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Abstract 

Background:  In photoacoustic tomography (PAT), total variation (TV) based itera-
tion algorithm is reported to have a good performance in PAT image reconstruction. 
However, classical TV based algorithm fails to preserve the edges and texture details 
of the image because it is not sensitive to the direction of the image. Therefore, it is of 
great significance to develop a new PAT reconstruction algorithm to effectively solve 
the drawback of TV.

Methods:  In this paper, a directional total variation with adaptive directivity (DDTV) 
model-based PAT image reconstruction algorithm, which weightedly sums the image 
gradients based on the spatially varying directivity pattern of the image is proposed to 
overcome the shortcomings of TV. The orientation field of the image is adaptively esti-
mated through a gradient-based approach. The image gradients are weighted at every 
pixel based on both its anisotropic direction and another parameter, which evaluates 
the estimated orientation field reliability. An efficient algorithm is derived to solve the 
iteration problem associated with DDTV and possessing directivity of the image adap-
tively updated for each iteration step.

Results and conclusion:  Several texture images with various directivity patterns 
are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view 
circular scans are conducted. Results obtained show that the DDTV-based PAT recon-
structed algorithm outperforms the filtered back-projection method (FBP) and TV 
algorithms in the quality of reconstructed images with the peak signal-to-noise rations 
(PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. 
The Shepp–Logan phantom is studied with further discussion of multimode scan-
ning, convergence speed, robustness and universality aspects. In-vitro experiments are 
performed for both the sparse-view circular scanning and linear scanning. The results 
further prove the effectiveness of the DDTV, which shows better results than that of 
the TV with sharper image edges and clearer texture details. Both numerical simulation 
and in vitro experiments confirm that the DDTV provides a significant quality improve-
ment of PAT reconstructed images for various directivity patterns.

Keywords:  Photoacoustic tomography, Image reconstruction, Directional total 
variation, Directivity adaptive
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Background
Photoacoustic tomography (PAT), also referred to as optoacoustic tomography, is an 
emerging biomedical imaging modality. It combines a high contrast of the optical imag-
ing with a good resolution of ultrasound one [1] and possesses a noninvasive feature 
[2], which unique advantages over other traditional imaging techniques help it to find 
wide applications in many aspects of biomedical fields [3–7], such as small animal imag-
ing [8], tumor detection [9], vessel imaging [10], functional imaging [11], and molecu-
lar imaging [12]. In the computed-tomographic PAT, which is mainly considered in this 
study, the laser pulse is usually used to irradiate the biomedical tissue. The tissue absorbs 
the light and then sends out ultrasound waves. This kind of phenomenon is called pho-
toacoustic effect [1, 2]. A scanning ultrasound transducer or a transducer array is used to 
detect the generated ultrasound signals around the tissue. The detected signals are then 
utilized to reconstruct photoacoustic images, which reflect the light absorption of the 
tissue via a certain algorithm. Therefore, the reconstruction algorithm plays a significant 
role in the PAT.

Many efforts have been made, in order to find an accurate and efficient photoacoustic 
image reconstruction method. In 1995, Kruger et al. [6] realized the image reconstruc-
tion by utilizing the inverse Radon transform, which is considered a pioneer PAT recon-
struction algorithm. After that, they also proposed the inversion of the spherical mean 
Radon transform method, which was more accurate [13]. The filtered back-projection 
method (FBP) advanced by Xu et al. [14] was widely applied to PAT, due to its concision 
and accuracy. Zhang et al. [15, 16] proposed the deconvolution reconstruction algorithm, 
which had better performances in limited-view sampling and used the heterogeneous 
speed of sound. There is another type of PAT reconstructed methods called time-rever-
sal, which reconstructs images from a forward-propagation numerical model to generate 
measured photoacoustic (PA) signals backwards in the time [17–20]. Xu et al. proposed 
a time-reversal-based reconstructed method for three-dimensional broadband diffrac-
tion tomography [17] and applied it to PAT [18]. Bradley et al. [19] used the time-rever-
sal method to compensate for acoustic absorption in the photoacoustic tomography. Cox 
et al. [20] found the artifact trapping phenomenon in the time-reversal PAT reconstruc-
tion and proposed some methods to mitigate these artifacts. Besides the above recon-
struction methods, another kind of algorithm, called iterative reconstruction method, 
has been applied to PAT. This kind of algorithm constructs a forward model, which uti-
lizes the relationship between photoacoustic signals and the light absorption deposition 
to calculate the reconstructed image iteratively under some optimization conditions 
[21–23]. Thus, this kind of algorithm is also referred to as model-based algorithm. Pal-
tauf et  al. [21] advanced an iteration reconstruction algorithm by minimizing the dif-
ference between the detected PA signals and the calculated ones from the image. Ma 
et al. [22] introduced a filtered mean-back projection-iterative reconstruction algorithm 
to deal with the linear-array detection in practical application. To accelerate the speed 
of the iterative reconstruction method, Dean-Ben et al. [24] proposed an angular image 
discretization model-based reconstruction method. Rosenthal et  al. [25] used wavelet 
packets to considerably reduce the computational cost for the model-based algorithm. 
In order to improve the performance of the model-based algorithm under the circum-
stance of sparse sampling, the compressed sensing (CS) theory has been employed  
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[26, 27]. The total variation (TV) is an important sparsity regularizer in the image 
denoising and CS image reconstruction [28]. It utilizes the sparsity of the natural image 
gradient to measure the variations in an image [29]. In PAT, Wang et al. [30] presented 
an adaptive steepest-decent-projection onto convex sets (ASD-POCS) method, which 
involved the TV in the iteration. Zhang et al. [31] proposed a gradient descent algorithm 
based on the TV, which provided better results, especially under the condition of sparse 
sampling. Arridge et  al. [32] used the TV regularization enhanced by Bregman itera-
tions to solve the PAT sub-sampling problems, which achieved both increased acqui-
sition speed and good spatial resolution. However, the TV is only a measure of local 
changes in images, which is not related to the directions of images. It is reported that 
the TV-based method tends to produce over-smoothed image edges and texture details 
[33–35]. Thus, the isotropic TV-based PAT reconstructed methods are more applicable 
to images, which are piecewise-smooth and have no dominant direction, but their oper-
ation is deteriorated when applied to images with directional textures. At present, there 
is no PAT reconstruction algorithm to effectively solve the TV drawback.

In this study, we propose a directivity adaptive direction total variation (DDTV) based 
PAT image reconstruction algorithm for effective minimization of the TV deficiencies. 
The spatially varying directivity pattern of the image is firstly estimated. Then the image 
gradients are weighted by the calculated orientation field of the image. The DDTV is cal-
culated by summing the norm of the weighted gradients. The gradient-based approach 
[36, 37] is used to efficiently estimate the orientation field of the image. Meanwhile, we 
also calculate the reliability of the estimated orientation field Ck, which is used to weight 
the TV in the chosen direction [38]. This makes the DDTV applicable to any kind of 
images with various directional patterns. Moreover, we also derive an efficient algorithm 
to solve the iteration problem associated with the DDTV having the directivity of the 
image adaptively updated for each iteration step.

Finally, the DDTV algorithm is verified through the numerical simulation and 
in vitro experiments and compared with the FBP and TV. Results obtained show that 
the DDTV surpasses those two algorithms both in visual quality and quantitative indi-
ces. The proposed algorithm demonstrates its superiority, especially for texture images 
with obvious directivities, where the image edge is preserved better and the texture 
details are more distinct. In addition, we also compare the peak signal-to-noise rations 
(PSNR), convergence speed, and robustness of the DDTV-based method with those of 
FBP and TV algorithms.

Arridge et al. [32] also used the TV as the regularizer to solve the PAT reconstruc-
tion problem, but their algorithm is quite different from the one proposed in this study, 
since researchers [32] mainly study the PAT sub-sampling problems, while our work 
is mainly focused on the PAT reconstruction problem. Moreover, the TV regularizer 
used in [32] is the classical TV, which is isotropic and has no relationship with vari-
ous directivity patterns of images. In this paper, we propose the novel DDTV, which is 
sensitive to the directions of images. Thus, the edges and texture details of images can 
be preserved better. Besides, Tick et al. [39] proposed a Bayesian approach-based PAT, 
which estimates the initial pressure distribution accurately with the uncertainty quan-
tification. In this study, we mainly use a novel DDTV as the sparsity regularizer to solve 
the PAT reconstruction problem. The Bayesian approach is a probability estimation 



Page 4 of 30Wang et al. BioMed Eng OnLine  (2017) 16:64 

method, which treats parameters as random variables, and the solution is based on the 
knowledge of prior information. The DDTV-based algorithm, which is solved itera-
tively, also needs the directional information of images. However, the directivity of 
images is estimated and updated for each iteration step with no prior information of 
the image.

The adaptive directional total-variation (ADTV) model described in [38, 40] is 
used in latent fingerprint segmentation with the purpose of decomposing an input 
image into two layers: cartoon and texture. The DDTV model proposed in this study 
is applied to the model-based PAT reconstruction problem as a regularizer in the 
optimization. Although both DDTV and ADTV models use the same orientation 
field estimation method and weight the normal TV via spatially varying directions 
of images, there exist major differences between them. The orientation field estima-
tion of both methods implies calculation of two parameters: orientation θk, and reli-
ability of the estimated orientation field Ck. In the ADTV, the orientation vector αk is 
computed by multiplying the orientation field (−cosθk, sinθk) and Ck. The ADTV is 
obtained by the dot product of the gradient of cartoon layer u and orientation vec-
tor αk. Thus, for the regions with strong orientation patterns, where the value of Ck 
is large, the textures of this orientation in cartoon layer u are fully depressed, while 
in the texture layer v they are fully captured. As for the isotropic regions, where Ck 
approaches zero, αk becomes a zero vector, so that the ADTV term becomes neglecta-
ble, while u depends only on the fidelity term. However, the DDTV in this study is 
obtained by replacing the unit ball of the L2 norm in the TV, which is directionless 
with spatially varying ellipses having minor axis unit length and major axis length 
α exceeding unity and oriented along the direction θk. The major axis length αk of 
the eclipse is calculated via Ck. At regions with strong orientation patterns, where αk 
becomes maximum, the TV in that direction is amplified to the largest, while the TV 
in other directions are weighted depending on the axes of eclipse in these directions. 
This is different from the ADTV, where the TV in other directions are fully depressed 
for a strong orientation pattern. As for isotropic regions, where αk reaches unity, the 
eclipse turns into a unit circle and the DDTV is reduced to the normal TV. This is 
also different from the ADTV, wherein the ADTV term is neglectable and the fidelity 
term becomes dominant. The method proposed in this study is coined DDTV as an 
abbreviation for “directional total variation with adaptive directivity” to distinguish it 
from ADTV. Berkels et al. [41] mainly dealt with the cartoon extraction from aerial 
images, which are mainly characterized by rectangular geometries with varying ori-
entation. They only use the rotation angles to calculate the orthogonal matrix and 
its dot product with the cartoon part gradients, which is quite different from DDTV 
that uses both anisotropic directions and the estimated orientation field reliability to 
weight the image gradients.

The rest of this paper is organized as follows. The first section is “Background”, the 
second one is the derivation and the framework of the algorithm, “Numerical simu-
lations” describes the numerical simulation results, while the experimental results 
are presented in “Experimental results”. The last section presents the discussion and 
conclusion.
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Theory and method
Model‑based photoacoustic theory

When irradiated by a laser pulse, the biological tissue absorbs the laser energy and gen-
erates ultrasound signals according to the photoacoustic effect. The photoacoustic sig-
nals and the laser absorption deposition obey the following relationship [1]:

where p(r, t) is the acoustical pressure measured at the time t and the position r, c is the 
speed of sound, Cp is the specific heat, β is the isobaric expansion coefficient. H(r, t) is a 
heating function which can be written as:

where A(r) is the spatial optical absorption distribution of the tissue and I(t) is the tem-
poral laser pulse function.

In this paper, we only consider the two-dimension PAT and assume spatially uniform 
laser irradiation with the laser pulse approximating Dirac’s delta function. A transducer 
scans the photoacoustic signals at several positions. Then (1) can be solved by a Green’s 
function and the acoustic pressure detected by the transducer at position r0 can be writ-
ten as [42]:

The analytical reconstruction algorithms are mainly focused on the inverse problem 
the solutions of (3) to obtain the optical absorption distribution of the tissue A(r). How-
ever, the model-based PAT makes use of (3) to establish a forward model.

Define a new variable g as:

Then, integrating both side of (3), the following equation is derived:

One can see that the right side of (5) is the line integral of A(r) with the path of an arc 
centered at r0 and the radius of ct.

In practical experiments, where the detected signals as well as the photoacoustic image 
tend to be discretized, g for the lth detection point is discretized to a vector gl with the 
length of S, while image A is discretized to a matrix A with the size of Nx×Ny. As it fol-
lows from (5), in the discrete form, each element in vector gl can be expressed via the 
weighted sum of the elements in matrix A. The size of the weight matrix corresponding 
to the hth element of gl is Nx×Ny. Then matrix A and weight matrix are reshaped to the 
column vector A′ and Wh

l , which have the same length of Nx·Ny. Thus, the hth element 
in gl can be expressed via the dot product of Wh

l  and A′. Arranging these weight vectors 

(1)∇2p(r, t)−
1

c2
∂2

∂t
p(r, t) = −

β

Cp

∂

∂t
H(r, t),

(2)H(r, t) = A(r)I(t),

(3)p(r0, t) =
β

4πCp

∂

∂t

∫∫

�
|r−r0|=ct

A(r)

t
d2r.

(4)g(r0, t) =
4πCpt

β

∫ t

0
p(r0, t)dt.

(5)g(r0, t) =

∫∫

�
|r0−r|=ct

A(r)dr.
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Wh
l  in order, the weight matrix Wl corresponding to gl with the size of Nx·Ny×S can be 

constructed. Therefore, for lth detection point, gl can be expressed as the dot product of 
Wl and A′ [21]:

where M is the number of the detection points.
The mth element in the weight vector Wh

l  can be written as [31]:

where rl refers to the position of lth sampling point and rm refers to the position vector 
for the mth element in the matrix A, th is the time for hth measurement at lth detection 
point, and Δt is the step size of the discretized time. The weight matrices are determined 
via the integral path. The elements inside/outside of the integral arc are set to 1 and 0, 
respectively. However, in practical discretized systems, there are discrete intervals for 
each discretized variable, so the integral arc may not fully coincide with the discretized 
points. To reduce this error, we calculate the absolute value 

∣

∣

∣

ts
�t −

|rl−rm|
c�t

∣

∣

∣, which is the 
error between the position of the mth element in the image and the accurate position of 
the integral arc. When this value exceeds unity, which means that the error exceeds one 
discrete interval, then this element is not located on the integral arc. When the value is 
less than one (discrete interval), the weight is from 0 to 1 based on the error calculated 
by the absolute value. The lager the error, the less the weight, and vice versa. For practi-
cal discrete system, g is readily calculated by accumulating values of p. The integral path 
is determined by the detection points’ and image positions, i.e., the PAT sample pattern. 
When the latter changes, for example, by shifting from circular scanning to straight-line 
one, the weight matrix W has to be adjusted, according to the sample pattern, making 
applicable the forward model from A to g in (6). A simple replacement of g by p makes 
the forward model quite straightforward, transparent, and flexible.

Directivity adaptive directional total variation (DDTV)

The traditional TV, which measures oscillation in an image, is described by the following 
equation for a discrete image:

where Aij is the pixel value of the image at the coordinate (i,j).
The alternative way to express the TV [43] is:

where B2 is the unit ball of the L2 norm, and sup is the supremum function. It is obvious 
that the TV is isotropic, because B2 is directionless. Here ∇ is a linear operator defined 
as:

(6)gl = WT
l · A′, l = 1, 2, 3, . . . ,M,

(7)Wh,m
l =

{

1−
∣

∣

∣

th
�t −
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c�t

∣

∣
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∣

∣

∣

th
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∣

∣

∣ < 1

0 else
,

(8)TV (A) =
∑

i,j

[

(

Ai,j − Ai−1,j

)2
+

(

Ai,j − Ai,j−1

)2
]1/2

,

(9)
TV (A) =

∑

i,j

∥

∥∇Ai,j

∥

∥

2
=
∑

i,j

sup
p∈B2

〈

∇Ai,j , p
〉

,
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where G1 and G2 are horizontal and vertical gradients of Aij respectively.
The replacement of B2 by an ellipse Eα,θ, which has a unit length minor axis and a 

major axis length α greater than 1 and is oriented along the direction θ, makes the TV 
more sensitive to changes at the certain direction, whereas the directivity intensity of 
that direction is measured by α [43]. Thus, the directional TV (DTV) can be written as:

In [43], only one kind of ellipse is chosen, which has a single direction θ and α. This 
approach is not universal, since, in most cases, images may have heterogeneous directiv-
ity patterns. To overcome this problem, we propose the DDTV with spatially varying θ 
and α.

The same approach as in [38] is adopted to calculate the spatially different directivity 
patterns of the image. In order to reduce the calculation efforts, the image is firstly sub-
divided into blocks of the same size. Then the coarse orientation field for each block is 
calculated by using the gradient-based approach [36, 37]:

where L is a number of pixels within the block.
To improve the estimation accuracy, Ok is further smoothened by the Gaussian 

smoothing kernel Gδ [38]:

Simultaneously, another parameter Ck is calculated, which evaluates the dependability 
of the estimated direction for each block [38]:

where Ck represents the directivity intensity of kth block within the range of [0,1]. For 
directionless or isotropic regions, Ck equals to 0, while for strongly oriented regions, Ck 
approaches 1 [38]. Values θk, and Ck are used as the orientation field parameters for all 
pixels within the block under study.

After completing the calculation, two parameters θi,j and Ci,j are obtained for each 
pixel. Here, the orientation field parameter θi,j is used as the spatially varying θ of the 
ellipse. The major axis length α is defined as:

(10)
∇Ai,j = (G1,G2)

=
(

Ai,j − Ai−1,j ,Ai,j − Ai,j−1

)

,

(11)
DTVα,θ =

∑

i,j

sup
p∈Eα,θ

〈

∇Ai,j , p
〉

.

(12)Ok =
1

2
tan−1

∑

L 2G1G2
∑

L

(

G2
1 − G2

2

) +
π

2
,

(13)θk =
1

2
tan−1

{

Gσ × sin (2 · Ok)

Gσ × cos (2 · Ok)

}

.

(14)Ck =

(
∑

L

(

G2
1 − G2

2

))2
+ 4

(
∑

L G1G2

)2

(
∑

L

(

G2
1 + G2

2

))2
,

(15)αi,j = (αm − 1)× Ci,j + 1,
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where αm is the defined maximum major axis length. For the directionless pattern, Ci,j 
equals to 0 and αi,j equals to 1. The ellipse degrades to a circle, which implies that the 
DTV turns into the TV for that pixel. For the strongest directivity pattern, Ci,j equals to 1 
and αi,j reaches its maximum value αm.

Thus, DDTV can be described as:

DDTV‑based PAT image reconstruction algorithm

Consider the following optimization problem, which has to be solved via the DDTV:

where A* is the reconstructed image. λ is the parameter corresponding to the weight of 
DDTV value in the optimization.

For each iteration step, the orientation field of the image is firstly estimated by the 
updated reconstructed image through the method described in “Directivity adaptive 
directional total variation (DDTV)”. For each pixel (i,j), the rotation matrices Rθij and 
scaling matrices Λαij are controlled by θi,j and αi,j [43]:

After each iteration, the reconstructed image is updated and the orientation field of 
image is reestimated and updated at the start of the next iteration. Thus, a full DTV-
regularized inverse problem is solved for each iteration, and then the orientation field is 
updated.

After that, the problem is solved by minimizing the DDTV via the algorithm proposed 
in [44, 45]. Define Γij = argminΓij∈B2

∥

∥

∥Grad(As)ij −∇TRθijΛαijΓij

∥

∥

∥ and Γij can be solved 
via the following iteration scheme [44, 45]:

where γij is a coefficient defined as γij = 1
8α2ij�

2, αij is the ellipse major axis length for the 

pixel (i,j) calculated via (15), Hij is defined as Hij = ∇TRθ ijΛαij. Hereinafter As is the 

updated reconstructed image for the sth iteration step, and Grad is the defined gradient-
descent-based updating operator, which also are included in the following equations:

(16)
DDTVαi,j ,θi,j (A) =

∑

i,j

sup
pi,j∈Eαi,j ,θi,j

〈

∇Ai,j , pi,j
〉

.

(17)A∗ = arg min
A

∥

∥

∥WT · A′ − g
∥

∥

∥

2

2
+ �DDTVαi,j ,θi,j (A),

(18)Rθ ij =

[

cos θij − sin θij
sin θij cos θij

]

, Λαij =

[

αij 0
0 1

]

.

(19)Γ
(n+1)′

ij = Γ
(n)
ij + γijH

T
ij

(

Grad(As)ij −HijΓ
(n)
ij

)

,

(20)
Γ

(n+1)
ij =

Γ
(n+1)′

ij

max
{∥

∥

∥Γ
(n+1)′

ij

∥

∥

∥

2
, 1
} ,

(21)�As = −
W

�W�
(WT · A′

s − g),

(22)Grad(As) = As +�As.
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As it reported in [44, 45], the final results of this iteration can be obtained from Γij:

Briefly, the iteration steps of the DDTV algorithm can be listed as follows:

1.	 Initialization: input A, αm, λ.
2.	 Estimate the orientation fields of As via Eqs. (12)–(15). Calculate the rotation matri-

ces Rθij and scaling matrices Λαij.
3.	 For n = 1 and the defined step number, run the following iteration via Eqs. (1)–(22).
4.	 Update the reconstructed image As+1 via Eq. (23).
5.	 If the terminal condition is not satisfied, return to step (2) and continue the iteration. 

Otherwise, end the iteration.

In the numerical simulations and experiments of this study, we set iteration number 
10 as the terminal condition for all cases. Set initial input A to 0 to avoid the input of 
unnecessary man-made noise caused by the initial guess. The parameters αm and λ are 
derived through the experiments.

Numerical simulations
A series of numerical simulations were carried out to validate the proposed DDTV-
based algorithm. In order to validate the superiority of the DDTV-based algorithm in 
the adaptive directional sensitiveness, two kinds of texture images with various direc-
tions were chosen as the simulation phantoms. Circular scanning with different sam-
pling points was simulated, and the DDTV results were compared with those of FBP and 
TV. Then the Shepp–Logan image, which is often adopted to assess the image recon-
struction algorithm, was used to verify the effectiveness of the DDTV algorithm quanti-
tatively and qualitatively through the circular, limited-view, and linear scanning options. 
The PSNR, convergence speed, and robustness of FBP, TV and DDTV algorithms were 
also analyzed and compared. Finally, several medical images were used to test the uni-
versality of the algorithm. The adaptive tunable parameter for lambda. Which was pro-
posed in [31] for the TV-based algorithm, was used in this study. In this case, the initial 
lambda value was set to 2 for the first iteration and decreased to 0.2, when the iteration 
number exceeded 10. The iteration time of 10 was set for all cases under study, wherein 
lambda was relatively large at the beginning of the iteration and decreased as the itera-
tions continued, which provided a good balance of the two parts of the object function. 
This adaptive tunable parameter proved to be the most effective for the iteration time of 
10 [31]. The parameter λ for DDTV was set to maximize the PSNRs of the reconstructed 
results. In fact, λ determines the weight of DDTV term in the optimization and its large 
value implies that the DDTV-term is dominant. This would result in a quicker conver-
gence of the algorithm, but too large value of λ will break the balance between the two 
parts of the objective function. The reconstructed images with a too large λ would much 
differ from the true ones, due to the data fidelity in the reconstruction being sacrificed to 
the image regularity. Based on this criterion, a moderate value of λ, which is neither too 
large nor too small, is preferred.

(23)As+1(i, j) = Grad(As)ij −HijΓij .
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The simulations were conducted using the Matlab R2013a software installed on a PC 
with a 2.40 GHz Intel(R) Xeon(R) CPU and 64 GB memory. The speed of sound in the 
simulation was assumed to be constant and equal to 1500 m/s.

Texture image reconstruction

Two kinds of texture images are selected as the optical absorption distributions of the 
phantom: the transverse and circular direction patterns, as is shown in Fig. 1a, b. The 
image dimensions are 128 pixels × 128 pixels, which correspond to the simulation area 
of 76.8 mm × 76.8 mm, and the scanning radius is 36 mm. The photoacoustic signals are 
generated by the modified finite-difference time-domain (FDTD) method [46], which 
are detected circularly with the sampling points of 180, 90, and 30, respectively, while 
the angular step size is uniform. The modified FDTD method uses photoacoustic Eq. (3) 
for the numerically produced simulated data. We use the forward projection model 
described in “Model-based photoacoustic theory” to reconstruct the image iteratively 
under DDTV regulation. So the inverse crime can be avoided in our method during the 
generation of simulated signals. The TV and DDTV iteration numbers are both set to 10, 
while the parameters λ and αm are set to 1.2 and 10, respectively. In all following simula-
tions, the size of the block is set to 5×5. The TV and DDTV reconstruction results are 
compared in Figs. 2 and 3, while the FBP results are also depicted as a reference.

The results obtained strongly indicate a mediocre FBP performance: the contrasts 
of the image patterns are poor and blurring occurs when the sampling points become 
sparse. The TV fails to preserve the texture details and the edge sharpness of the image, 
due its insensitivity to the texture direction. Moreover, there are also some artifacts 
within the textures, which lead to the contrast reduction. It is clear that, in contrast to 
TV, the DDTV provides a great improvement of the reconstructed image quality for all 
directive patterns. The image edges and texture details are well preserved even for the 
sparse-view reconstruction.

Figure 4 shows the orientation field estimation results for two images in the last itera-
tion of 30-view DDTV. The direction vectors are multiplied by Ck. Here the arrow length 

Fig. 1  Texture images. a Refers to the transverse texture image and b refers to the circular texture image
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reflects the directivity intensity/strength for that block. As seen from Fig. 4, the arrow 
directions coincide well with the image directions. The results validate the adaptive 
direction pattern estimation method in the DDTV.

In order to quantitatively measure the image reconstruction algorithms, we also com-
pare the PSNR of the image, which is defined as:

where Nx, Ny are the image dimensions, and MAXI is the maximum gray value of the 
image. ri,j is the gray value of the phantom for pixel (i,j). In this study, images are all nor-
malized to [0,1], so that MAXI equals to 1. Tables 1 and 2 list the PSNR values of three 
reconstruction algorithms. In all cases under study, the PSNR values provided of the 
DDTV are much better than those of FBP and TV. In Table 1 corresponding to the trans-
verse texture, the PSNR of the DDTV is by about 16 an 10 dB higher than those of FBP 

(24)PSNR = 10 · log10
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Fig. 2  Reconstructed images of the transverse texture from the FBP, the TV and the DDTV algorithm. The 
first to third rows refer to the FBP (a–c), the TV (d–f) and the DDTV (g–i) reconstructed images, respectively. 
The first to third columns refer to 180-view (a, d, g), 90-view (b, e, h) and 30-view (c, f, i) sampling results, 
respectively
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Fig. 3  Reconstructed images of the circular texture from the FBP, the TV and the DDTV algorithm. The first to 
third rows refer to the FBP (a–c), the TV (d–f) and the DDTV (g–i) reconstructed images, respectively. The first 
to third columns refer to 180-view (a, d, g), 90-view (b, e, h) and 30-view (c, f, i) sampling results, respectively

Fig. 4  a, b Refer to the orientation field estimation results for two texture images in the last iteration of 
30-view DDTV. The arrows stand for the direction for the blocks. The length of the arrows indicates the reli-
ability of the estimated orientation field for that position
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and TV, respectively. As for the circular texture described in Table 2, the PSNR value of 
the DDTV is about 20 dB and 8.5 dB higher than those of FBP and TV, respectively. Even 
for the sparse-view sampling cases, the DDTV maintains its superiority. For the 30-view 
sampling of the circular texture presented in Table 2, the PSNR value of the DDTV sur-
passes those of FBP and TV by 20.58 and 12 dB, respectively. The PSNR results of PSNR 
comply with the visual quality analysis.

To display the details of the reconstructed images, a line of the pixel value of the 
30-view reconstructed images for the two cases is taken out and compared with that of 
the original images. Figure 5a, b shows the location of the pixel line in the images, while 
Fig. 6a, b depicts the comparison curves of the pixel value for two images, respectively. 
The results obtained show that, as compared to TV, the DDTV profiles are much closer 
to the standard results, the range abilities of pixel values of the DDTV are much smaller 
in the homogenous region, and the variation trends coincide better with the true ones.

Table 1  PSNRs (dB) of the reconstructed transverse texture images

180-view 90-view 30-view

FBP 16.12 14.57 13.13

TV 21.24 20.02 21.62

DDTV 32.06 32.29 28.41

Table 2  PSNRs (dB) of the reconstructed circular texture images

180-view 90-view 30-view

FBP 12.96 11.23 9.19

TV 27.05 23.50 17.77

DDTV 31.43 32.17 29.77

Fig. 5  The location of the pixel line in the images for the transverse texture image (a) and the circular texture 
image (b)
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Shepp–Logan phantom

The Shepp–Logan phantom is also adopted to further evaluate the effectiveness of the 
algorithm. The image domain dimensions and the scanning radius are the same as those 
as those in “Texture image reconstruction”. In this case, the angular interval of the sam-
pling points are set to 2°, 4°, 6°, 12°, and the sampling points are 180, 90, 60, and 30, 
respectively. The parameters λ and αm are set to 0.01 and 2.5, respectively. The Shepp–
Logan phantom is shown in Fig. 7, and the reconstruction results of the DDTV, TV and 
FBP are shown in Fig. 8. The orientation field estimation results for the last iteration of 
the DDTV from 30-view sampling are displayed in Fig. 9. The arrow directions in Fig. 9 
agree with the directivity pattern of the texture edges. In the isotropic parts of the image 
with weaker directivities, the arrow length is smaller than that in the edge parts with 
stronger directivities. Table 3 shows the comparison of the PSNR for the three algorit
hms.

When the number of sampling points is sufficient, all three algorithms provide excel-
lent results, where each part of the phantom in the reconstructed images is distinguish-
able. However, there is a certain degree of blurs in the reconstructed images of the FBP, 
while the quality of FBP-reconstructed images sharply declines as the sampling points 
decrease with a lot of artifacts. The DDTV and the TV both have good performances 
for all sampling cases. However, the DDTV-reconstructed images have sharper image 

Fig. 6  The gray value profiles of the DDTV and the TV reconstruction algorithm in comparison with the 
standard profile. a Is the profile for Fig. 5a and b is that of Fig. 5b
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edges and clearer texture details, as compared to TV ones. When the number of sam-
pling points is reduced to 30, the DDTV results exhibit no observable changes, while in 
the TV ones there appear some artifacts. Results of the PSNR listed in Table 3 provide a 

Fig. 7  The Shepp–Logan phantom

Fig. 8  Reconstructed results of the Shepp–Logan phantom by the FBP, the TV and the DDTV, respectively. 
The first to third rows refer to reconstructed images by the FBP (a–d), the TV (e–h) and the DDTV (i–l), 
respectively. The first to fourth columns refer to results from 180-view (a, e, i), 90-view (b, f, j), 60-view (c, g, k), 
30-view (d, h, l) sampling, respectively



Page 16 of 30Wang et al. BioMed Eng OnLine  (2017) 16:64 

quantitative proof to the above findings: the PSNR values of DDTV are higher than those 
of FBP and TV by about 26 and 3.3 dB, respectively. For the sparse-view (i.e., 30-view) 
sampling, the PSNR provided by DDTV is by 23.1 dB higher than that of FBP and still 
exceeds that of TV by 1 dB.

Multimode scanning

To test the validity of the DDTV in terms of multimode scanning, simulations are also 
conducted under the limited-view and linear scanning conditions. The same simulation 
environment and parameter settings as in the Shepp–Logan phantom are used. In case 
of limited-view scanning, the sampling interval is 4° and the number of sample points is 
equal to 30, which correspond to the sampling angle 120°. In case of linear scanning, the 
sampling length is 100 mm and the number of sampling points is 20.

The scanning diagram and the reconstruction images of two cases are shown in 
Fig.  10a–f. Results show that the DDTV can be applied for multimode scanning. But 
due to the deficiency of the information in some angles, some artifacts appear in both 
two reconstructed images. In the limited-view scanning results shown in Fig. 10b, there 
are certain blurs at the image edges, especially in outer contour of the top right corner. 
For the linear-view scanning results shown in Fig. 10d, images oriented in the horizontal 
direction are relatively good, but there are obvious blurs in the vertical direction of the 
image due to the less of information in that direction by linear-view scanning. The TV-
reconstructed results for limited-view and linear-view scanning conditions are shown 

Fig. 9  The orientation field estimation results in the last iteration of the DDTV from 30-view sampling. The 
arrows stand for the direction for the blocks. The length of the arrows indicates the reliability of the estimated 
orientation field for that position

Table 3  PSNRs (dB) of the reconstructed results of Shepp–Logan phantom

180-view 90-view 60-view 30-view

FBP 15.35 15.36 15.24 14.68

TV 38.01 38.23 38.18 36.68

DDTV 44.97 41.60 40.37 37.78
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in Fig.  10b, e, respectively. Although there are some artifacts due to the lack of some 
angular information, DDTV exhibits better results, as compared to TV, in the case of 
limited-view scanning. Further improvements of the limited-view scanning results can 
be achieved by adding some compensation methods.

Robustness of the algorithm

In practical experiments, the detected signals are readily interfered by the system noises, 
which are usually the white Gaussian ones, so it is necessary to analyze the noise robust-
ness of the proposed algorithm.

In this part of simulation studies, white Gaussian noises with the signal- to-noise ratio 
(SNR) values of 10, 5, 3, and 0 dB are added to the acquired photoacoustic signals in the 
case of 30-view scanning for texture images depicted in Fig.  1, as well as the Shepp–
Logan image shown in Fig. 7. Results obtained via the TV and the DDTV methods are 
shown in Figs. 11, 12, and 13, while PSNR values are displayed in Tables 4, 5, and 6.

Both DDTV and TV methods succeed to maintain their effectiveness with high SNR. 
Taking the Shepp–Logan phantom as example, the respective results shown in Fig. 13; 
Table  6 reveal no strongly manifested influences on the reconstructed images, when 
SNR = 10 dB. The PSNR values of the DDTV and TV are excellent, amounting to 34.03 
and 32.24 dB, respectively. However, the TV performances deteriorate distinctly as the 
SNR decreases. Especially, when the SNR drops to 0 dB, the reconstructed image of the 

Fig. 10  Reconstructed results of the TV and DDTV from limited-view and line-scanning respectively. a, d 
Refer to the scanning positions of limited-view and line-view samplings, respectively. b, e Refer to the recon-
structed results of TV for two scanning modes, respectively. c, f Refer to the reconstructed results of DDTV for 
two scanning modes, respectively
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TV is affected significantly. A lot of background noises can be observed, and the texture 
details are blurred in the TV outputs, as is shown in Fig. 13d. The PSNR values of the 
TV decline from 32.24 for 10 dB to 16.96 for 0 dB. On the contrary, the DDTV dem-
onstrates the superiority of noise robustness over the TV. It provides high image qual-
ity even under the condition of low SNR. The PSNR of the DDTV for 3 dB SNR is by 
5.75 dB higher than that of the TV. For the case of 0 dB SNR, the PSNR of the DDTV is 
by 9.25 dB higher than that of the TV.

Fig. 11  The first to second rows refer to the reconstructed results of the noise-added transverse texture 
images from the DDTV (a–d) and the TV (e–h), respectively. The SNR of the signals are 10 dB (a, e), 5 dB(b, f), 
3 dB (c, g), and 0 dB (d, h)

Fig. 12  The first to second rows refer to the reconstructed results of the noise-added circular texture images 
from the DDTV (a–d) and the TV (e–h), respectively. The SNR of the signals are 10 dB (a, e), 5 dB (b, f), 3 dB (c, 
g), and 0 dB (d, h)
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Convergence and calculation

The convergence speeds of two iteration algorithms are compared by the distance 
between the reconstructed and original images, which is defined as:

Fig. 13  The first to second rows refer to the reconstructed results of the noise-added Shepp–Logan images 
from the TV (a–d) and the DDTV (e–h), respectively. The SNR of the signals are 10 dB (a, e), 5 dB (b, f), 3 dB (c, 
g), and 0 dB (d, h)

Table 4  PSNR (dB) of the noised-added transverse texture phantom

10 dB 5 dB 3 dB 0 dB

TV 21.97 19.39 17.78 16.98

DDTV 28.24 25.66 24.05 21.83

Table 5  PSNR (dB) of the noised-added circular texture phantom

10 dB 5 dB 3 dB 0 dB

TV 16.87 15.52 15.10 13.47

DDTV 26.98 24.57 22.13 21.37

Table 6  PSNR (dB) of the noised-added Shepp–logan phantom

10 dB 5 dB 3 dB 0 dB

TV 32.24 28.01 22.44 16.96

DDTV 34.03 30.59 28.19 26.21
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where d expresses the degree of difference between the reconstructed and original 
standard images. The smaller d, the less difference with the original image.

We record d of two methods for each iteration step in cases of 30- and 90-view circular 
texture image reconstructions. The chart of d-iteration step number is shown in Fig. 14a, 
b. One can see that the value of d for the DDTV is smaller than that of the TV for each 
iteration step in both two cases, while the differences of d between two algorithms 
enlarge as the iteration number increases. For 90-view scanning shown in Fig. 14a, the 
values of d for the DDTV decrease from 0.43 to 0.04 within 10 iteration steps, as com-
pared to variation from 0.46 to 0.12 observed for the TV. For 30-view scanning shown 
in Fig. 14b, the values of d for the DDTV decrease from 0.39 to 0.06 within 10 iteration 
steps, as compared to the drop from 0.43 to 0.24 of the TV. The results obtained strongly 
indicate that the DDTV is more accurate and has a faster convergence speed than the 
TV.

Although TV and DDTV may not converge to the original image, the ultimate goal of 
using these two algorithms is to reconstruct images, as close as possible to the true ones. 
The results depicted in Fig. 14 show that as the iteration goes, the distance between the 
reconstructed and original images decreases within 10 iterations for both algorithms. 
The distance to iteration curve converges gradually, which validates the convergence of 
these algorithms. Although the algorithms may only converge to the suboptimal solu-
tions, which approach the optimal one, Eq. (25) still holds for indication of the algorithm 
convergence property by taking the true images as the gold standard. The distance d in 
(25) has also been used as an indication of the algorithm convergence in [31] and [47]. 
Researchers [21–25] also used true images as a standard to calculate the root-mean-
square error for each iteration to study the convergence of the iterative PAT-recon-
structed algorithms.

The computation time is another indicator, which needs to be considered for the 
evaluation of iterative algorithms. Although TV and DDTV have different optimization 
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Fig. 14  The distance between the reconstructed image and the original image versus the iteration number. 
a Is for 90-view simulation and b is for 30-view simulation
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algorithms, the proposed DDTV is not a fast algorithm, intended to improve the opera-
tion speed. So we compare the computation costs for one iteration step between the TV 
and the DDTV to show that DDTV has more efficient computation than TV. It is found 
that the computation times of one iteration step for the TV and the DDTV are roughly 
the same. For example, the average calculation times of one iteration step for 30-view 
circular scan for a 128 ×  128 pixels image are 1.5990 and 1.575  s for the TV and the 
DDTV, respectively. For 90-view, the respective times are 4.257 and 4.366 s for the TV 
and the DDTV, respectively. Insofar as DDTV has a higher convergence speed than TV, 
and the computation costs for one iteration are close for the two algorithms, it outper-
forms the TV according to both factors.

Universality

To test the universality of the algorithm, we also choose three medical images as the 
original optical absorption distribution, which are two MRI brain images and one angi-
ography image. The reconstruction results of the DDTV and the TV are displayed in 
Fig. 15. For the MRI brain images, the reconstructed images of the DDTV, as is shown in 
Fig. 15d–f, i–l, have more distinct image edges and texture details. Moreover, the central 
paracele and sulci in the first brain image have a higher contrast and the tumor in the 
second brain image is clearer for the DDTV than that of the TV, as is shown in Fig. 15a–
c, g–i. As for the angiography image, one can observe that DDTV images shown in 
Fig. 15p–r have better performances in terms of image contrast and texture detail pres-
ervation. These results confirm the DDTV applicability for various kinds of images.

Experimental results
This Section briefly describes the in vitro experiments conducted to verify the DDTV 
algorithm. We first made two vessel-like phantoms to test the effectiveness of the pro-
posed DDTV algorithm through 90- and 30-view circular scanning. The reconstructed 
results of the DDTV were compared with those of FBP and TV. Linear scanning experi-
ments were also conducted, with the DDTV and TV results being compared and 
discussed.

The experimental platform is shown in Fig. 16. A laser beam irradiated with a Nd:YAG 
laser device (Contimuum, Surelite I) is reflected by a mirror and then transferred 
through a concave lens. The wavelength of the laser in this experiment is 532 nm. The 
duration and repetition frequency of the laser pulse are 4–6 ns and 10 Hz, respectively, 
which comply with the experimental requirements. The phantom is homogeneously illu-
minated from above, and photoacoustic signals are detected from the side. The trans-
ducer (V383-SU, Panametrics) is unfocused with the center frequency of 3.5 MHz and 
bandwidth of 1.12  MHz. A stepping motor drives the transducer to scan around the 
phantom. The sampling frequency of the system is 16.67 MHz.

The experiments on the phantoms (Fig. 17) have been earlier performed by the authors 
and reported in [31, 47]. These experimental data are referred to in this study, in order to 
verify whether the proposed algorithm has a better performance than the TV-based one 
under the same test conditions with the same experimental data. Also, we added a new 
linear scan experiment in Figs. 20 and 21 to show that our method is capable of accurate 
image reconstruction under different kinds of scanning modes.
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Fig. 15  The reconstructed images of three different medical images from the TV and the DDTV. The first, 
third and fifth rows refer to the results from the TV (a–c, g–i, m–o). The second, fourth and sixth rows refer to 
that of the DDTV (d–f, j–l, p–r). The first to third columns refer to 90-view (a, d, g, j, m, p), 60-view (b, e, h, k, 
n, q), 30-view (c, f, i, l, o, r) simulations, respectively
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The phantoms used in Fig. 17 are made of gelatin with the tissues to be imaged embed-
ded into the gelatin cylinder. The phantom shown in Fig. 17a uses two rubber bars of 20 
and 12 mm in length, respectively. As is shown in Fig. 17b, three wires with the diam-
eter of 1 mm each are embedded into the gelatin. The diameters of both phantoms are 
50  mm. Transducer scans around the phantom circularly with the scanning radius of 
38 mm. The angular intervals of the sampling points are set to 4° and 12°, which cor-
responds to 90- and 30-view samplings, respectively. The laser energy density is set to 
meet the ANSI laser radiation safety standards.

The experimental reconstruction results obtained by FBP, TV, and DDTV are shown in 
Figs. 18 and 19 and confirm that all three algorithms can provide nearly perfect recon-
struction results, when the number of sampling points is sufficient. However, for 30-view 
sampling, the image quality of the FBP declines sharply, with appearance of multiple 
artifacts. Both TV and DDTV maintain their effectiveness in sparse-view sampling. As 

Fig. 16  The experimental platform scheme

Fig. 17  The picture of the circular scan experiment phantom
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compared to the TV, the DDTV shows its advantages in terms of the reconstruction 
results. The contrast of the images is enhanced and the edges of the image are more dis-
tinct. So the DDTV is preferable to TV for maintaining the image texture details.

We also performed the linear scanning experiments. The phantom is also a gelatin cyl-
inder with the diameter of 50 mm, which is embedded into a rectangular rubber slice 

Fig. 18  The reconstructed images of the phantom in Fig. 15a from 30-view (a, c, e) and 90-view (b, d, f) 
detected points, respectively. The first to third rows refer to results from the FBP (a, b), the TV (c, d) and the 
DDTV (e, f), respectively
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acting as the laser beam absorber. The slice dimensions are 9 mm × 14 mm. The phan-
tom is shown in Fig.  20. The photoacoustic signals are sampled uniformly aligning to 
the longer edge of the rectangle. The sampling interval is 1 mm and the number of the 
sampling points is 41.

Fig. 19  The reconstructed images of the phantom in Fig. 15b from 30-view (a, c, e) and 90-view (b, d, f) 
detected points, respectively. The first to third rows refer to results from the FBP (a, b), the TV (c, d) and the 
DDTV (e, f), respectively
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The results of the TV and the DDTV are shown in Fig.  21. Due to the incomplete-
ness of the angular information of the linear scan, platelike artifacts appear in both TV 
and DDTV results. But the DDTV shows sharper edges of the laser beam absorber. The 
profile of the rectangle is clearly visible and the pixel values are distributed more uni-
formly within the rectangle. So the DDTV is more effective than the TV for the linear 
scan experiments.

Discussion and conclusion
In this study, a novel model-based photoacoustic image reconstruction algorithm using 
the directivity adaptive direction total variation (DDTV) is proposed to minimize the 
deficiencies of the PAT image reconstruction algorithms in terms of image edges and 
texture details preservation. The classical TV is a sum of L2 gradient norms of the image, 
which measures the variations and penalizes local changes in the image regardless of the 
image directions. So the TV-based algorithms perceive that the reconstructed images 

Fig. 20  The picture of the linear scan experiment phantom

Fig. 21  The reconstructed image of the linear scan experiment from the TV (a) and the DDTV (b), respec-
tively
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are piecewise-constant, which may hold for cartoon-like piecewise images, while most 
natural image reconstructions violate this assumption. The TV models in such applica-
tions as image denoising problems minimize the TV along all directions, which leads 
to a disredard of the important directivity information of images. Therefore, classi-
cal TVs are not suitable for images with strong directivity patterns. When applied to 
PAT image reconstruction methods, the TV-based algorithms tend to produce over-
smoothed image edges and texture details, since the TV assumption favors piecewise-
constant solutions. So the problem of TV-based PAT reconstruction is that it fails to 
obtain adequate results, in terms of texture detail preservation, which is critical for PAT 
images with spatially varying directivity patterns, such as blood vessel imaging, tumor 
detection, biological tissue microstructures analysis. The classical TV-based PAT recon-
struction methods fail to provide ideal directional information in terms of the recon-
structed results. So the application of DDTV to PAT is quite lucrative, since it calculates 
the TV based on the spatially varying directivity patterns of the image, which makes the 
TV sensitive to the image directions. The anisotropic directivity pattern of the image 
is estimated adaptively during the iterations, and the image gradients are weighted by 
the estimated orientation fields, which makes is applicable to all kinds of images with 
various directivity patterns. Two kinds of parameters are calculated for the orientation 
field estimation: direction θ and reliability of the estimated direction Ck, which control 
the TV directions and the sensitive degree for those directions, respectively. This dual-
weight method assures the accuracy of the DDTV parameter for the image.

The maximum major axis αm defines the largest weight of TV in the chosen direction 
θk. When the orientation pattern is strong, the weight of TV in that direction reaches αm. 
Small values of αm may lead to worse performance of DDTV as to preserving the edges 
and texture details of the image, in comparison to that of TV. In a more extreme case, 
when αm equals unity, the ellipse turns into a directionless ball, which makes DDTV 
equal to TV. Vice versa, too large values of αm will cause the oversized weight of TV in 
θk, leading to a relatively small TV in that direction. Thus, the reconstructed image will 
be distorted. Therefore, αm should be set to a value which is neither too small nor too 
large. In general, for images with stronger direction patterns αm should be larger, while 
for relatively homogeneous ones, it should be smaller. In the simulations, the phantoms 
of texture images have relatively strong direction patterns, so that αm = 10 is used in this 
case to obtain the best performance. The Shepp–Logan phantom is comparatively uni-
form with a weak directivity, so αm in this case is set to 2.5. The simulations of this study 
can be used as a reference for selection of αm, while in general reconstruction cases αm 
can be set between 2–10.

The DDTV was implemented into the model-based PAT reconstructed algorithm, and 
the primal–dual based method described in [43] is utilized to solve the optimization 
problem iteratively. Numerical simulations and in vitro experiments verify the effective-
ness of the algorithm. The reconstructed images are studied qualitatively and quantita-
tively. Simulation results show that the DDTV method has a better performance than 
FBP and TV, in terms of PSNR, robustness, convergence speed, and visual quality, while 
its superiority is exhibited even for sparse-view and multi-mode sampling cases. As 
reported in [31], the TV algorithm converges when the number of iterations is 10, which 
number is a relatively appropriate choice for TV algorithms. The experimental data 
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show that DDTV also converges about 10th iteration, so the average converging num-
ber of 10 was also selected. As shown in “Convergence and calculation”, the line chart 
of the distance d in Fig. 14 also confirms that the distance between the iteration curves 
converges when the number of the iterations is 10, which validates the convergence of 
the algorithms at 10th iteration. From simulations of various images, it can be observed 
that the dominants of the proposed DDTV algorithm are more prominent for images 
with a stronger directivity. For the two texture images, chosen in the first part of simula-
tion, the values of PSNR of DDTV are by 16.24 and 9.96 dB higher than those of FBP and 
TV, respectively, for the transverse texture image. For the circular image, the respective 
excesses are 19.99 and 8.35 dB over those of FBP and TV. Other texture images with dif-
ferent texture patterns were also tested, with the PSNR values of DDTV exceeding those 
of FBP and TV by about 18 and 10 dB for all the cases. As for the Shepp–Logan phantom 
in the second part of simulation, the superiority of DDTV is less pronounced as that 
of texture images, because the directivity of the Shepp–Logan is not so strong and the 
major part of the image corresponds to smooth areas with no directions. So, for images a 
with weak directivity, the performances of DDTV and TV are similar, but the improved 
quality of the reconstructed images is also confirmed by the Shepp–Logan phantom 
results. Due to different mechanisms for the reconstructed algorithms, the gray level of 
the reconstructed images would be different. There may be a certain degree of amplifi-
cation or narrowing for the gray level of the reconstructed images, as compared to the 
original ones. Therefore, it is difficult to compare the results for those algorithms under 
different gray levels. The images are normalized via dividing the gray values of all pixels 
by the maximum gray value of the images, which has no effect on the quality of images. 
Also when comparing the PSNR and d for all algorithms, the reconstructed images and 
the original images should be at the same gray level. Therefore, the images in this study 
are normalized in the same gray level for comparison. The simulation results also sug-
gest although the DDTV has a higher convergence speed, than that of the TV, it fails to 
improve the calculation time. The calculation times for an iteration step of the DDTV 
and the TV are basically the same. Thus, further studies are needed to develop a faster 
and more efficient method to solve the iterated problem. Moreover, the reconstructed 
result of the DDTV in the linear-view scanning is no better than those obtained via cir-
cular and limited-view ones. The information in the vertical direction of the image is not 
properly reconstructed. So we also need to modify the proposed algorithm to improve 
the performance for the linear scanning in the future.

In-vitro experiments further prove that the proposed DDTV algorithm is able to 
reconstruct images with a higher quality than FBP and TV algorithms for both circu-
lar and linear scanning cases. The contrast of the images is enhanced and the edges of 
the image are more distinct. The profiles of the optical absorbers are clearer and the 
texture details information of the images are easier to observe. Thus, the DDTV-based 
PAT reconstruction algorithm has very promising prospects for biomedical applica-
tions, especially those, which need the texture detail information of the tissue. In the 
experiments, simple gelatin-based phantoms are used. A single, low-frequency trans-
ducer is used in the experiment to detect the PAT signals by scanning around the phan-
tom, which is quite time-consuming and inconvenient for practical application. In the 
future, we will improve the experimental system for more complicated biological tissue 
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and in vivo experiments. Consequently, the results of numerical simulations and experi-
ments corroborate that the proposed DDTV is an effective algorithm for the PAT image 
reconstruction, which has a number of advantages over the available FBP and classical 
TV-based algorithms.
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