArcA controlled
genes in H. influenzae have potential roles in ROI gen-
eration or resistance to oxidative stress. Therefore, in
addition to its apparent role in optimizing metabolic flux
under anaerobic conditions, it is possible that ArcA plays
a role in pre-emptive protection against exposure of
anaerobically grown cells to oxidants. Potentially consis-
tent with this hypothesis, the ArcA of S. enterica serovar
Enteritidis has been implicated in resistance to reactive
oxygen and nitrogen intermediates by an unknown
mechanism (Lu et al., 2002).

To determine if arcA has a role in protection of
H. influenzae during a transition from anaerobic growth to
aerobic oxidative stress conditions, we tested the effect
of transient H2O2 exposure on the viability of the
H. influenzae DarcA mutant grown under anaerobic
versus aerobic conditions. We could detect no appre-
ciable differences in growth rates of the DarcA mutant, the
parental strain and the complemented strain under these
conditions alone (Experimental procedures). Anaerobic or
aerobic cultures of the parent strain, RdV, the DarcA
mutant and the complemented strain were incubated
aerobically for 10 min in the absence and presence of
0.5 mM H2O2 followed by quenching of the H2O2 with
sodium pyruvate before plating to enumerate survivors
(Fig. 2). Consistent with greater activity of ArcA under low
oxygen conditions, anaerobically grown DarcA mutant
exhibited an approximate 15-fold decrease in the number
of survivors compared with its parent after H2O2 treatment
and complementation restored the survival phenotype to
near the parental level (Fig. 2A). Similar fold differences in
survival were obtained with exposure of anaerobic cul-
tures to 0.25 mM H2O2 (10.5 � 0.9% survival of the
parental strain, 0.5 � 0.3% survival of the DarcA mutant,
and 10.1 � 1.1% survival of the complemented strain).
Growth in an anaerobic chamber prior to H2O2 exposure
at either concentration yielded similar fold differences in
survival compared with the sealed tube condition (data
not shown). In contrast, the aerobically grown DarcA
mutant showed only a 1.5-fold decrease relative to the
parental strain in the number of survivors after exposure
to H2O2 and complementation restored survival similar to
the parental level (Fig. 2B).

To evaluate whether the speF, potE and HI0592 genes
participate in the H2O2 sensitivity phenotype as observed
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in the arcA mutant, we created a strain, RputV, which
contains a deletion of all three loci. Anaerobic growth of
RputV, followed by challenge with 0.5 mM H2O2 resulted
in a slight reduction (~14%) in the number of survivors in
the mutant compared with the parental strain that did not
reach statistical significance (data not shown).

Next, we examined the role of the putative dps homo-
logue, HI1349 in resistance to H2O2. We observed that
deletion of this locus renders the mutant, RdpsV, more
sensitive to H2O2 challenge compared with the parent
when grown anaerobically, as it showed approximately
ninefold reduction in the number of survivors (Fig. 3A). In
contrast, H2O2 treatment of the aerobically grown RdpsV
resulted in only a twofold decrease in the number of

survivors compared with the parent, RdV (Fig. 3B). Under
either condition, complementation restored the survival
phenotypes of the mutant to levels at or above those of
the parental strain. Based on sequence and motif similar-
ity to putative homologues in other species, together with
its role in H2O2 resistance demonstrated here, HI1349 is
referred to as dps in this report.

These results indicate that the H. influenzae arcA
mutant has an increased sensitivity to H2O2 following
anaerobic growth. In addition, dps, a gene identified as a
target of ArcA control in these experiments, plays a role in
resistance to H2O2 hypersensitivity providing evidence for
a mechanism by which ArcA mediates protection from
ROI in this species.

0

0.05

0.10

0.15

0.20

0.25

Strain:         RdV    RAA6V  RAA6C
Genotype: Δ ΔarcA+ arcA arcA,arcA+

-O2

0

0.005

0.01

0.015

0.02

0.025

0.03

 %
 s

ur
vi

vi
ng

 b
ac

te
ria

(H
2O

2 
tr

ea
te

d/
un

tr
ea

te
d)

Strain:        RdV    RAA6V  RAA6C

+O2

 %
 s

ur
vi

vi
ng

 b
ac

te
ria

(H
2O

2 
tr

ea
te

d/
un

tr
ea

te
d)

Fold change:      15         9.4 
Fold change:      1.5      1.45

H2O2 Sensitivity Assays

A B

Fig. 2. Sensitivity of the H. influenzae arcA mutant to hydrogen peroxide. The parental strain, RdV, arcA deletion mutant, RAA6V (DarcA) and
complemented strain, RAA6C (DarcA, arcA+) from anaerobically (A) and aerobically (B) grown cultures were treated with 0.5 mM H2O2 for
10 min (Experimental procedures). The survival ratios are plotted as the percentage of cfu obtained from H2O2 treated/untreated samples.
Values represent the mean of three independent cultures of each strain tested, and the error bars represent the standard deviations.
Statistically significant differences between the arcA mutant and parent (P < 0.01) and between the arcA mutant and complemented strain
(P < 0.05) were observed (one-way ANOVA with Bonferroni’s multiple comparison test) for cultures grown anaerobically. The arcA mutant
exhibits a 15-fold and 1.5-fold increase in sensitivity to H2O2 challenge compared with parent when grown anaerobically and aerobically
respectively.

Fig. 3. Sensitivity of the H. influenzae HI1349
(dps) mutant to hydrogen peroxide. H2O2

sensitivity assays with the parental strain,
RdV, dps deletion mutant, RdpsV (Ddps) and
complemented strain, RdpsC (Ddps, dps+),
from anaerobically (A) and aerobically (B)
grown cultures were performed as described
in Fig. 2. Statistical differences: parent versus
dps mutant (P < 0.001 for anaerobic growth,
P > 0.05 for aerobic growth); complemented
strain versus dps mutant (P < 0.001 for
anaerobic and aerobic growth) (one-way
ANOVA with Bonferroni’s multiple comparison
test). The dps mutant exhibits a 9.4-fold and
twofold increase in sensitivity to H2O2
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Effect of arcA on survival of H. influenzae in a murine
model of bacteraemia

Intravascular colonization is a well-established virulence
trait of H. influenzae. Bacteraemia is primarily associated
with encapsulated strains, which are of declining clinical
significance in countries with adequate Hib vaccination
programs. Nevertheless, recent evidence indicates that a
subset of NTHi strains, which are non-encapsulated, also
has the capacity to infect the bloodstream (Nizet et al.,
1996; Cuthill et al., 1999; O’Neill et al., 2003). Blood-
stream colonization by NTHi is less efficient and persis-
tent than is observed with encapsulated strains, yet it is
possible that a limited ability to infect the mammalian
bloodstream and resist immunological clearance is a
general feature of H. influenzae that varies quantitatively
between diverse isolates. For these studies we used a
nonencapsulated Rd strain clonally related to KW20,
whose genome sequence has been available for many
years and has provided a reference point for genetic
analysis of H. influenzae (Fleischmann et al., 1995). Rd
strains are efficiently transformable, unlike typical NTHi
clinical isolates. Despite exhibiting less virulence than
encapsulated strains, Rd derivatives generate transient
infections in animal models of infection and have been
useful for characterization of pathogenic properties of
H. influenzae (Weiser et al., 1995; Daines et al., 2003).
The recently determined genome sequence of NTHi strain
86–028NP contains putative homologues of ~97% of Rd
genes indicating that genes implicated in infection related
phenotypes with Rd are potentially present in other
H. influenzae strains, although some unique genes
present in clinical NTHi isolates are absent from Rd (Erwin
et al., 2005; Harrison et al., 2005).

As expected for non-encapsulated H. influenzae, Rd
produced a transient infection in mice. Bacteria were
recovered at an average density of 224 colony-forming
units (cfu) ml-1 of blood at 24 h after intraperitoneal (IP)
inoculation, began to decline by 48 h, and were fully
cleared by 72 h post inoculation (Fig. 4). The ability of this
model to detect H. influenzae virulence properties is dem-
onstrated by comparison of the Rd strain and isogenic
mutants deficient in lpsA or galU, lipooligosaccharide
(LOS) biosynthesis genes essential for bloodstream colo-
nization by H. influenzae type b in an infant rat model
(Hood et al., 1996). The lpsA gene is the glycosyltrans-
ferase required for glucosyl addition and extension of the
third heptosyl residue of the LOS inner core, and galU
encodes the UDP-glucose pyrophosphorylase required
for production of the UDP-glucose precursor essential for
all hexose additions to the LOS. No viable bacteria were
recovered at any time point from mice infected with the
galU mutant. Likewise, mutation of lpsA yielded a similar
level of attenuation to that of the galU mutation. Therefore,

this model is capable of detecting predicted phenotypes
associated with the classical virulence factors of
H. influenzae.

If signalling in response to redox conditions is important
for adaptation to niches encountered by H. influenzae
during infection, then arcA may be expected to play a role
in some aspect of survival or persistence in the host. A
mutant containing a non-polar deletion of the arcA gene
was detected at an average density of 28 cfu ml-1 of blood
at 24 h post inoculation. This represents an approximately
eightfold reduction in cfu relative to the parent strain at
24 h post inoculation (Fig. 4). At 48 h, the DarcA mutant
remains attenuated, although the difference at this later
time did not reach statistical significance. Consistent with
these results, De Souza-Hart et al. have shown that an
arcA mutation confers an increase in LD50 with
H. influenzae type b after IP inoculation of BALB/c mice
(De Souza-Hart et al., 2003). This virulence defect was
attributed to the increased serum sensitivity of the arcA
mutant that was observed. We evaluated the Rd DarcA
mutant versus parental strain for serum sensitivity after
anaerobic growth. Both strains were sensitive to treat-
ment with human serum with an approximate IC50 of 2%
(Experimental procedures) and did not differ detectably in
serum sensitivity in three independent experiments: sur-
vival ratio in 2% serum: Rd (parent) = 0.57, standard
deviation (SD) = 0.1; RAA6 ( DarcA) = 0.56, SD = 0.04. It
therefore seems likely that the role of ArcA in serum
resistance differs between strains. Nevertheless, the
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Fig. 4. Persistence defect of H. influenzae mutants in a mouse
model of bacteraemia. H. influenzae Rd wild-type (wt), Rcp5 (lpsA)
and Rcp19 (galU), and arcA deletion mutant (DarcA) were
inoculated IP into five C57BL/6 mice per strain and blood was
sampled daily for cfu determination (Experimental procedures).
Bars represent the average cfu ml-1 (224 and 28 for wt and DarcA
mutant, respectively, at 24 h post inoculation). Asterisks denote
differences from wild type that were statistically significant
(P < 0.01). lower limit of detection (LLD) = 2 cfu ml-1.
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more rapid clearance of the arcA mutant from the blood
raises the possibility that an impaired ability to maintain
high numbers of bacteria in the blood contributes to the
previously observed reduction in lethality of the arcA
mutant versus the parental type b strain. Furthermore,
decreased ability of the mutant to survive in the mamma-
lian bloodstream suggests that ArcA is active in controlling
genes during a critical stage of pathogenesis.

Because deletion of the ArcA-regulated dps gene
resulted in an increased sensitivity to H2O2 (Fig. 3),
we evaluated whether this gene could contribute to
H. influenzae’s ability to persist in the host bloodstream.
We coinoculated 6-week-old C57BL/6 mice by the IP
route at a dose of 2 ¥ 108 cfu of H. influenzae Rd carrying
the lacZ gene (strain RdlacZ) and an equal number of
either the parent (strain RdV), Ddps mutant (RdpsV), or
complemented dps strain (RdpsC). After 24 h, the ratios
and standard deviations of the coinoculated strains recov-
ered from the blood were not significantly different: RdV/
RdlacZ = 1.32, SD = 0.73, n = 4; RdpsV/RdlacZ = 2.27,
SD = 0.74, n = 4; RdpsC/RdlacZ = 0.97, SD = 0.22, n = 5.
The results indicate that the Ddps mutant does not appear
to exhibit a survival defect compared with the parental
strain in the bloodstream at 24 h post inoculation. The
H. influenzae ArcA regulates multiple genes as indicated
by expression profiling and it is likely that the combined
effect of more than one gene expressed at inappropriately
high or low levels in the ArcA mutant confers the in vivo
defect.

Discussion

Overview

We report the role of H. influenzae ArcA in resistance to
hydrogen peroxide during transitions between redox con-
ditions of growth and enhanced survival in a murine model
of bloodstream clearance. Application of DNA microarray-
based expression profiling led to the identification of an
ArcAcontrolled gene, dps which encodes a putative homo-
logue of the ferritin-like Dps protein and has not previously
recognized to be within bacterial ArcA regulons. The H. in-
fluenzae dps gene was implicated in ArcA-mediated resis-
tance to hydrogen peroxide, providing evidence for a
molecular mechanism of ArcA-mediated ROI resistance. It
will be of interest to determine whetherArcAcontrols genes
fulfilling similar functions in other species, or whetherArcA-
mediated regulation of dps is unique to this inhabitant of the
human respiratory tract.

Of the 1697 protein coding genes represented on the
microarray, we found 23 (~1.3% of the 1740 genes in the
genome) that were differentially expressed in the arcA
mutant when compared with its parent strain and comple-
mented arcA strain (Tables 1 and 2). The H. influenzae

arcA mutant exhibited increased anaerobic expression of
genes of the respiratory chain and TCA cycle, and
decreased anaerobic expression levels of genes with
putative functions in polyamine biosynthesis/transport
and oxidative stress resistance. In this mutant, a potential
increase in cellular respiration could lead to an increase in
intracellular generation of ROI, whereas a concurrent
decrease in the uptake/biosynthesis of polyamines and in
the levels of the putative Dps protein could lower resis-
tance to ROI.

This model based on the expression data suggested a
mechanism by which the H. influenzae ArcA could
promote oxidative stress resistance. We found that
mutants containing non-polar deletions of either the
H. influenzae arcA or HI1349 (a putative dps homologue),
a gene shown in this study to be positively regulated by
arcA, possess enhanced sensitivity to H2O2 following a
shift from growth in low oxygen to a transient aerobic
exposure to this oxidant. We postulate that as
H. influenzae transits from low to high oxygen environ-
ments within the host, ArcAB protects the cell against
oxidative stress, contributing to the ability of H. influenzae
Rd to resist clearance in a mouse model of intravascular
infection as we report here.

Resistance to oxidative stress is a major feature of
bacterial pathogens that must survive encounters with
defences of the host innate immune system (Nathan and
Shiloh, 2000). The importance of this trait in H. influenzae
is supported by the observation that the sodA gene
encoding superoxide dismutase, which was not detected
by our microarray analysis as an ArcA-regulated gene in
H. influenzae, is required for oxidative stress defence
in vitro and for optimal nasopharyngeal colonization in
infant rats (D’Mello et al., 1997). Our results suggest that
co-ordinate regulation of additional oxidative stress resis-
tance pathways could represent a mechanism by which
ArcA promotes survival of H. influenzae during blood-
stream infection.

ArcA regulon diversity

Compared with the relatively small number of ArcA targets
in H. influenzae identified in the microarray data, global
expression profiling experiments conducted with E. coli
arcA mutants have indicated that transcript levels of 372
genes (Liu and De Wulf, 2004) or as many as 1139 genes
(Salmon et al., 2005) (~9% and ~26%, respectively, of
the E. coli genome) are controlled directly or indirectly
by ArcA anaerobically, while 110 genes were found to
be ArcA-regulated under an aerobic growth condition
(Oshima et al., 2002). Use of an ArcA-P recognition
weight matrix from footprinting data for 10 known ArcA-
regulated genes identified approximately 50 additional
E. coli operons as probable direct targets of ArcA (Liu and
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De Wulf, 2004). The difference in the number of ArcA
targets between H. influenzae and E. coli is likely related,
in part, to their difference in genome size (the E. coli
genome is ~2.3-fold larger) and host environment.
H. influenzae inhabits a more restricted environment
(primarily the human nasopharynx) compared with E. coli.
In addition, some ArcA-regulated promoters in E. coli are
subject to complex combinatorial control by other regula-
tors such as FNR, which is considered a direct sensor of
oxygen and is active under a more restricted range of low
oxygen conditions than ArcA (Lynch and Lin, 1996a; Kiley
and Beinert, 1998). It is likely that under diverse environ-
mental conditions, different subsets of ArcA-regulated
genes may be detected as a result of the presence or
absence of contributions from other regulatory systems.

Of the 23 ArcA modulated genes on our list (Tables 1
and 2, columns RAA6V/RdV), all but HI0592 have puta-
tive homologues in E. coli with 10 showing agreement in
anaerobic expression ratios in arcA versus parental
strains in the two species suggesting similarities and dif-
ferences in their respective arcA regulons (Liu and De
Wulf, 2004; Salmon et al., 2005) (Supplementary mate-
rial, Table S3). These results are consistent with regulon
diversity among putative ArcA homologues in other
species. Of note, Gralnick and coworkers (Gralnick et al.,
2005) applied the E. coli ArcA-P recognition weight matrix
to the genome of Shewanella oneidensis and experimen-
tally validated several candidates detected by this
method. In S. oneidensis, the dmsEFAB genes, encoding
dimethyl sulphoxide reductase, were positively controlled
by ArcA and the cydAB genes, encoding cytochrome d
oxidase, were negatively controlled. In contrast, dms
genes in E. coli are not known to be ArcA-regulated and
cydAB of E. coli is ArcA activated (Lynch and Lin, 1996b).
Each of these three bacterial species inhabits distinctly
different environments in nature and it is likely that their
respective ArcA regulons are each uniquely adapted to
growth and survival in these settings.

Negative control of genes of respiration and the TCA
cycle by arcA

The H. influenzae arcA mutant exhibits increased expres-
sion relative to the parental strain of a set of genes (lldD,
lldP, fdxH, fdxI, fdhE, sucA, sucB and ndh) encoding puta-
tive respiratory dehydrogenases, substrate transporters
for these dehydrogenases, or enzymes involved in
dehydrogenase assembly. These enzymes include
a-ketoglutarate dehydrogenase, formate dehydrogenase
and L-lactate dehydrogenase (LldD). Consistent with
these results, LldD and a subunit of formate dehydroge-
nase (FdxG) have been detected as ArcA-regulated pro-
teins in type b H. influenzae (De Souza-Hart et al., 2003).
Substrates for these enzymes are created endogenously

or available in the host. For example, L-lactate is pro-
duced at significant levels in the host with persistent levels
in the blood ranging between 0 and 1.5 mM in resting,
healthy individuals and levels as high as 4 mM in sepsis
(Levraut et al., 1998). Expression levels of these enzymes
correlate with their activity levels in E. coli (Iuchi and Lin,
1988), and this expression pattern is likely to signify
increased cellular respiration in the mutant.

The observed anaerobic increase in the expression of a
number of genes involved in energy metabolism in the
H. influenzae arcA mutant is consistent with the reported
role of ArcA in E. coli as a negative regulator of genes of
the respiratory pathway and TCA cycle (Lynch and Lin,
1996a; Patschkowski et al., 2000; Oshima et al., 2002;
Liu and De Wulf, 2004; Salmon et al., 2005). In addition,
we detected ArcA regulation of ndh. The E. coli ndh
encodes a non-proton-translocating NADH dehydroge-
nase (Matsushita et al., 1987). A second NADH dehydro-
genase in E. coli, encoded by the nuo operon, is coupled
to the generation of proton motive force (Weidner et al.,
1993) and has no apparent homologue in H. influenzae.
Although the nuo operon is repressed by ArcA in E. coli
(Bongaerts et al., 1995), regulation of the E. coli ndh gene
involves the oxygen-responsive regulator, FNR (Green
and Guest, 1994; Meng et al., 1997). To our knowledge,
transcriptional regulation of ndh by ArcA as detected in
this study has not been reported previously. Together,
these results demonstrate increased expression of mul-
tiple genes of cellular respiration in the ArcA mutant.

In the presence of oxygen, respiration generates
endogenous ROI. E. coli arcA mutants exhibit increased
rates of respiration (Nystrom et al., 1996; Vemuri et al.,
2006). Potentially consistent with these results, a
S. enterica serovar Enteritidis arcA mutant has been
shown to be more susceptible to H2O2 compared with wild
type (Lu et al., 2002). It is likely that increased levels of
respiration are generated in the ArcA mutant, contributing
to its hydrogen peroxide sensitivity.

Positive control of oxidative stress resistance genes by
ArcA

Deletion of arcA resulted in decreased expression of a set
of genes with probable roles in oxidative stress resistance
including dps (HI1349), encoding a putative homologue of
ferritin-like iron storage proteins in other bacteria, and
a putative operon containing genes similar to those
mediating polyamine biosynthesis and transport in other
organisms. A non-polar deletion of dps resulted in H2O2

sensitivity similar to that of the ArcA mutant under equiva-
lent conditions, consistent with an important role for ArcA-
mediated activation of this gene in H2O2 resistance.

The dps gene is conserved in all of the sequenced
isolates of H. influenzae (Fleischmann et al., 1995; Harri-
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son et al., 2005). Dps proteins bind iron and oxidize Fe(II)
with H2O2 to form a stable ferric oxide mineral core within
the cavity of the protein, thereby avoiding generation of
toxic hydroxyl radicals mediated by Fenton chemistry
(Zhao et al., 2002). Since the discovery that Dps in E. coli
plays a role in protection against DNA damage from oxi-
dative stress mediated by H2O2, homologues have been
found to confer resistance to H2O2 in diverse bacteria
(Chen and Helmann, 1995; Martinez and Kolter, 1997;
Cooksley et al., 2003; Ishikawa et al., 2003; Ueshima
et al., 2003; Halsey et al., 2004; Loprasert et al., 2004;
Olsen et al., 2005; Pulliainen et al., 2005). HI1349 has
approximately 18% identity and 20% similarity to E. coli
Dps. Furthermore, HI1349 contains a conserved amino
acid motif comprised of residues His38, His50, Glu54,
Asp65 and Glu69 that are located at equivalent positions
in the Listera innocua Dps and were implicated as sites for
iron-binding based on structural analysis (Ilari et al.,
2000). The Glu54 residue in the putative H. influenzae
Dps represents a conserved variation of Asp at this
equivalent position in other Dps proteins. Functional evi-
dence of iron-binding capabilities of the corresponding
residues has been obtained with the Streptococcus suis
Dps protein (Pulliainen et al., 2005).

Our results indicate that the H. influenzae dps-like
protein also functions in conferring resistance to H2O2,
with the protection against transient exposure to H2O2

being more pronounced in anaerobically grown cells and
lower in aerobically grown cells. The dps genes have
been shown to be regulated by OxyR in the presence of
exogenous H2O2 in multiple species including E. coli
(Zheng et al., 2001), Bacteroides (Rocha et al., 2000),
Archaea (Wiedenheft et al., 2005) and OxyR-dependant
regulation of the dps-like gene of H. influenzae was
recently observed (Harrison et al., 2006). In addition, dps
mRNA and protein levels in Borrelia burgdorferi were
higher in cultures grown microaerobically versus anaero-
bically, indicating redox regulation of this gene in this
species (Seshu et al., 2004). To our knowledge, a role for
ArcA in regulation of dps has not been demonstrated
previously in any species. The role we have detected for
ArcA in anaerobic expression of the putative H. influenzae
Dps homologue, and the H2O2 sensitivity of the dps
mutant versus the parental strain after anaerobic growth,
provide evidence that a Dps protein can operate under a
physiological condition not previously recognized to
induce its upregulation. Because the H. influenzae dps-
like gene was more critical for resistance to H2O2 in cells
that were grown anaerobically versus aerobically prior to
oxidant exposure, it is likely that cells grown under aerobic
conditions rely more heavily on other systems including
catalase, superoxide dismutase and peroxiredoxin-
glutaredoxin (Bishai et al., 1994; D’Mello et al., 1997; Ver-
gauwen et al., 2003), for resistance subsequent to

exposure to H2O2. It is also likely that aerobic dps tran-
scription, activated by OxyR in response to H2O2 (Harri-
son et al., 2006), and subsequent translation of sufficient
amounts of Dps protein to afford protection require more
time to confer protection than the transient exposure
period used here. If cells are able to survive the initial
exposure to H2O2, then Dps could accumulate, and we
would predict that it could contribute to the multiple
mechanisms of resistance to H2O2 present in
H. influenzae growing aerobically.

In the DarcA mutant, we also observed decreased
expression relative to the parent of a locus similar to the
speF-potE operon of E. coli which encodes an inducible
ornithine decarboxylase (speF), responsible for conver-
sion of ornithine to putrescine, and the putrescine trans-
port protein (potE) (Kashiwagi et al., 1991). Polyamines,
such as putrescine and spermidine, have roles in a wide
variety of biological processes and their optimal cellular
concentrations are maintained by biosynthesis, degrada-
tion and transport (Igarashi and Kashiwagi, 1999).
Polyamines have also been implicated in resistance
to oxidative stress in E. coli and other organisms
(Tkachenko et al., 2001; Chattopadhyay et al., 2003;
Jung and Kim, 2003). The cellular amines putrescine,
cadaverine and 1,3-diaminopropane are present in
H. influenzae as measured by HPLC (Hamana and
Nakata, 2000).

Downregulation of speF and potE in the H. influenzae
DarcA mutant could disrupt the optimal balance of cellular
polyamine levels, thereby contributing to oxidant
sensitivity. However, a mutant containing a deletion of
speF, potE and HI0592 did not exhibit an appreciable
increase in sensitivity to H2O2 exposure under the condi-
tions tested. This result could potentially be attributed to
the presence in H. influenzae of possible alternative path-
ways for production/uptake of polyamines. HI0949 and
HI0946.1 have been shown to express the enzymatic
activities required for 1,3-diaminopropane production (Ikai
and Yamamoto, 1998). H. influenzae potABCD genes,
whose E. coli counterparts function as a spermidine (pref-
erential) and putrescine uptake system (Furuchi et al.,
1991) could provide a similar capability to H. influenzae.

ArcA, oxidative stress resistance and pathogenesis

Growth of H. influenzae within the human host likely
requires adaptation to diverse conditions as the bacteria
accumulate in biofilms on mucosal surfaces, invade the
epithelium within or between cells, enter the bloodstream,
or encounter oxidative defences of phagocytic cells.
Decreased survival of the arcA mutant in the mouse
model suggests that ArcA-mediated regulation is required
during infection. Our results implicate ArcA in repression
of genes of respiratory catabolism and activation of an
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oxidative stress resistance gene, dps, in addition to genes
of polyamine metabolism. These regulatory effects of
ArcA could protect cells growing under relatively low
oxygen levels, a condition they likely encounter in venous
blood or in biofilms on mucosal surfaces, against sudden
oxidative stresses such as exposure to the oxidative
defences of phagocytic cells. Consistent with this hypoth-
esis, both arcA and dps exerted greater effects on hydro-
gen peroxide resistance in cells grown anaerobically than
in cells grown aerobically prior to exposure. A pre-emptive
role of certain oxidative stress resistance mechanisms
has been proposed previously, such as anaerobic expres-
sion of an iron-dependant superoxide dismutase of E. coli
(Kargalioglu and Imlay, 1994), but this aspect of resis-
tance has received relatively little attention compared to
defence mechanisms induced upon exposure to oxidants.
Our results indicating arcA-dependant anaerobic activa-
tion of dps expression and the role of these genes in
hydrogen peroxide resistance in H. influenzae demon-
strate an additional mechanism by which bacteria can
prepare for rapid transitions from low oxygen conditions to
exposure to oxidative stress, conditions they likely
encounter within the mammalian host.

Experimental procedures

Media and H. influenzae growth conditions

The non-encapsulated Rd derivative of H. influenzae type d
(BA042), termed Rd in this report (Akerley et al., 2002) was
grown at 35°C � 1.5°C in Brain Heart Infusion supplemented
with 10 mg ml-1 nicotinamide adenine dinucleotide and
10 mg ml-1 haemin (sBHI) on agar plates or in sBHI broth
cultures shaken at 250 r.p.m. as indicated. DNA was trans-
formed into naturally competent H. influenzae prepared
as previously described (Barcak et al., 1991). Kanamycin
(Km), gentamicin (Gm) and tetracycline (Tet) were added to
sBHI at 20 mg ml-1, 10 mg ml-1 and 8 mg ml-1 respectively.
H. influenzae cultures grown in unaerated culture containers
filled and sealed to exclude air to approximate anaerobiosis
were termed ‘anaerobic’ for simplicity. H. influenzae is a
haem auxotroph and requires haem for aerobic growth, yet
grows to equivalent levels in these sealed containers in the
presence and absence of exogenous haem, suggesting
oxygen levels are very low or absent in sealed tubes (data not
shown). Aerobically grown H. influenzae are cultured in 10 ml
of sBHI in 500 ml Erlenmeyer flasks. The generation times for
parent strain (RdV), arcA deletion mutant (RAA6V) and the
complemented strain (RAA6C) were 29 � 3 min (n = 3),
31 � 1.6 min (n = 3), and 31 � 5 min (n = 3), respectively, for
aerobic growth; 67 � 3 min (n = 3), 71 � 8 min (n = 3), and
69 � 3 min (n = 3), respectively, for anaerobic growth.

Plasmid and H. influenzae strain construction

Standard molecular biology methods were used for plasmid
construction and Northern blot analysis (Ausubel et al.,

1995). Strain RdV was generated by transforming Rd with
vector pXT10 and selection with tetracycline for homolo-
gous recombination at the xyl locus (Wong and Akerley,
2003). Strain RAA6 contains a non-polar, in-frame deletion
of the arcA protein coding sequences (Georgellis et al.,
2001b). Vector pXT10 was introduced into RAA6 at the xyl
locus to generate RAA6V. RAA6C contains the deletion of
arcA with a wild-type copy of arcA introduced in trans at the
xyl locus as described previously (Georgellis et al., 2001b).
Strains Rcp5 and Rcp19 containing transposon insertion
mutations in lpsA and galU, respectively, were generated by
in vitro transposon mutagenesis with the Himar1 derivative
magellan1 as previously described (Akerley et al., 2002),
and mapped by DNA sequence analysis of PCR-amplified
transposon junctions. Rcp5 and Rcp19 contain magellan1
insertions in their coding sequences at nucleotide positions
635 in lpsA and 264 of galU respectively. H. influenzae Rd
carrying lacZ was made by cloning a promoterless E. coli
lacZ into the SapI sites of pXT10 and introduced into Rd at
the xyl locus.

A non-polar, in-frame deletion of HI1349 (dps) was created
by replacement of the protein coding sequences with the
aacC1 gentamicin resistance cassette to create Rdps by
PCR ‘stitching’ as follows: A 1172 bp PCR product containing
the 5′ flanking region of HI1349 was amplified from Rd with
primers 1350-3 (5′-TTACAAAGAATAATACTCTAATTCTAC)
and 1349-5outgent (5′-ATTCGAGAATTGACGCGTAATAA
TTTCCTTTTTCTAGTTGAA). A 1881 bp PCR product con-
taining the 3′ flanking region of HI1349 was amplified from Rd
with primers 1349-3outgent3 (5′-GTTCAAGCCGAGATCT
GAATAAATTTCAACGCTAACGAA) and 1348-5upout (5′-
TCAAGATGTTTTCTATTTTTCTCG). A 791 bp fragment con-
taining the aacC1 gentamicin resistance cassette was
amplified with primers gentMluI5 (5′-ACGCGTCAATTCT
CGAATTGACAT) and gent-3′ (5′-GATCTCGGCTTGAA
CGAATTGTTA) from pBSL182 (Alexeyev and Shokolenko,
1995). The 1172 bp, 1881 bp and 791 bp products were
stitched in a PCR reaction with primers 1350-3 and 1348-
5upout. The resultant 3.84 kb product was introduced into Rd
and GmR transformants were selected on sBHI agar contain-
ing Gm to create strain Rdps.

To generate RdpsV, the vector pXT10 was introduced into
the xyl locus of Rdps. RdpsC was created as follows: A
333 bp fragment containing the putative hel (HI0693) pro-
moter was PCR-amplified with primers 692–5ATGoutSap2
(5′-AACTGCAGATCTGCTCTTCAATGCATTTGAAACATATC
CCAAGT) and hel5′ATGout2 (5′-CAGGGTATAGTAAGTCT
TTCTGA) from Rd. A 525 bp product containing the HI1349
gene was amplified from Rd with primers 1349SDATG (5′-
ACTTACTATACCCTGTAGAAAAAGGAAATTATTATGTCA)
and 1349-3Sap (AAAGATCTGCAGGCTCTTCTTTAATTAT
GGCAAGTTTGGCAAGC). These two products were stitched
in a PCR reaction with primers 692-5ATGoutSap2 and 1349-
3Sap. The resultant 858 bp PCR product was digested with
SapI and cloned into the SapI sites of pXT10. This plasmid
was introduced into the xyl locus of strain Rdps and TetR

transformants were selected on sBHI agar containing Tet to
create strain RdpsC.

A non-polar, in-frame deletion of HI0592, speF and potE
was created as follows: A 2086 bp PCR product containing
the 5′ flanking region of HI0592 was amplified from Rd with
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primers 594 5′ORF (5′ATGGATGCATCCAAAAAG) and
592out + kan (5′-TTGAATATGGCTCATAGGAAAAATCCCT
CTTTCTATCTA). A 1054 bp PCR product containing the 3′
flanking region of HI0590 was amplified from Rd with primers
potE 3 + kan (5′-GATGAGTTTTTCTAAAAAAGAAACGCC
TACATCTTAATG) and 588–5int (5′-AAAGAGGATTATTAA
TTGAGTTAC). A 818 bp fragment containing the kanamycin
resistance gene, aphI from Tn903 was PCR-amplified with
primers kan5 + ATG (5′-ATGAGCCATATTCAACGGGAAAC)
and kan3′ + TAA (5′-TTAGAAAAACTCATCGAGCATCAAA).
The three resultant products were used as template in PCR
to amplify a 3921 bp ‘stitched’ product with primers 594-
5′ORF and 588–5int. The 3921 bp product was introduced
into RdV and KmR transformants were selected on sBHI agar
containing Km to create strain RputV. All transformants were
verified by PCR analysis.

Murine bacteraemia model

Haemophilus influenzae were grown to logarithmic phase
(OD600 = 0.3) as 20 ml of cultures in 50 ml shake flasks at
35°C. Five- to six-week-old C57BL6 mice were inoculated by
the IP route at a dose of 2–8 ¥ 108 cfu. Blood (5 ml) was
collected daily by tail vein sampling and serially diluted in BHI
for cfu determination and results compared via the one-way
ANOVA with the Bonferroni correction. Experiments were con-
ducted with approval and in accordance with guidelines of the
University of Massachusetts Institutional Animal Use and
Care Committee.

Serum bacteriocidal assays

Serum bactericidal testing was performed as described pre-
viously (McQuillen et al., 1994). Briefly ~2000 cfu of bacteria
grown anaerobically to the mid-log phase were incubated
with or without normal human serum (NHS) (concentration of
NHS specified for each experiment) in a final reaction mixture
volume of 150 ml. Aliquots of NHS treated versus untreated
samples were plated on sBHI agar plates at 0 and 30 min. In
all cases, the number of bacteria recovered from treated and
untreated samples at 0 min were equivalent. Survival was
calculated as the ratio of the number of cfu recovered at
30 min relative to cfu recovered from untreated samples. An
initial study with a range of serum concentrations (1, 2, 3, 4,
5 and 10% NHS) revealed that both Rd and RAA6 were
affected similarly at each dose with 4% NHS or above, killing
greater than 99% of cells of either strain and both strains had
an approximate IC50 of 2%. Therefore, three replicate experi-
ments were conducted with 1% and 2% NHS as indicated in
the text.

Northern and RT-qPCR

Total RNA from H. influenzae Rd was obtained from cultures
grown anaerobically in sBHI to OD600 = 0.3–0.4 as described
above. RNA was isolated using TRIzol Reagent (Invitrogen),
treated with DNase I (Ambion) and phenol extracted.
For Northern blotting, 6 mg of total RNA was separated
by electrophoresis on a 1.5% agarose gel containing
1.1% formaldehyde and transferred to a Nytran nylon

membrane (Amersham Pharmacia Biotech). Probes were
generated by amplification from Rd using 5′ and 3′ primer
pairs for ndh (HI0747) (5′-ATGAAAAACGTCGTGATC
and 5′-ATGCAATTTTAATCTTGGTTTTAAATAAC), lldD
(HI1739.1) (5′-ATGATTATTTCATCAGCTAG and 5′-AAG
TTTACTTAGATCAACC), fdxH (HI0007) (5′-ATGGCTGG
AACTGCTCAAGGCG and 5′-GAAACACGATCTACACAA
AGAG), fdxI (HI0008) (5′-ATGAGTAAAATTGAAATTAGC
AAC and 5′-AGATACCAGTGAATAACATAAAAG), fdhE
(HI0009) (5′-ATGAGTATCAAAATCTTATC and 5′-TGCTT
CTTCTGCAGGAAAAATAAATG), lldP (HI1218) (5′-ATGCT
GTCTTTTATTCTAAG and 5′-TAGATTATAAAATAAAGGT
AC), sucB (HI1661) (5′-ATGGCAATCGAAATTCTTG and
5′-GATTTCTAATAACAATCTTG), HI0592 (5′-ATGCTATTT
CGTACATATATAC and 5′-GAGAGCCCTGTTGGATG), potE
(HI0590) (5′-ATGAGTGCTAAAAGCAATAAAATTG and
5′-TTTTTTAAGATCAAATTTGTAAG) and HI1349 (5′-
AACTGCAGATCTGCTCTTCAATGTCAAAAACATCAATCG
GACTA and 5′-AAAGATCTGCAGGCTCTTCTTTAATTATG
GCAAGTTTGGCAAGC). PCR products were labelled with
the Gene Images AlkPhos Direct Labeling Kit and signals
visualized with CDP-Star chemiluminescent detection system
(Amersham Pharmacia Biotech). The lldD Northern blot was
performed by stripping of the lldP probe from the membrane
followed by hybridization with the lldD probe. Washing and
hybridization conditions were according to the manufacturer’s
instructions.

Quantification of mRNA expression of the HI1349 (dps)
and HI0802 (rpoA) from strains RdV, RAA6V and RAA6C with
RNA samples from four independent cultures used in the
microarray analysis was performed using iQ SYBR Green
Supermix (Bio-Rad Laboratories) in quantitative real-time
PCR measured with the DNA Engine Opticon II System (MJ
Research). Briefly, 2.5 mg of DNase I-treated total RNA from
the above strains was used as template in cDNA synthesis
using random primers (New England Biolabs) and Super-
Script II reverse transcriptase (Invitrogen). One-tenth of the
reverse transcriptase reactions was used as template in
qPCR for amplification using 5′ and 3′ primer pairs for dps
(5′-AACTGCAGATCTGCTCTTCAATGTCAAAAACATCAAT
CGGACTA and 5′-ACATTCTTGTGCCTCACTTACTGC) and
rpoA (5′-GTAGAAATTGATGGCGTATTG and 5′-TCACCAT
CATAGGTAATGTCC). Real-time cycler conditions were as
follows: 95°C for 3 min, followed by 39 cycles of 96°C for
20 s, 58°C for 30 s and 72°C for 30 s, followed by one cycle
of 72°C for 7 min. Fluorescence was read at 72, 74, 76 and
78°C and normalized to the housekeeping gene, rpoA, which
encodes the alpha subunit of RNA polymerase. Control reac-
tions were performed in parallel with mock cDNA reactions
generated without reverse transcriptase to verify specific
amplification. Product sizes were confirmed by agarose gel
electrophoresis.

Microarray analysis

Total RNA from four independent cultures of H. influenzae Rd
grown anaerobically to OD600 = 0.3–0.5 was obtained and
treated with DNase I as described above. Thirty micrograms
of RNA from each quadruplicate culture was used as tem-
plate for generation of probes by reverse-transcription in the
presence of random primers, essentially as described previ-

1386 S. M. S. Wong, K. R. Alugupalli, S. Ram and B. J. Akerley

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd, Molecular Microbiology, 64, 1375–1390



ously (Wong and Akerley, 2005) except that biotinylated
nucleotides (Mergen, San Leandro, CA) were used in the
reverse-transcription. Biotinylated cDNAs were hybridized to
glass slide microarrays containing 45-mer oligonucleotides
representing a total of 1697 genes of the H. influenzae KW20
genome in addition to negative controls specific for human
genes. Array printing, fluorescent labelling, hybridization to
microarrays, and array scanning was conducted by Mergen
(San Leandro, CA). The total signal intensity for every gene
represented on the array was corrected by subtracting the
local background and normalized by dividing by the mean of
the values for all of the genes represented on the array.
Bacterial cultures, RNA isolation, labelling and hybridizations
were conducted independently to obtain four experimental
replicates for each strain. The corrected signal intensity for
each gene represents the mean of separate hybridization
experiments conducted with labelled cDNAs from each of the
four independent cultures of each strain. Expression ratio
data were generated by comparing the corrected mean signal
intensity values from arrays hybridized to cDNAs generated
from the parent strain versus the arcA mutant or comple-
mented arcA strain versus the arcA mutant. Statistical analy-
sis of the expression data were performed using the Cyber-T
Bayesian statistics framework (Baldi and Long, 2001) avail-
able as a web interface from the Institute for Genomics and
Bioinformatics at the University of California, Irvine (http://
visitor.ics.uci.edu/genex/cybert). Genes whose expression
ratios had Bayesian P-values based on the regularized
t-test � 0.0001 and showed � 2.0-fold differential gene
expression levels were considered to exhibit significant
differences. Mean signal intensities greater than or equal to
twofold above the mean local background averaged over all
the spots on all of the arrays were considered to have
reached the threshold value for significant gene expression.

Hydrogen peroxide sensitivity assays

Survival after exposure to H2O2 was evaluated for anaerobi-
cally or aerobically grown H. influenzae. Aerobically grown
H. influenzae was prepared by diluting overnight cultures
1:200 in sBHI in standard culture tubes and growing at 35°C
with shaking at 250 r.p.m. to an OD600 = 0.1–0.2. Triplicate
cultures of each strain were inoculated at 0.005 OD600

units ml-1 into 10 ml of sBHI in 500 ml Erlenmeyer flasks
and grown at 35°C with shaking at 250 r.p.m. to an
OD600 = 0.3–0.4. Anaerobic cultures were prepared by dilut-
ing overnight standing cultures to 0.005 OD600 units ml-1 in
sBHI (triplicates per strain) in glass vials filled to exclude air
and grown at 35°C with shaking at 250 r.p.m. to an
OD600 = 0.3–0.4. Cells from 1 ml of each culture were pelleted
and resuspended in 1 ml of MIc medium (Barcak et al.,
1991). The H2O2 sensitivity assay was conducted in Costar
24-well cell culture plates seeded with 100 ml per well. An
equal volume of MIc medium with and without 1 mM H2O2

was added (final concentration of 0.5 mM) and the plate was
shaken at 250 r.p.m. at 35°C for 10 min followed by addition
of 10 mM sodium pyruvate to quench H2O2 (Maciver and
Hansen, 1996) to all samples. H2O2 treated and untreated
cells were diluted and plated onto sBHI agar plates for cfu
determination. Differences were compared via the one-way
ANOVA with Bonferroni post-tests.
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The following supplementary material is available for this
article:
Table S1. Microarray data of parent vs. DarcA mutant in H.
influenzae Rd. Microarray data was analyzed using the Cyber
T statistics program. Input for the Cyber T program is the
corrected signal intensity values from 1697 genes repre-
senting the genome of H. influenzae and control probes
(see Col. 1 definitions in table) hybridized with cDNA from
quadruplicate cultures of the RdV parental strain, DarcA
mutant, RAA6V, and complemented strain, RAA6C grown
anaerobically. In this table, the Cyber T analysis represents
the comparison between the parent strain and DarcA mutant.
The column heading definitions are listed at the end of the
data file.
Table S2. Microarray data of arcA complemented strain vs.
DarcA mutant in H. influenzae Rd. Microarray data was ana-
lyzed using the Cyber T statistics program. Input for the
Cyber T program is the corrected signal intensity values from
1697 genes representing the genome of H. influenzae and
control probes (see Col. 1 definitions in table) hybridized with
cDNA from quadruplicate cultures of the RdV parental strain,
DarcA mutant, RAA6V, and complemented strain, RAA6C
grown anaerobically. In this table, the Cyber T analysis rep-
resents the comparison between the complemented strain
and DarcA mutant. The column heading definitions are listed
at the end of the data file.
Table S3. Comparsion of arcA microarray expression data
between H. influenzae and E. coli. Similarities and differ-
ences across species in putative ArcA regulons. H. influenzae
arcA microarray expression data (from Tables 1 and 2,
columns RAA6V/RdV) was compared to E. coli arcA micro-
array expression data of Salmon et al. (Salmon, K.A., et al.
2005. J. Biol. Chem. 280: 15084–15096) and Liu and De Wulf
(Liu, X. and P. De Wulf. 2004. J. Biol. Chem. 279: 12588–
12597). Putative E. coli homologs in bold have expression
data from either microarray sets of Salmon et al. or Liu and
De Wulf that show agreement with the H. influenzae array
data in anaerobic expression ratios in the DarcA mutant,
RAA6V vs. the parent strain, RdV. Fold change values rep-
resent an increase (positive) or decrease (negative) in gene
expression in the DarcA mutant vs. parent strain, RdV. E. coli
homologs with blank entries are genes whose expression
levels did not meet the authors’ criteria for minimum signal
detection on the array.

This material is available as part of the online article from:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-
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(This link will take you to the article abstract).
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