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Brain-inspired computing models have shown great potential to outperform

today’s deep learning solutions in terms of robustness and energy e�ciency.

Particularly, Hyper-Dimensional Computing (HDC) has shown promising

results in enabling e�cient and robust cognitive learning. In this study, we

exploit HDC as an alternative computational model that mimics important

brain functionalities toward high-e�ciency and noise-tolerant neuromorphic

computing. We present EventHD, an end-to-end learning framework based

on HDC for robust, e�cient learning from neuromorphic sensors. We first

introduce a spatial and temporal encoding scheme to map event-based

neuromorphic data into high-dimensional space. Then, we leverage HDC

mathematics to support learning and cognitive tasks over encoded data, such

as information association and memorization.EventHD also provides a notion

of confidence for each prediction, thus enabling self-learning from unlabeled

data. We evaluate EventHD e�ciency over data collected fromDynamic Vision

Sensor (DVS) sensors. Our results indicate that EventHD can provide online

learning and cognitive support while operating over raw DVS data without

using the costly preprocessing step. In terms of e�ciency, EventHD provides

14.2× faster and 19.8× higher energy e�ciency than state-of-the-art learning

algorithms while improving the computational robustness by 5.9×.

KEYWORDS

hyperdimensional computing, neuromorphic sensor, brain-inspired computing,

Dynamic Vision Sensor, machine learning

1. Introduction

Many applications run machine learning algorithms to assimilate the data collected

in the swarm of devices on the Internet of Things (IoT). Sending all the data to the cloud

for processing is not scalable and cannot guarantee a real-time response. However, the

high computational complexity and memory requirement of existing machine learning

models hinder usability in a wide variety of real-life embedded applications where the

device resources and power budget is limited (Denil et al., 2013; Zaslavsky et al., 2013;

Sun et al., 2016; Xiang and Kim, 2019). Therefore, we need alternative learning methods

to train less-powerful IoT devices while ensuring robustness and generalization.
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System efficiency comes from sensing and data processing.

Unlike classical vision systems, neuromorphic systems try

to efficiently capture a notion of seeing motion. Although

bio-inspired learning methods, i.e., spiking neural networks

(SNNs) (Schemmel et al., 2006; Liu et al., 2014), address issues

related to energy efficiency (Huh and Sejnowski, 2017; Neftci

et al., 2019), these systems still require to provide robustness

and brain-like cognitive support. For example, the existing bio-

inspired method cannot integrate perceptions and actions.

To achieve real-time performance with high energy

efficiency and robustness, our approach redesigns learning

algorithms using strategies that closely model the human

brain at an abstract level. We exploit Hyper-Dimensional

Computing (HDC) as an alternative computational model that

mimics important brain functionalities toward high-efficiency

and noise-tolerant computation (Kanerva, 2009; Rahimi et al.,

2016b; Pale et al., 2021, 2022; Zou et al., 2021). HDC supports

operators that emulate the behavior of associative memory and

enables higher cognitive functionalities (Gayler, 2004; Kanerva,

2009; Poduval et al., 2022). In HDC, objects are thereby encoded

with high-dimensional vectors, called hypervectors, which have

thousands of elements (Kanerva, 2009; Rahimi et al., 2016b;

Imani et al., 2019c). HDC incorporates learning capability along

with typical memory functions of storing/loading information.

HDC is well suited to enable efficient and robust learning

because: (i) HDC models are computationally efficient to

train, highly parallel at heart, and amenable to hardware-level

optimization (Wu et al., 2018; Imani et al., 2019b), (ii) HDC

supports single-pass learning tasks using a small amount of

data (Rahimi et al., 2016a), and (iii) HDC exploits redundant

and holographic representation with significant robustness to

noise and failure in hardware (Li et al., 2016).

There are a few recent studies that tried to exploit HDC to

process neuromorphic sensors (Mitrokhin et al., 2019; Hersche

et al., 2020). However, these solutions are not end-to-end as

they operate over preprocessed data. Pre-processing is a costly

time-image feature extraction that maps noisy neuromorphic

data to a small number of features. This preprocessing has

the following drawbacks: (1) dominates the entire computation

cost (Mitrokhin et al., 2019), (2) reduces the necessity of using

HDC-based learning, as a less-sophisticated learning algorithm

can also provide acceptable accuracy over-extracted features,

(3) requires heterogeneous data processing and non-uniform

data flow to accelerate preprocessing and HDC-based steps,

and (4) finally, suffers from low computational robustness,

as the preprocessing step operates over original data with

high sensitivity to noise (Hersche et al., 2020; Imani et al.,

2020).

In this article, we proposed EventHD, a neurally-inspired

hyperdimensional system for real-time learning from a

neuromorphic sensor. To the best of our knowledge, EventHD
is the first HDC-based algorithm that provides robust and

efficient learning by operating over raw spike data from a

neuromorphic sensor. The main contributions of the article are

listed as follows:

• We propose a novel hyperdimensional encoding module

that receives neuromorphic data andmaps it to holographic

hyperdimensional spikes with highly sparse representation.

Our encoding preserves the spatial and temporal

correlation between the input events to naturally keep their

similarity in high dimensions. In addition, our encoding

module preserves asynchrony from the neuromorphic

devices.

• We enable supervised and semi-supervised learning using

HDC-based algorithms. Our solution enables single-pass

training where the HDC model can be updated in real-

time by one-time looking at each train data. EventHD
also defines confidence for each prediction and enables

self-learning from unlabeled data.

• We show EventHD capability to memorize associated

perception-action and define the theoretical capacity of this

model to reason based on prior knowledge.

We evaluate EventHD efficiency and accuracy over various

data collected from DVS sensors. Our results indicate that

EventHD can provide real-time learning and cognitive support

while operating over raw DVS data without using the costly

preprocessing step. Furthermore, EventHD in a single node

provides 14.2× and 19.8× faster and higher energy efficiency

than state-of-the-art learning algorithms while improving the

computational robustness by 5.9×.

2. Preliminary and overview

2.1. Hyperdimensional learning

The brain’s circuits are massive in terms of numbers

of neurons and synapses, suggesting that large circuits are

fundamental to the brain’s computing. Hyperdimensional

computing (HDC) (Kanerva, 2009) explores this idea

by looking at computing with ultra-wide words—i.e.,

with very high-dimensional vectors or hypervectors. The

fundamental computation units in HDC are high dimensional

representations of data known as “hypervectors” constructed

from raw signals using an encoding procedure. There exist

a huge number of different, nearly orthogonal hypervectors

with the dimensionality in the thousands (Kanerva, 1998).

This lets us combine such hypervectors into a new hypervector

using well-defined vector space operations while keeping the

information of the two with high probability. Hypervectors

are holographic, that is, the information encoded into the

hypervector is distributed “equally” over all the components.

In our case, it is done using (pseudo)random hypervectors

with i.i.d. components as our ingredients for the encoding. A
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hypervector contains all the information combined and spread

across all its components in a full holistic representation so

that no component is more responsible for storing any piece of

information than another.

In HDC, hypervectors are compositional—they enable

computation in superposition, unlike standard neural

representations (Kanerva, 2009). These HDC operations

allow us to reason about and search through images that satisfy

pre-specified constraints. These composite representations

can be combined using HDC operations to encode temporal

information or complex hierarchical relationships. This

capability is especially powerful for understanding the

relationship between objects in images in both time and space.

These operations are simple in HDC and require only trivial

element-wise arithmetic. By contrast, to achieve the same

effect in a neural network, e.g., spiking neural networks (Wang

et al., 2018), we would need to assign images corresponding

to composite classes a new label and train a separate model

for prediction. HDC also provides a natural way to preserve

temporal information using a permutation operator (Rahimi

et al., 2016b). For example, we encode a sequence of video

frames while preserving the temporal structure. This would

allow us to efficiently compute a similarity score for entire

sequences of video using a standard HDC similarity search,

which is extremely efficient in hardware (Li et al., 2016).

2.2. Hyperdimensional primitives

Let us assume EH1, EH2 are two randomly generated

hypervectors ( EH ∈ {−1,+1}D) and δ( EH1, EH2) ≃ 0, where δ

is the cosine similarity function, δ( EH1, EH2) =
EH2· EH2

‖ EH1‖·‖ EH2‖
.

Binding (*) of two hypervectors EH1 and EH2 is done by

component-wise multiplication (XOR in binary) and denoted as
EH1 ∗ EH2. The result of the operation is a new hypervector that is

dissimilar to its constituent vectors i.e., δ( EH1 ∗ EH2, EH1) ≈ 0;

thus, binding is well suited for associating two hypervectors.

Binding is used for variable-value association and, more

generally, for mapping.

Bundling (+) operation is done via component-wise

addition of hypervectors, denoted as EH1 + EH2. The bundling

is a memorization function that keeps the information of

input data in a bundled vector. The bundled hypervectors

preserve similarity to their component hypervectors i.e., δ( EH1+
EH2, EH1) >> 0. Hence, a bundling of hypervectors is well

suited for representing the set of elements corresponding to

the hypervectors that are bundled, and we may test their

membership by a similarity check.

Permutation (ρ) operation, ρn( EH), shuffles components

of EH with n-bit(s) rotation. The intriguing property of the

permutation is that it creates a near-orthogonal and reversible

hypervector to EH, i.e., δ(ρn( EH), EH) ≃ 0 when n 6= 0 and

ρ−n(ρn( EH)) = EH. Thus, we can use it to represent sequences

and orders.

Reasoning is done by measuring the similarity of

hypervectors. We design the encoding of the hypervectors

such that the similarity between the hypervectors reflects the

similarity between the entities that they represent.

2.3. Overview

This article focuses on learning over data collected by

the Dynamic Vision Sensor (DVS). Unlike a normal camera

that captures data synchronously and frame-based, a DVS

camera mimics the mechanics of the human retina by detecting

and recording the changes in the illumination of a pixel

asynchronously, sending a stream of events to the memory. This

leads to sparse data because only a small subset of pixels reports

events at any time, with rich temporal information, because

of the asynchrony, rendering it much more difficult to train.

Nevertheless, DVS data has been actively studied and researched

in the context of neuromorphic computing, e.g., in conjunction

with the Spiking Neural Network, for various image-related

tasks such as gesture recognition and object classification (Massa

et al., 2020).

In this article, we present EventHD, an end-to-end

framework for robust, efficient hyperdimensional learning from

the neuromorphic sensor. Unlike all prior works that operate

over preprocessed data, to the best of our knowledge, EventHD
is the first HDC-based solution that directly operates over raw

neuromorphic data. We first develop a novel hyperdimensional

encoding scheme to map event-based neuromorphic data into

high-dimensional space. EventHD exploits hyperdimensional

mathematics to preserve spatial and temporal information from

raw sensor data (Section 3). Next, we introduce novel algorithm

solutions to perform classification and self-learning over the

encoded data (Section 4). This includes enabling single-pass

classification and supporting association andmemorization over

perception-action space (Section 5).

3. EventHD spatial encoding

We exploit hyperdimensional computing mathematics to

design a novel encoding module that receives event-based

spiking data and generates high-dimensional data. Our HDC

mapping is not a random projection. Instead, it preserves the

temporal and spatial correlation between the input data. The

goal of this encoder is to represent spikes in a holographic

representation; thus, a single noisy spike in original data

represents a pattern of neural activity in high-dimensional space.

The holographic representation means that the information

of each original spike will be uniformly distributed over all

dimensional of our encoded hypervector. In addition, given
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that our encoding is purely event-based, it can also be operated

in an asynchronous setting, reacting to DVS events, thus

preserving asynchrony.

Let us assume the output of the DVS camera is in a form of

Ek = (xk, tk, pk), signaling at time tk and location xk = (xk, yk).

When the illumination change surpasses a threshold pk·C, where

pk ∈ {−1, 1} and C is a predetermined threshold. For simplicity,

we first explain how our encoder preserves the spatial correlation

of spikes in holographic high-dimensional space. Then, we add

temporal locality as a memorization term to our encoder.

3.1. Base generation

Hyperdimensional computing encoding is performed based

on a set of base or seed hypervectors. The base hypervectors

represent the basic alphabet of the data. For an example of DVS

data, the alphabets are illumination changes and the position

of events. Figures 1A,B shows the EventHD base generation

procedure.

• Illumination hypervector: The illumination change has

two possibilities, increase or decrease. This information can

be represented using a random hypervector, where EL1 ∈

{−1,+1}D and EL−1 = −EL1 (Figure 1A).

• Event-position hypervector: The information of event

positions can be represented using a set of position

hypervectors { EP0,0, · · · , EPr,c}, where the indices represent

the row and column location of an event in the input (r× c

pixels in DVS camera). The position hypervectors can not

be generated randomly, as they need to preserve the spatial

correlation between the neighbor events (Figure 1B). In

other words, the events with closer physical distance

have a higher correlation. Using techniques introduced in

Gallant and Culliton (2016) and Kim et al. (2021), we

generate position hypervectors in three steps: (1) partition

events into smaller non-overlapping k × k windows, and

(2) generate randomly generated hypervectors for pixels

located on the corner of windows. For example, we

generate random hypervector for { EP0,0, EP0,k, EPk,0, EPk,k}.

This repeats over all k × k windows. Since these vectors

are randomly chosen and they are in high-dimensional

space, they are nearly orthogonal (δ( EP0,0, EPk,k) ≃ 0).

(3) For all intermediate pixels, we perform interpolation

to generate correlated hypervectors. Each pixel will get

partial dimensions from the position hypervectors located

in the four corners of a k × k window. The number of

dimensions to take from each corner hypervectors depends

on the relative position of a pixel within the window such

that the generated position hypervectors preserve the 2D

spatial correlation between events’ positions. For an in-

depth description of the spatial interpolation, readers are

referred to Gallant and Culliton (2016) and Kim et al.

(2021).

3.2. Spatial encoding

In a given time, our encoder looks at neuromorphic data

as an image with few activated spikes/events. The goal of the

encoder is to map this data into high-dimensional space using

pre-generated base hypervectors. The encoding is performed in

two steps, as shown in (Figure 1C):

Associating event-illumination: For every activated event,

our encoder exploits a binding operation to associate each event

position with the corresponding illumination hypervector. For

example, if an event in position [i, j] is activated, our encoder

associates information using: EPi,j × ELi, j, where ELi, j can be
EL+1 or EL−1 depending on illumination direction. The bound

hypervector preserves position and illumination information in

a new hypervector that is nearly orthogonal to its operands. We

perform the same association for all activated events.

Event memorization: In HDC, bundling acts as

memorization. We exploit this feature to memorize the

information of all activated events in a given time. Our solution

bundles associated hypervectors for all activated events:
ES =

∑r
i=1

∑c
j=1(
EPi,j ∗ ELi,j) when (r, c) has a spike event. The

memorization and summation only happens for pixels that have

spike events.

3.3. EventHD temporal encoding

Let us consider actual neuromorphic data with temporal

spikes/events. As we explained in Section 3.2, for all events

that happen in a time window, we exploit spatial encoding to

map all events into single hypervectors. As time moves on,

the information of new events needs to be encoded into a

new hypervector. Figure 2 shows two solutions to memorizing

signals and keeping temporal information.

Permutation-based: To incorporate a notion of time, our

encoder represents the position of each time slot using a

single permutation. The permutation in HDC is defined as

a rotational shift, where the permuted hypervector is nearly

orthogonal to its original vector. Figure 2A shows how n spatial-

encoded data can be temporally combined through time. For

example, to memorize three consecutive encoded signals, ES1,
ES2, and ES3, we encode them into a single hypervector by EH =

ρ1(ES1)∗ρ
2(ES2)∗ρ

3(ES3), where binding (∗) and permutation (ρ)

memorize sensor value and position. This encoding preserves

the temporal information of events. Although permutation can

preserve sequence information, it is a very exclusive operation

that loses the information of continuous-time. For example,

even when two continuous events are identical, this temporal

encoding is orthogonal (δ(ρ1ES, ρ2ES) ≃ 0).
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FIGURE 1

EventHD spatial encoding: (A) base generation for illumination, (B) base generation for event position to keep 2D correlation of pixels in

neuromorphic image, and (C) spatial encoding that associates and memorizes illumination and position hypervectors.

FIGURE 2

EventHD temporal encoding: (A) permutation-based encoding, (B,C) correlative time hypervector used for associated-based encoding.

Association-based: To give a notion of continuous time,

we exploit binding operations to keep temporal correlative

information. Our temporal encoding is performed using the

following steps: (1) Similar to spatial encoding, we generate a

set of correlated hypervectors to preserve temporal correlation.

As Figure 2B shows, our solution splits time into smaller t-size

windows. We generate a random hypervector for each time that

is a factor of t. For example, we generate random hypervectors

representing { ET0, ETt , ET2t , · · · , ETkt}, where indices represent time

steps. (2) We perform interpolation to generate a correlated

hypervector representing intermediate times. Given time t0 ∈

[jt, (j+ 1)t] for some non-negative integer j, Tt0 is generated by

taking components from Tjt and T(j+1)t in (j+ 1)t − t0 : t0 − jt

ratio such that the similarity between the three reflects their

original correlation. For an example of t = 3, ET1 will be 66.6%

similar to ET0 and 33.3% similar to ET3. Our temporal correlation

goes beyond a single-window; hypervectors in two neighbor

windows are also correlated.

As Figure 2 shows, we exploit the time-base correlated

hypervectors to preserve temporal information. Let us assume
EHi is a hypervector of events happening in a time slot i. Our

encoding preserves temporal correlation of p time-slot using:

H =
∑p

i=1(
ETi ∗ ESi).

4. EventHD classification

In this section, we introduce HDC-based classification

algorithms that can directly learn from encoded query data. This

includes developing algorithms that can effectively learn from

both labeled and unlabeled data.

4.1. Supervised learning

EventHD supports two types of classification: accumulative

and adaptive learning. Both methods are a single-pass

approaches that can construct a learning model by one-time

looking at training data. The single-pass model is significantly

fast and efficient and enables learning from the data stream with

no need for off-chip memory.

Accumulative training (single-class update):

Hyperdimensional computing models receive their dataset

as copies of the memory component at the point of

evaluation. To find the universal property for each class in

the training dataset, the trainer module linearly combines
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hypervectors belonging to each class, i.e., adding the

hypervectors to create a single hypervector for each

class. Once combining all hypervectors, we treat per-class

accumulated hypervectors, called class hypervectors, as the

learned model. Figure 3 shows HDC functionality during

single-pass training. Assuming a problem with k classes, the

model represents using: M = { EC1, EC2, · · · , ECk}. For example,

after generating all encoding hypervector of inputs belonging

to class/label l, the class hypervector ECl can be updated using:
E
Cl =

∑J
j (1− δ( EHj, EC

l))× EHj, where there are J inputs having

label l. This weighted data accumulation continues for all train

data available in each class. Accumulative training gives a rough

estimation of a pattern of each class hypervector. However,

it does not find a chance to adjust the class hypervectors for

marginal predictions. This makes the HDC model sensitive to

possible noise in the input data.

Adaptive training (multi-class update): We propose

adaptive training that not only accumulates each train data with

the correct class but also updates the class hypervectors with a

possible marginal match. EventHD checks the similarity of each

encoded query data with all class hypervectors. If an encoded

query EH corresponding to label l, the model miss-predicts it

as label l′, the model updates 2 × i neighbor classes using the

following equation:

ECl±i ← ECl±i + ηi (δl′ − δl)× EH
ECl′±i ← ECl′±i − ηi (δl′ − δl)× EH

(1)

where δl = δ( EH, ECl) and δl′ = δ( EH, ECl′ ) are the similarity

of data with correct and miss-predicted classes, respectively.

Unlike the accumulative training, our adaptive update provides

two main features: (i) it updates multiple class hypervectors,

which are centered around correct and miss-predicted classes.

The neighbor class hypervector gets updated depending on

its physical distance to the query (ηi sets the update ratio).

This method ensures that class hypervectors have a smoother

pattern of similarity; thus, a small noise in the input data cannot

causemiss-prediction. (ii) Adaptive training also ensures that we

update the model adaptively based on how far a train data point

is miss-classified with the current model. In case of a far miss-

prediction, δl′ >> δl, retraining makes major changes to the

mode. While for marginal miss-prediction, δl′ ≃ δl, the update

makes smaller changes to the model.

Inference: checks the similarity of each encoded test data

with the class hypervector in two steps. The first step encodes

the input to produce a query hypervector EH. Then, as Figure 3

shows, we compute the similarity (δ) of EH and all class

hypervectors. Query data gets the label of the class with the

highest similarity.

4.2. Self-learning

EventHD also supports online self-learning where only a

small portion of training data is labeled. EventHD exploits

the HDC model transparency to improve the quality of

the model. Using the techniques introduced in Imani et al.

(2019a), it checks the similarity of each unlabeled data with

the already trained model, obtaining the confidence level

of the classification result. If the confidence level is higher

than a threshold (e.g., α > 90%), EventHD updates the

model by embedding encoded data into the corresponding

class hypervector, as: ECmax = ECmax + α × EH, where EH is

the query data and ECmax is a class that has the maximum

similarity with a query. EventHD exploits this same technique

to update the model based on the user’s feedback on the

inference results. Given the absence of labels in the majority of

observations, we assume that users would be willing to provide

feedback when they are not satisfied and tune the confidence

threshold accordingly.

FIGURE 3

Hyperdimensional classification: Overview of EventHD for training and inference (left) and the routine for single-pass training (right).
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5. Cognitive support

There is a process in the brain where the perceptual

system constructs an internal representation of the world. Such

an assumption has led past study in robotics and artificial

intelligence to rely on the input data and their complex

representation in the system for most cognitive tasks. However,

recent studies in human cognition show that cognition is

enactive: that perceiving is a way of acting, and that our

perception not only depends on but is also comprised of

sensorimotor knowledge (Mitrokhin et al., 2019). This makes it

essential to associate the perception and the action of a model in

accomplishing cognitive tasks.

5.1. Perception-action association

Hyperdimensional computing can naturally correlate them

in high-dimensional space (Mitrokhin et al., 2019). This

association enablesEventHD to reason about each prediction by

giving systems prior knowledge. Let us consider a system with n-

feature as perception (Ex = {f1, f2, · · · , fn}) andm-output actions

(Ey = {a1, a2, · · · , am}) in original space. Our approach encodes

both perception and action data into high-dimensional space.

For perception, we exploit the proposed encoding, explained

in Section 3, that preserves the spatial correlation of events.

However, the output actions are often independent and do

not have any spatial correlations. Therefore, our encoding

method randomly generates the position hypervectors, rather

than generating correlated position hypervector for a given

image data. EX =
∑m

k=1
EPk ∗ EL∈F , where δ( EPi, EPi+1) ∼ 0.

EventHD also encodes the output action into high-

dimensional space. The action is often a single output signal.

Our method linearly or non-linearly quantizes the action

signal and assigns a hypervector to each quantization level,

{ EA1, EA2, · · · , EAm}. Our solution naturally associates each pair

of perception and action by binding their corresponding

hypervector. The accumulation of the bound vectors over prior

observations gives native HDC-based memorization to the

system: ES =
∑n

i=1
EXi ∗ EAi. Let us assume each reference

hypervector store N encoded perception-action hypervector:
ER = ES1 + · · · + ESN =

∑N
j=1
ESj. We can predict an action

for a perception EXk, using:

EAk ≃ EXk ∗ ER = ( EXk ∗ EXk
︸ ︷︷ ︸

1

) EAk +

N
∑

i=1

( EXk ∗ EXi
︸ ︷︷ ︸

Noise

) EAi

where EAk is an interpolation between all actions that their

perceptions have high similarity to EXk. Figure 4A shows

EventHD selecting between two discrete actions. Depending

on the confidence, i.e., the similarity of a query to memorized

perceptions, EventHD picks one of the actions. In continuous

space, the selection translates to interpolation between the

actions, depending on the perceptions similarity in HDC space.

5.2. Memorization in perception-action
space

In HDC, bundling acts as a memory, storing the information

of multiple encoded hypervectors into a single reference

hypervector. EventHD exploits bundling to memorize the

associated perception-action, ER =
∑N

j=1
ESj. The reference

hypervector has limited capacity and, thus, cannot store the

information of unlimited encoded data. The capacity depends

on the dimensionality and the orthogonality of the encoded

hypervectors. For a given query data, EventHD can refer to

memory in order to retrieve the system’s prior knowledge. For

example, let us assume q is a perception with EQ being its encoded

data. EventHD can retrieve information about possible actions

by checking the similarity of the query with the reference model:

δ( ER, EQ) = δ( ESλ, EQ)
︸ ︷︷ ︸

Signal

+

N
∑

i=1,i 6=λ

δ( ESi, EQ)

︸ ︷︷ ︸

Noise

If EPλ = EQ for some λ, the output of the function is going to

be EAλ. For reference patterns that do not match with the query,

the similarity is nearly zero, δ( ESi, EQ) ≃ 0. Thus, we can check

the existence of a query EQ in ER using the following criteria:

δ( ER, EQ)/D > T, where T is a threshold and δ( ER, EQ)/D is called

the decision score.

Figures 4B,C show the normalized distribution of signal

and noise in EventHD information retrieval (using D =

10k). These Gaussian distributions determine the capacity of

each reference hypervector in memorizing the information.

As our mathematical model indicated, the noise is getting a

wider distribution when increasing the number of patterns

stored in ER. When the noise overlaps with the signal, there

is no threshold T that can separate noise, thus resulting in

information loss (Figure 4C). Figure 4D shows the capacity of

reference hypervector withD dimensionality in storingN nearly

orthogonal and correlative patterns. Our evaluation shows

that the capacity of the reference hypervector increases with

dimensionality. For example, EventHD with D = 4k can stored

N = 103 (N = 104) orthogonal patterns with less than 0.5%

(10%) information loss. Note that, in practice, the reference

hypervector has a much higher capacity as EventHD encoder

keeps the correlation between input signals. As Figure 4D shows,

a reference hypervector provides significantly higher capacity

when the EventHD encoder preserves correlation in high-

dimensional space. For a more in-depth analysis of the memory

capacity, readers are referred to Frady et al. (2018).
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FIGURE 4

Information association and memorization: (A) perception-action association. Depending on the confidence of a query to the memorized

perceptions measured by similarity, EventHD picks one of the actions with the highest confidence. (B,C) Distribution of signal and noise signal

when referencing hypervector with D = 4k is storing N = 103 and N = 104 orthogonal patterns. When the number of patterns stored is low, like

(B), the distribution of the similarity of signal and that of noise are separable, implying perfect signal detection quality; when the number of

patterns is high, the distributions overlap, and signal detection has less accuracy. (D) The capacity of reference hypervector with di�erent

dimensions storing orthogonal and correlated hypervectors. Compared to orthogonal hypervectors, correlated hypervectors require less

capacity to store, resulting in higher detection probability (bluer) given fixed hyperdimension and patterns.

5.3. Other applications: Beyond
memorization

EventHD similarity search on the memorized model gives

us an estimation of the output action. EventHD uses this

prediction as prior knowledge to trust the prediction. If the

prediction is relatively far from thememorized action,EventHD
gives very low confidence to that prediction. This approach

enables us to reason about each prediction and potentially

provide a more explainable learning solution.

6. Evaluation

6.1. Experimental setup

We implement EventHD using software, hardware, and

system implementation. In software, we verified EventHD
training and testing using a C++ implementation. For hardware,

we design the EventHD functionality using Verilog and

synthesize it using Xilinx Vivado Design Suite (Feist, 2012). The

synthesis code has been implemented on the Kintex-7 FPGA

KC705 Evaluation Kit. We ensure our efficiency is higher than

the automated FPGA implementation at (Salamat et al., 2019).

We evaluate EventHD accuracy and efficiency on two

Datasets: the Neuromorphic MNIST (N-MNIST) and theMulti-

Vehicle Stereo Event Camera (MVSEC) dataset. N-MNIST is an

event-based version of the MNIST dataset, containing event-

stream recordings of the 60,000 training digits and 10,000

testing digits. The MVSEC dataset collects event-based DVS

cameras on the self-driving car day and night (Zhu et al.,

2018; Mitrokhin et al., 2019). This dataset is designed for

regression tasks to predict the car velocity based on DVS

data. The experiments correspond to mDAVIS-346B cameras

with 346×260 pixel resolution. To find ground truth velocity

values, the car is equipped with IMUs and GPS sensors. The

evaluation is performed for five activities, two recorded during

the day and three in the evening/night. The results are reported

using two metrics: Average Relative Pose Error (ARPE) and

Average End-point Error (AEE). ARPE shows the average

angular error between translational vectors while ignoring the

scale (Mitrokhin et al., 2019), while AEE shows the absolute

error in 2D linear space. Similar to other error metrics, the lower
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ARPE and AEEE indicate higher quality of learning. All results

are reported for MVSEC data unless they are stated differently.

We use a simple DNN with one 512-neuron hidden layer as

our baseline from conventional neural networks. EventHD is

configured to have a hyperdimension of D = 4,000, a window

size of k = 5 for positional, and a time window size of

t = 50(ms) across all experiments, as it leads to the best

average performance.

6.2. EventHD accuracy

Figure 5A compares EventHD quality of learning over

classification task, using both day and night data. We compare

EventHD with state-of-the-art HDC methods working on

event-based sensors: DNN, Dense HDC (DenseHD) (Mitrokhin

et al., 2019), and Sparse HDC (SparseHD) (Hersche et al.,

2020). All three baseline approaches operate over six extracted

features by the preprocessing method. In contrast, EventHD
is an end-to-end framework that directly operates over raw

neuromorphic data. Note that other algorithms, i.e., DNN,

DenseHD, and SparseHD, provide close to a random prediction

when processing the raw neuromorphic data. For EventHD,

we report the results for single-class (Single-C) and multi-class

(Mult-C) updates using both ARPE and AEE metrics. Our

evaluation shows that EventHD using both accuracy metrics

provides comparable or better quality of learning compared

to the state-of-the-art solutions. For example, EventHD ARPE

(AEE) error metric is, on average, 0.1% and 4.8% (37.0% and

14.1%) lower than DenseHD and SparseHD, respectively. These

metrics indicate EventHD higher quality of learning. Note that

EventHD efficiency and robustness are significantly higher than

all baseline methods due to eliminating costly preprocessing

(detailed evaluation in Section 6.3).

Figure 5B also evaluates the EventHD quality of learning

on the N-MNIST dataset. The results are compared to SNN

and HDC-based neuromorphic approaches. Unlike EventHD
which operates over raw neuromorphic data, SparseHD and

DenseHD rely on preprocessing algorithms to extract spatial-

temporal information. Our evaluation shows that EventHD
provides significantly higher classification accuracy than existing

HDC-based algorithms, i.e., SparseHD and DenseHD.

Temporal encoding: Figure 5 also compares EventHD
accuracy using permutation-based (ρ) and association-based (∗)

temporal encoding. Our evaluation shows that the association-

based encoding provides a lower error rate by enabling a

notion of continuous-time dynamic, while permutation-based

encoding only preserves the orders of events. For example,

EventHD using association-based provides 10.2% (17.2%) lower

ARPE (AEE) compared to a permutation-based solution on the

MVSEC dataset.

Single vs. multi-class: Figure 6 visually compares EventHD
classification accuracy in two configurations over the MVSEC

dataset: a single-class and a multi-class update. In both

configurations, we show the final prediction (Figure 6A) and

the similarity of a query with different class hypervectors

(Figure 6B). EventHD with a single-class update creates a weak

learning model with high sensitivity to noise and variation in the

input data. Therefore, during inference, it may deviate toward

the wrong class. However, our multi-class update solution keeps

the correlation between the predicted speeds and strength of the

class hypervectors, thus providing higher learning accuracy. The

box in Figure 6 clearly shows the capability of EventHD multi-

class update to strengthen the signal in related class hypervectors

and provide a higher quality of prediction.

Robustness to variation: Unlike prior HDC-based

approaches that do not keep the correlation, EventHD
encoding is asynchronous, thus preserving both temporal

and spatial correlation over event-based data. We perform an

FIGURE 5

EventHD quality of learning over MVSEC and N-MNIST datasets (A,B). The results are compared to the state-of-the-art HDC-based approach.

For DNN, SNN, SparseHD, and DenseHD, we use their original implementation and allow preprocessing as needed. For EventHD, we report the

results for single-class (Single-C) and multi-class (Mult-C) updates. For multi-class, we also report results for permutation-based temporal

encoding (ρ) and association-based temporal encoding (∗). Evaluations for MVSEC are measured by Average Relative Pose Error (ARPE) and

Average End-point Error (AEE), and that for N-MNIST is classification. accuracy. EventHD provides comparable or better quality of learning

compared to state-of-the-art solutions.
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FIGURE 6

Visualization of classification results of EventHD prediction on single-class and multi-class update configurations for z-axis linear speed of

MVSEC outdoor night 1: The model is trained on the first 1,000 ground truth samples and then used to predict up to 2,500 samples as indicated

by the time axis. (A) Visualize EventHD final prediction for linear speed along z-axis compoared to ground truth and (B) Display the similarity

between the query and each class hypervectors.

FIGURE 7

EventHD robustness and self-learning capability: (A) Robustness to EventHD and other HDC-based algorithms to pixel variation and (B) EventHD
self-learning over unlabeled data (semi-supervised).

experiment to show EventHD capability to respond to noisy

data. Figure 7A shows EventHD and HDC quality of learning

when the activated events in each timestamp are randomly

shifted in an arbitrary direction. Our evaluation shows that

EventHD is highly robust against such possible variational data,

as it provides the maximum accuracy even using a 5% shift.

In contrast, the state-of-the-art HDC solutions do not keep

the correlation between neighbor pixels (spatial correlation).

Therefore, a single shift operation can generate a signal which

is entirely orthogonal to the non-shifted version. As Figure 7A

shows, this makes the existing HDC solutions, DenseHD and

SparseHD, very sensitive to possible noise or variation in the

input signal.

Self-learning: Figure 7B shows EventHD classification

accuracy during the self-learning iterations. The results are

reported when EventHD has been trained, supervised over

10% of train data, and unsupervised over the other 90%.

Our evaluation shows that EventHD can adaptively improve

classification accuracy during self-learning. This advantage

comes from the EventHD capability of computing confidence

for each prediction. Therefore, EventHD trusts data with high

confidence for model updates while ignoring low confidential

data. On another side, a higher confidence threshold increases

the required train samples to converge to maximum accuracy.

6.3. EventHD e�ciency and robustness

We compare EventHD efficiency and robustness to state-

of-the-art HDC solutions. The results are for the total

processing time, including both preprocessing and learning.

The existing HDC solutions use image-to-time transformation

as a preprocessing step for feature extraction from the event-

based information. The feature extraction result is only a few
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FIGURE 8

E�ciency analysis: Comparison of EventHD performance speedup and energy e�ciency with state-of-the-art algorithms on the FPGA platform.

The results are reported for both training and inference phases and is normalized relative to DNN performance and energy e�ciency. During

training (inference), EventHD achieves, on average, 10.6× (14.2×) faster and 16.3× (19.8×) more energy-e�cient computation as compared to

FPGA-based DNN implementation, respectively.

feature data (i.e., six features in our example). The preprocessing

makes the learning task very simple such that even a simple

learning solution, e.g., linear regression or perceptron, can

provide acceptable accuracy. Due to the complexity of the

preprocessing step, its cost eliminates the effectiveness of HDC

in enhancing system efficiency. In contrast, EventHD is an end-

to-end solution, directly operating over the raw data received

by the event-based camera. Our solution eliminates the costly

preprocessing step by enabling HDC encoding to preserve both

the temporal and spatial locality of the raw data. This improves

not only EventHD computation efficiency but also provides

significant computational robustness.

Efficiency: Figure 8 compares EventHD computation

efficiency with the existing HDC solutions running on FPGA.

The results are reported for both training and inference

phases. For DNN, we used DNNWeaver V2.0 (Sharma et al.,

2016) for the inference and FPDeep (Geng et al., 2018)

for training implementation on a single FPGA device. For

DenseHD and SparseHD, we use the F5-HD (Salamat et al.,

2019) framework for FPGA implementation. All FPGA

implementations are optimized to maximize performance by

utilizing FPGA resources. All results, in Figure 8, are relative

to DNN performance and energy efficiency. During training,

EventHD achieves, on average, 10.6× faster and 16.3× more

energy-efficient computation as compared to FPGA-based

DNN implementation, respectively. The high efficiency of

EventHD in training comes from EventHD capability in

(i) creating an initial model that significantly lowers the

number of required retraining iterations and (ii) eliminating

the costly gradient for the model update. This results in

higher EventHD efficiency, even in terms of a single training

iteration. In inference, EventHD provides 4.3× faster and 6.8×

higher energy efficiency as compared to FPGA-based DNN

implementation. As compared to SparseHD (DNN), EventHD

TABLE 1 Robustness analysis of di�erent learning algorithms to

hardware error rate.

Error rate 1% 2% 5% 10% 15% 20%

DNN 0.7% 1.9% 3.7% 11.5% 21.3% 38.6%

Dense HDC (Mitrokhin et al., 2019) 0.2% 1.0% 1.7% 6.8% 14.2% 18.3%

Sparse HDC (Hersche et al., 2020) 0.2% 0.9% 1.9% 6.3% 12.8% 21.4%

EventHD (D = 4 k) 0.0% 0.0% 0.2% 0.8% 1.2% 3.6%

EventHD (D = 8 k) 0.0% 0.0% 0.1% 0.6% 0.8% 2.4%

For each experiment, random bit flips of the model parameters are applied according to

the error rates, and the average absolute accuracy drop over N-MNIST classification is

reported.

provides 1.9× and 2.1× (14.2× and 19.8×) faster and more

energy-efficient training. The main computation efficiency

comes from eliminating the costly preprocessing step and

replacing it with HDC encoding.

Robustness: The noise in today’s technology is coming from

multiple sources. Unfortunately, the existing data representation

has very low robustness to noise in hardware. An error

bit on the exponents or Most Significant Bits (MSBs) result

in a major change in the weight value, while an error

in the Least Significant Bits (LSBs) adds minor changes

to the computation. The randomness of the noise makes

traditional data representations vulnerable to an error on the

hardware. One of the main advantages of EventHD is its high

robustness to noise and failure. In EventHD, hypervectors

are random and holographic with i.i.d. components. Each

hypervector stores the information across all its components

so that no component is more responsible for storing any

piece of information than another. This makes a hypervector

robust against errors in its components. EventHD robustness

depends on the hypervector dimensionality that determines
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the hypervector capacity and redundancy. Table 1 compares

EventHD robustness with the existing HDC and learning

solutions operating the preprocessing or the entire learning

task over the original data representation. The results indicate

that EventHD quality of learning is almost constant, even

using 5% noise. In contrast, even a small amount of error

on an existing solution can result in significant quality loss.

For example, under 20% random noise, EventHD using D =

4k provides 17.8% and 14.7% higher accuracy than DenseHD

and SparseHD, respectively. Note that EventHD robustness

increases with its dimensionality (as shown in Table 1). However,

higher dimensionality results in lower computation efficiency.

7. Related study

In recent years, HDC has been employed in a range

of applications, such as text classification (Kanerva et al.,

2000), activity recognition (Kim et al., 2018), biomedical

signal processing (Rahimi et al., 2018), multimodal sensor

fusion (Räsänen and Saarinen, 2015), and distributed

sensors (Kleyko and Osipov, 2014; Kleyko et al., 2018). A key

HDC advantage is its training capability in a single pass, where

object categories are learned as opposed to many iterations.

HDC has achieved comparable to higher accuracy compared to

state-of-the-art machine learning models with lower execution

energy. Much research also exploits the memory-centric nature

of HDC to design in-memory acceleration platforms (Li

et al., 2016; Halawani et al., 2021a,b) However, existing HDC

algorithms are often ineffective in encoding complex image

data or keeping a notion of continuous-time. In contrast, we

propose a novel method to preserve spatial-temporal correction,

where spatial encoding keeps the correction of events in

2D space while temporal encoding defines correlation in a

continuous-time dynamic.

In the context of neuromorphic computing, study

in Mitrokhin et al. (2019) and Hersche et al. (2020)

exploited HDC mathematics to learn from event-based

neuromorphic sensors. However, these designs have the

following challenges: (i) rely on the expensive preprocessing

step to extract information from event-based sensors, (ii)

lack computational robustness, as the preprocessing step

operates over original data with high sensitivity to noise,

and (iii) require heterogeneous data processing and non-

uniform data flow to accelerate HDC and preprocessing

step. In contrast, to the best of our knowledge, EventHD
is the first HDC-based solution that directly operates over

raw data received by the event-based sensors. EventHD not

only enhances the learning efficiency but also results in a

significantly higher computational robustness to noise in input

or underlying hardware.

8. Conclusion and future study

In this article, we present EventHD, an end-to-end

framework based on hyperdimensional computing for

robust, efficient learning from neuromorphic sensors.

EventHD proposes a novel encoding scheme to map

event-based neuromorphic data into high-dimensional

space while preserving spatial and temporal correlation.

Then, EventHD exploits HDC mathematics to support

learning and cognitive tasks over encoded data by inherently

exploiting the associating and memorizing capabilities.

Finally, we introduce a scalable learning framework

to distribute EventHD computation over devices in

IoT networks.

Our future study will exploit EventHD encoding to

enhance current spiking neural networks (SNNs). Particularly,

SNN and HDC have shown promising results in enabling

efficient and robust cognitive learning. However, despite their

success, these two brain-inspired models are complementary.

While SNN mimics the physical properties of the brain,

HDC models the human brain on a more abstract and

functional level. Our goal is to exploit EventHD encoding to

fundamentally combine SNN and HDC to design a scalable

and strong cognitive learning system that better mimics

brain functionality.
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