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Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In
this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the
success of this epidemic type.
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Clostridium difficile is the main causative agent of nosocomial
diarrhea. Besides hypervirulent PCR ribotypes (RTs), other

epidemic RTs are currently a cause of concern (1, 2). In particular,
RT018 has been detected in Italy and, more recently, in South
Korea and Japan as a main cause of infections and outbreaks (3–
5). RT018 isolates show resistance to several antibiotics and a
transmission index 10-fold higher compared to that of RT078
strains (3, 6). Significant risk factors for complicated infections by
RT018 are age �65 years, pulmonary comorbidity, and use of
fluoroquinolones (2). For these reasons, the genome of the Italian
strain IT1118, isolated during an outbreak, was analyzed to inves-
tigate features that may affect virulence.

Genomic DNA was sequenced using the HiSeq 2000 platform
(GATC, Konstanz, Germany) in 50-bp single-read mode. A total
of 18,123,358 reads were assembled into 256 contigs (�200 bp)
using the Velvet assembler (7), with a total size of 4,238,925 bp
and providing 218� coverage. The average contig length was
16,558 bp, with the largest contig being 178,925 bp. Gene predic-
tion was performed using Glimmer version 3 (8), and contigs
were mapped against the reference strain C. difficile 630
(RT012) (GenBank no. AM180355) using Geneious (9).

Mutations C245T in gyrA and G1514A in rpoB, found in the
majority of European C. difficile isolates resistant to fluoroquino-
lones and rifampins (10–12), respectively, were detected in
IT1118. Although IT1118 showed resistance to both erythromycin
and clindamycin, neither resistance determinants nor mutations
in the ribosomal proteins genes were observed.

The temporal activation of the sigK gene, involved in C. difficile
sporulation, is regulated by the excision of a sigK intervening
(skin) element (13). Results for the skin element of IT1118 (57 kb)
were very different from those of 630 or M120 (RT078), but it had
99.9% sequence identity to that of strain BI-9 (GenBank no.
FN668944), which belongs to the long-term problematic epi-
demic RT001. Diversity in the skin elements could differently af-
fect strain sporulation and consequent transmissibility, although
this hypothesis needs to be confirmed.

The surface layer (SL) of C. difficile is involved in pathogen-

host interactions. Twelve different SL cassettes (containing the
slpA, cwp66, and secA genes) have been identified (14). The 9.7-kb
SL cassette of IT118 showed 99.9% identity with the cassette 6
(14). Competitive assays in vivo suggest that strains with cassette 6
have an advantage in intestinal colonization compared to strains
with other SL cassettes (15).

No significant differences in the pathogenicity locus, contain-
ing the genes encoding for the toxins A and B and their regulators,
were observed between IT1118 and 630 (99.9% of identity). The
sequence of the locus for the binary toxin, an additional toxin
found in several RTs, was incomplete in both IT1118 and 630.

The genetic characteristics observed in IT1118 show this
strain’s high capability to survive and propagate, giving a first
explanation for the successful spreading of this C. difficile type.

Nucleotide sequence accession numbers. This genome se-
quence has been deposited in DDBJ/EMBL/GenBank under the
accession number FAXM00000000. The version described in this
paper is the first version, FAXM01000000.
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