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ABSTRACT
Background Nivolumab is an immune checkpoint 
inhibitor targeting the programmed death-1 receptor that 
improves survival in a subset of patients with clear cell 
renal cell carcinoma (ccRCC). In contrast to other tumor 
types that respond to immunotherapy, factors such as 
programmed death ligand-1 (PD- L1) status and tumor 
mutational burden show limited predictive utility in ccRCC. 
To address this gap, we report here the first molecular 
characterization of nivolumab response using paired index 
lesions, before and during treatment of metastatic ccRCC.
Methods We analyzed gene expression and T- cell 
receptor (TCR) clonality using lesion- paired biopsies 
provided in the CheckMate 009 trial and integrated 
the results with their PD- L1/CD4/CD8 status, genomic 
mutation status and serum cytokine assays. Statistical 
tests included linear mixed models, logistic regression 
models, Fisher’s exact test, and Kruskal- Wallis rank- sum 
test.
Results We identified transcripts related to response, 
both at baseline and on therapy, including several that 
are amenable to peripheral bioassays or to therapeutic 
intervention. At both timepoints, response was positively 
associated with T- cell infiltration but not associated with 
TCR clonality, and some non- Responders were highly 
infiltrated. Lower baseline T- cell infiltration correlated 
with elevated transcription of Wnt/β-catenin signaling 
components and hypoxia- regulated genes, including the 
Treg chemoattractant CCL28. On treatment, analysis of the 
non- responding patients whose tumors were highly T- cell 
infiltrated suggests association of the RIG- I- MDA5 pathway 
in their nivolumab resistance. We also analyzed our data 
using previous transcriptional classifications of ccRCC and 
found they concordantly identified a molecular subtype 
that has enhanced nivolumab response but is sunitinib- 
resistant.
Conclusion Our study describes molecular characteristics 
of response and resistance to nivolumab in patients with 
metastatic ccRCC, potentially impacting patient selection 
and first- line treatment decisions.
Trial registration number NCT01358721.

BACKGROUND
Renal cell carcinoma (RCC) provided some 
of the earliest proof of concept for immu-
notherapy. The first approved treatment 

for advanced disease was high- dose inter-
leukin (IL)-2, which gave durable, complete 
responses in a subset of patients.1 Immune 
checkpoint inhibitor (CPI) therapy was 
approved for advanced RCC in 2015, 
following melanoma and non- small cell lung 
cancer (NSCLC) as the third approved indi-
cation for CPI.

Pan- tumor analyses reveal that RCC patient 
tumors are almost exclusively of the ‘inflam-
matory’ subtype, with an immune homo-
geneity unusual among cancers.2 Genomic 
analyses have also highlighted the onco-
genic role of the von Hippel- Lindau (VHL) 
tumor suppressor/hypoxia inducible factor 
(HIF) pathway, chromatin remodeling/
histone methylation, and phosphatidyli-
nositol 3- kinase/AKT serine/threonine 
kinase.3 Reflecting this biology, the currently 
approved first- line (1 L) therapies4 include 
tyrosine kinase inhibitors (TKIs) that target 
hypoxic vascularization (sunitinib, pazo-
panib and cabozantinib), the CPI combina-
tion nivolumab plus ipilimumab, and more 
recently, the CPI/TKI combinations of 
pembrolizumab or avelumab with axitinib. 
Further options include nivolumab mono-
therapy, sorafenib, bevacizumab/interferon 
(IFN)-α, and the mammalian target of rapa-
mycin (mTOR) inhibitors temsirolimus and 
everolimus as second line.

Although the approval of these treat-
ments has provided targeted and immuno-
therapeutic options for patients and care 
providers, there are no clinically implemented 
biomarkers allowing rational selection, 
combination, or sequencing of therapies. For 
the TKIs, expression signatures reflective of 
hypoxia and angiogenesis may be relevant.5–7 
For the CPIs, factors such as tumor muta-
tional burden, programmed death ligand-1 
(PD- L1) immunohistochemistry (IHC), and 
inflammation status seem less informative in 
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RCC than in melanoma or NSCLC.8 Current treatment 
decisions depend primarily on clinical criteria, which 
show limited relationship to molecular subtypes of RCC.9 
Several studies have explored pretreatment transcrip-
tional markers for CPI response,5 10 11 but further delin-
eation of the molecular characteristics underlying the 
distinct responses to TKI and CPI is clearly warranted.

In CheckMate 009, patients with advanced clear 
cell renal cell carcinoma (ccRCC) were treated with 
nivolumab. Our previous examination of their paired base-
line and on- treatment biopsies demonstrated increased 
immune infiltration in all patients as a pharmacodynamic 
effect of treatment.12 Here we define additional charac-
teristics underlying therapeutic response. Our findings 

could inform the scientific rationale for selecting primary 
therapy or future combinations to address resistance.

METHODS
Study design
CheckMate 009 was an open- label, parallel, four- group, 
phase Ib study of nivolumab (Bristol Myers Squibb and 
Ono Pharmaceutical Company). Study design, methods, 
and baseline clinical and demographic features have 
been previously described.12

Response metrics
Best overall response was determined by Response Eval-
uation Criteria in Solid Tumors (RECIST) V.1.1. Tumor 
burden change (maximum reduction or minimum 
increase in index lesions) calculated by standard methods 
was available for 83 patients at study conclusion (figure 1A 
and online supplemental figure S1). Biopsy change was 
calculated by the same method using only the biopsied 
index lesion. Tumor burden reduction of ≥20% was 
chosen as a Response metric that would exceed measure-
ment error.13 Two patients (identified as patients 12 and 
29) had tumor burden reduction of <20% at interim 
analysis and were included as non- Responders. One 
patient (identified as patient 98) was categorized as non- 
Responder despite a tumor burden reduction of 48% 
because the assessment was suspect (online supplemental 
figure S2), and they had progressive disease by RECIST. 
Patients 12, 29 and 98 were placed to the left in waterfall 
plots (figure 1A and online supplemental figure S1).

Biological analyses
Fresh biopsies from metastatic lesions at baseline and 
cycle 2 day 8 (study day 28) were used to evaluate tumor- 
associated lymphocytes, PD- L1 status, somatic genome 
sequence, T- cell clonality, and gene expression. IHC was 
used to assess tumor- associated lymphocytes (Mosaic Labo-
ratories, Lake Forest, California, USA) and PD- L1 expres-
sion on the tumor cell surface (Dako PD- L1 IHC 28-8 
pharmDx), as described previously.12 RNA was labeled by 
WT- Pico Ovation (NuGEN, San Carlos, California, USA) 
and profiled using the HG- U219 array on the GeneTitan 
platform (Affymetrix, Santa Clara, California, USA). Robust 
multiarray average expression values were determined for 
18,562 loci (BrainArray V.10). Whole- exome sequencing 
was previously described14; data were reprocessed (Seven 
Bridges, Charlestown, Massachusetts, USA). Serum IL-18 
was assessed in a multiplex panel (Myriad RBM, Austin, 
Texas, USA). T- cell receptor (TCR) sequencing used immu-
noSEQ assay (Adaptive Biotechnologies, Seattle, Wash-
ington, USA) at the survey level. Comparisons of productive 
TCR clonality used Student’s t- test.

Differential gene expression analysis
Data were evaluable for 69 of the 83 patients with 
Response information: 15 Responders (n=13 at baseline, 
11 at day 28, 9 matched) and 54 non- Responders (n=43 at 

Figure 1 Patient annotation and Response criterion. (A) 
Upper waterfall plot shows maximal percentage tumor 
burden reduction, available for 83 of the 91 treated patients. 
Reduction of ≥20% is indicated in gold. Lower waterfall 
plot shows maximal percentage reduction of the lesion that 
provided the baseline biopsy (index lesions, n=63). Reduction 
of ≥20% is indicated in gold. Sample annotation track shows 
‘Response’ (Responders in gold), ‘RECIST BOR’ (CR and 
PR in dark gold/gold, SD in gray, PD in black), ‘Lesion Pair’, 
(baseline and day 28 biopsies from the same lesion in gold, 
n=59) and ‘Biopsy Site’ (lymph node metastatic site in gold). 
White indicates ‘no information’. *Patient 98. (B) Probability 
of progression- free survival stratified by Response status, 
estimated by the Kaplan- Meier method, for the 85 patients 
included in these analyses. BOR, best overall response; CR, 
complete response; PD, progressive disease; PR, partial 
response; RECIST, Response Evaluation Criteria in Solid 
Tumors; SD, stable disease.
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baseline, 44 at day 28, 33 matched). Analyses of the rela-
tionship between gene expression and Response used an 
extended linear model,15 with fixed effects of Response, 
day, batch, and sex as categorical variables, and interac-
tion between Response and day. Within- patient correla-
tions were modeled by a spatial exponential structure 
with Euclidean distance. A multicontrast conditional 
F test was used to first select genes with p<0.05 for the 
null hypothesis that all Response- related fixed- effect 
parameters were zero. Differential expression between 
Response groups (baseline or day 28) was defined as 
p<0.01 for the contrast, with >1.25- fold difference in esti-
mated means. Differential change on treatment associ-
ated with Response status was defined as p<0.01 for the 
Response–day interaction, with >1.25- fold change over 
time in non- Responders (two genes: Alcohol Dehydroge-
nase 1B (ADH1B) and Neuron- Derived Neurotrophic Factor 
(NDNF)) or in Responders (189 genes including NDNF). 
Q values (expected proportion of false positives incurred 
at a given p value) also were estimated. Analyses of the 
relationship of gene expression to CD3TCR score used 
limma (Bioconductor V.3.816); logFC here represents 
log2 fold change per unit of the CD3TCR score.

Gene set enrichment analysis (GSEA)
Enrichment in the subset of genes passing criteria for asso-
ciation with Response was evaluated as described by Tilford 
and Siemers.17 For GSEA, results for all 18,562 genes were 
ranked by [direction of effect * -log10(p value)] (Response 
analysis), or t- statistic (limma analyses), then evaluated with 
the ‘GSEA’ algorithm (Bioconductor V.3.818). ‘Hallmark’ 
and curated gene sets were from MSigDb.18 19

Statistical analysis of molecular classifiers
Gene set scores were calculated as the median value of 
z- score expression level for the constituent transcripts 
(online supplemental table S1). The ‘ccrcc- like’ subtype 
was assigned by WARD.D2 hierarchical clustering of base-
line expression data for 63 available transcripts (from 
the 70- gene panel,6 online supplemental table S1). This 
method correctly identified ccrcc types when applied to 
the original data (ArrayExpress ID E- MTAB-3267). Asso-
ciation of discrete factors with Response was evaluated 
using Fisher’s exact test. Odds ratios (ORs) for Response 
were estimated from logistic regression models. The asso-
ciation of discrete factors with CD3TCR score was evalu-
ated using the Kruskal- Wallis rank- sum test.

Data and code availability
Gene expression data are in ArrayExpress (E- MTAB-
3218). Analyses performed in R V.3.5.3. are available 
online ( github. com/ rossmacp/ CM9_ response).

RESULTS
Categorization of Response using tumor shrinkage
In this analysis, Responders were defined as patients 
who experienced tumor burden reduction of ≥20%13 
(figure 1A, online supplemental figure S1 and table S2) 

to account for the very different clinical expectations for 
TKI- pretreated and 1 L patients. This Response categori-
zation was associated with progression- free survival but 
not overall survival (OS) (figure 1B and online supple-
mental figure S3) and produced a Responder group 
similar to an alternative categorization used by Miao et 
al for CheckMate 00914 (online supplemental figure S4).

Where possible, the baseline and day 28 tumor biopsies 
were taken from the same site, preferably an index lesion. 
Hence, the change in size of the lesion that provided the 
data herein was also evaluable for most patients (n=63 
for baseline biopsy lesion, n=59 for day 28 biopsy lesion; 
online supplemental table S2). The biopsy change agrees 
with tumor burden change in most but not all cases 
(figure 1A and online supplemental figure S5), and its 
relationship to molecular correlates of patient Response 
is shown in the following analyses.

Association of gene expression with Response
Differential expression between Response groups was 
identified at baseline and at day 28 (figures 2 and 3), and 
transcripts exhibiting change from baseline that differed 
between Response groups were also identified (figure 4). 
To interrogate the contribution of immune infiltration, 
we used 1539 genes previously assigned to immune cell 
lineages (immune response in silico (‘IRIS’) genes20).

Differential expression between Response groups at baseline
At baseline, 311 genes were found to be differentially 
expressed (203 higher in Responders, and 108 lower, 
q<16%; online supplemental table S3) with 93 genes 
having >1.5- fold mean expression difference between 
Response groups (figure 2A and online supplemental 
figure S6A). The IRIS immune- cell transcripts were 
significantly over- represented (46/311, p<10−5) and were 
almost exclusively expressed at higher mean levels in 
Responders. These IRIS transcripts included represen-
tatives of myeloid (six including IL- 1A) and lymphoid 
(10 including CD3E, GZMB) lineages, suggesting a pre- 
existing immunologically active tumor environment in 
Responders. Only three IRIS transcripts were expressed 
at higher levels in non- Responders, with no indication of 
an immunosuppressive population. Evaluation of the 311 
baseline differentially expressed genes using clinical CPI 
datasets revealed associations with the pharmacodynamic 
effects of ipilimumab in melanoma21: the 203 genes with 
higher baseline expression in Responders are enriched for 
transcripts that are upregulated by ipilimumab (p<10−23), 
and the 108 transcripts with lower baseline expression in 
Responders are enriched for genes that are downregu-
lated by ipilimumab (p<10−4). GSEA using the Hallmark 
gene sets (figure 2B; see the Methods section) identi-
fied immune- related processes including ‘Interferon 
Alpha Response’ and ‘Interferon Gamma Response’ as 
over- represented in Responders. Conversely, gene sets 
for metabolic and proliferative processes (‘Oxidative 
Phosphorylation’, ‘Myc targets V1’, ‘Angiogenesis’) were 
expressed at higher mean levels in non- Responders.
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Figure 2 Differential gene expression between Response groups at baseline. (A) Heat map panel shows z- score expression 
data for 93 genes meeting p<0.01 and 1.5- fold expression difference at baseline between Responders and non- Responders 
(n=59). Scale is −2 to 2 (blue to red). Waterfall plot shows maximal percentage reduction of the lesion that provided the 
expression data shown in the heat map (index lesions, n=42). Lesions with reduction of ≥20% are indicated in gold. Sample 
annotation track shows ‘Biopsy Site’ (lymph node metastatic site in gold). Patient annotation track shows ‘Response’ 
(Responders in gold). Gene annotation track to the right of the heat map shows ‘IRIS’ immune- cell transcripts (lymphoid lineage 
in green, myeloid lineage in blue, expression in both lineages in gold). (B) Normalized enrichment scores for GSEA evaluating 
Hallmark gene sets in the results for differential gene expression analysis at baseline. (C) Expression values for the AIM2 
transcript in 56 baseline biopsies. Data are grouped by Response categorization. Prior TKI therapy is indicated by circles, Naïve 
by diamonds. The p value was obtained by testing the appropriate contrasts from the extended linear model. (D) Expression 
values for the AIM2 transcript in RNA- seq data (TMM- normalized CPM values) from 17 pretreatment FFPE biopsies provided 
from metastatic lesions in the CheckMate 025 trial. Data are grouped by objective Response status (CR/PR by RECIST vs 
other). Samples collected within 3 years prior to initiation of nivolumab therapy are indicated with triangles. AIM2, absent in 
melanoma 2; CPM, counts per million; CR, complete response; FFPE, formalin- fixed paraffin- embedded; GSEA, gene set 
enrichment analysis; IL, interleukin; IRIS, immune response in silico; PR, partial response; RECIST, Response Evaluation Criteria 
in Solid Tumors; RMA, robust multiarray average; TMM, trimmed mean of M- values; TKI, tyrosine kinase inhibitor.
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Figure 3 Differential gene expression between Response groups at day 28. (A) Heat map panel shows z- score expression data 
for 779 genes meeting p<0.01 and 1.25- fold expression difference at day 28 between Responders and non- Responders (n=55). 
Scale is −2 to 2 (blue to red). Waterfall plot shows maximal percentage reduction of the lesion that provided the expression data 
shown in the heat map (index lesions, n=45). Lesions with reduction of ≥20% are indicated in gold. Sample annotation track 
shows ‘Biopsy Site’ (lymph node metastatic site in gold, missing data in white). Patient annotation track shows ‘Response’ 
(Responders in gold). Gene annotation track to right of the heat map shows ‘IRIS’ immune- cell transcripts (lymphoid lineage 
in green, myeloid lineage in blue, expression in both lineages in gold). (B) Normalized enrichment scores for GSEA evaluating 
Hallmark gene sets in the results for differential gene expression analysis at day 28. (C) Expression values for the CTLA4, 
PDCD1LG2 (PDL-2) and TIGIT transcripts in 55 biopsies provided at day 28. Data are grouped by Response status. Prior 
TKI therapy is indicated by circles, Naïve by diamonds. P values were obtained by testing the appropriate contrast from the 
extended linear model. GSEA, gene set enrichment analysis; IRIS, immune response in silico; RMA, robust multiarray average; 
TIGIT, T cell immunoreceptor with Ig and ITIM domains; TKI, tyrosine kinase inhibitor.
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Figure 4 Differential change from baseline expression associated with Response. (A) Heat map panel shows the fold change 
for 189 genes with an expression change from baseline that differed between Response groups and was >1.25- fold in the 
Responder group (n=42 patients). Scale is −2- fold to +2- fold (blue to red). Waterfall plot shows maximal percentage reduction 
of the lesion that provided the expression data (n=29 matched index lesions). Lesions with reduction of ≥20% are indicated in 
gold. Sample annotation tracks show ‘Response’ (Responders in gold) and ‘Matched Lesion’ (baseline and day 28 biopsies 
from the same lesion in gold, n=33). Gene annotation track to the right of the heat map shows ‘IRIS’ immune- cell transcripts 
(lymphoid lineage in green, myeloid lineage in blue, expression in both lineages in gold). (B) Normalized enrichment score 
for GSEA evaluating Hallmark gene sets in the results for differential gene expression analyses of change on treatment in 
Responders. (C) RMA- normalized expression values for the IL-18 transcript in biopsies provided at baseline (n=56) and day 
28 of nivolumab therapy (n=55). Data are grouped by Response status. Prior TKI therapy is indicated by circles, Naïve by 
diamonds. P values from Student’s t- test. (D) Serum levels (pg/mL) for the IL-18 protein in 84 patients who provided samples 
at baseline and day 21 of nivolumab treatment. Data are grouped by Response status. Prior TKI therapy is indicated by circles, 
Naïve by diamonds. P values from Student’s t- test. GSEA, gene set enrichment analysis; IL, interleukin; IRIS, immune response 
in silico; RMA, robust multiarray average; TKI, tyrosine kinase inhibitor.
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The gene most strongly differentially expressed between 
Response groups at baseline encodes the cytosolic DNA- 
sensor absent in melanoma 2 (AIM2) (figure 2C), a 
component of the inflammasome.22 To evaluate whether 
this finding can be generalized, we examined the AIM2 
transcript level in the small set of archival formalin- fixed 
paraffin- embedded pretreatment biopsies from meta-
static sites that are available from patients in the Check-
Mate 025 study.23 These biopsy samples also showed 
higher median levels of AIM2 transcript in nivolumab 
Responders (figure 2D).

We also examined our results at baseline for 224 genes 
previously identified as showing differential expres-
sion related to nivolumab response in baseline PD- L1+ 
biopsies from RCC (n=11).10 Of 204 genes evaluable for 
association with Response in our CheckMate 009 Affy-
metrix dataset, 173 agreed with the direction of differ-
ential expression, with 26 meeting a p<0.05 and ≥1.2- fold 
criteria, and 5 being among our final 311 genes (online 
supplemental table S4). The ‘Responder’ transcriptional 
profile of Ascierto et al10 is thus recapitulated in our 
dataset.

Differential expression between Response groups at day 28
At day 28, 779 genes were found to be differentially 
expressed (565 higher in Responders, 214 lower, with 
q<13%; online supplemental table S5). IRIS immune- 
cell transcripts were significantly over- represented (259 
genes, p<10−100) and were almost exclusively expressed at 
higher levels in Responders (figure 3A and online supple-
mental figure S6B). The IRIS transcripts include repre-
sentatives of myeloid (51 including CD68 and CD86) and 
lymphoid (61 including TCRα/β, CD3D, and CD8A) 
lineages, reflecting higher levels of immune infiltration 
associated with Response. GSEA using the Hallmark gene 
sets (figure 3B; see the Methods section) also identified 
higher immune activity; the most over- represented Hall-
mark gene sets were ‘Allograft Rejection’ and ‘Interferon 
Gamma Response’. Gene sets that were under- represented 
in Responders at day 28 included metabolic and onco-
genic processes (‘Oxidative Phosphorylation’, ‘Hedgehog 
Signaling’ and ‘TGF- beta Signaling’). The 565 transcripts 
that were higher in nivolumab Responders include 
immune checkpoints such as T cell immunoreceptor 
with Ig and ITIM domains (TIGIT), CTLA-4, and PD- L2 
(figure 3C and online supplemental table S5), suggesting 
that response may invoke feedback inhibition.

Differential change on treatment between Response groups
In the analysis for change on treatment that differed 
between Response groups, only the ADH1B and NDNF 
transcripts met the criteria in non- Responders (see the 
Methods section). In Responders, 189 genes met the 
criteria (figure 4A; 81 ‘up’, 108 ‘down’ in online supple-
mental table S6). The 108 transcripts that differentially 
decreased on treatment in Responders could reflect tumor 
shrinkage, and they include epidermal growth factor 
receptor (EGFR) and Wnt- pathway components such as 

FZD1 and DVL. The largest fold decrease in Responders 
on treatment was the transcript encoding MMP3, which 
activates canonical Wnt signaling.24 MMP3 was among 
the most strongly overexpressed genes in Responders at 
baseline (3.3- fold, p<5×10−7; online supplemental table 
S3), and the decrease in therapy suggests that the MMP3 
transcript originates in tumor or tumor- specific stromal 
cells. GSEA using the Hallmark gene sets (figure 4B; 
see the Methods section) found that ‘Interferon Alpha 
Response’ and ‘Interferon Gamma Response’ are 
enriched in those transcripts increased on therapy, specif-
ically in Responders, while transcripts from ‘Epithelial 
Mesenchymal Transition’ (EMT) and ‘Angiogenesis’ are 
among those decreased on treatment in Responders. The 
transcripts that differentially increased in Responders on 
treatment included only 13 IRIS immune- cell transcripts, 
and there was no indication of preferential infiltration by 
a specific immune cell type. However, we observed that 
the myeloid- produced proinflammatory cytokine IL-18 
was among the 81 transcripts differentially upregulated in 
Responders (figure 4C). This differential effect may also 
be evaluable in the periphery, since we observed that the 
change in serum IL-18 level from baseline to day 21 was 
greater on average in Responders (figure 4D).

Association of T-cell metrics with Response
We investigated the association between several T- cell 
metrics in biopsies and Response. First, we evaluated 
clonality of T- cell populations. Baseline T- cell clonality 
was not significantly associated with Response, although 
lower median clonality (higher repertoire diversity) was 
observed in Responders for both the naïve and TKI- 
pretreated arms (figure 5A). Also, no association was 
observed between the change in clonality from baseline 
to day 28 and Response status (figures 5A and online 
supplemental figure S7). Second, we estimated the rela-
tive abundance of T cells in biopsies at baseline and at 
day 28 by a T- cell receptor ‘CD3TCR’ expression score 
using a gene set of the CD3-γ, CD3-δ, CD3-ε and CD3-ζ 
and TCR-α and TCR-β subunits,25 and performed the 
following analyses.

Association with baseline T-cell abundance
The CD3TCR score calculated on baseline samples (n=56) 
was compared with clinical and genomic factors (online 
supplemental figure S8). The CD3TCR score broadly 
agreed with IHC for CD4 and CD8 on adjacent sections 
and was not elevated in biopsies sourced from lymph 
node metastases. Samples with higher CD3TCR score 
generally rated lower on tumor purity metrics obtained 
from genomic analysis. The baseline CD3TCR score was 
positively associated with Response status (p=0.03), weakly 
associated with prior TKI therapy (p=0.07) and appeared 
unrelated to tumor PD- L1 status or VHL1 mutation status 
(p=0.20 and 0.53, respectively).

The baseline CD3TCR score was examined for asso-
ciation with baseline gene expression (n=56). We saw 
significant positive association with 509 IRIS immune- cell 
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Figure 5 Association with T- cell metrics at baseline. ‘CD3TCR Score’ indicates the composite score for T- cell receptor 
transcripts, calculated in 56 biopsies obtained from patients at baseline. The Responder group is indicated by gold plotting 
symbols, and the non- Responder group by black plotting symbols. Prior TKI therapy is indicated by circles, Naïve by diamonds. 
(A) Left panel: clonality of the T- cell repertoire in tumor biopsies at baseline (n=54, p value from unpaired t- test). Right panel: 
change in clonality at day 28 relative to baseline (n=51, p values from paired t- test). Data are grouped by Response status. 
(B) Expression values for the CCL28 transcript (left panel) and CA9 transcript (right panel), compared with CD3TCR score, in 
56 patients at baseline. Adjusted p values are from limma (online supplemental table S7). (C) Normalized enrichment score for 
GSEA evaluating Hallmark gene sets in the results for differential gene expression analysis against CD3TCR score at baseline. 
(D) Heat map panel shows z- score expression data for the 11 transcripts from the gene set ‘ELVIDGE_HIF1A_TARGETS_DN’ 
that were associated with CD3TCR score. Scale is −1 to 1 (blue to red). Data are from 56 patients at baseline, sorted from low 
to high CD3TCR score (left to right). Sample annotation tracks show CD3TCR Score (blue to red indicates lowest to highest 
score in the 56 baseline biopsies), Response (Responders in gold), Prior Therapy (Naïve in gold), Biopsy site (Lymph node 
metastatic site in gold), VHL1 status (Mutant in gold, unknown in gray), and tumor PD- L1 category (Negative in white, Positive 
at any level in red, Unknown in gray). (E) Expression values for the CSNK1E, FZD3, LRP4, LRP5, LRP6 and PAK4 transcripts, 
versus CD3TCR score, in 56 patients at baseline. Adjusted p values are from limma (online supplemental table S7). GSEA, gene 
set enrichment analysis; PD- L1, programmed death ligand-1; RMA, robust multiarray average; VHL, von Hippel- Lindau.
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transcripts comprising myeloid and lymphoid lineages 
(multiple- test adjusted p<0.05; online supplemental table 
S7). No IRIS immune- cell genes showed significant nega-
tive association with CD3TCR score (online supplemental 
table S8). Thus, these results did not reveal an immune 
population specifically present in biopsies with lower 
T- cell abundance. (All negative associations with IRIS 
transcripts are presented in online supplemental table 
S9.) However, there were immune- related genes among 
the 325 transcripts that were significantly higher in biop-
sies with a low CD3TCR score. For example, we see higher 
transcript levels of Treg- attractant chemokine CCL2826 
(adjusted p=0.021, figure 5B). We also observed a nega-
tive association between CD3TCR score and transcripts 
for Carbonic Anhydrase IX (CAIX or CA9), an enzyme 
enabling tumor adaptation to acidification of its extracel-
lular environment (adjusted p=0.025, figure 5B). CCL28 
and CAIX transcription are regulated by hypoxia,27 28 and 
GSEA using the Hallmark gene sets revealed that tran-
scripts associated with low CD3TCR score were enriched 
for the ‘hypoxia’ gene set and further hypoxia- associated 
transcripts (figure 5C and online supplemental figure S9), 
including genes known to be directly regulated by HIF-1α 
and HIF-2α29 (figure 5D). Transcripts associated with 
low CD3TCR score were also enriched for the ‘Epithe-
lial Mesenchymal Transition’ and ‘Hedgehog Signaling’ 
gene sets. In melanoma, low T- cell infiltration has been 
associated with high expression of the PAK4 kinase gene 
and elevated WNT/β-catenin signaling.30 Consistent 
with these observations, we noted significantly higher 
expression of components of Wnt receptor signaling 
(LRP4/5/6, CSNK1E and FZD3) in biopsies with lower 
CD3TCR score. However, we did not observe an associa-
tion with PAK4 expression (adjusted p=0.75, figure 5E).

Association between gene expression and Response in patients 
with high T-cell abundance at day 28
The CD3TCR score calculated on biopsies from day 
28 was associated with Response status (n=55, p<0.01). 
To investigate the phenomenon of patients who are 
non- Responders despite T- cell abundance comparable 
to that seen in Responders, the subset of patients with 
above- median CD3TCR score (n=27 comprising all 11 
Responders and 16 non- Responders) were analyzed for 
association between day 28 gene expression and Response 
(online supplemental table S10). We found that immune 
checkpoints (such as those shown in figure 3C) were not 
differentially expressed. The 210 differentially expressed 
transcripts (fold change >1.2, p<0.05; online supple-
mental table S11) included only 13 IRIS immune- cell 
transcripts, such as CXCR4, a receptor for the lymphocyte 
chemoattractant SDF/CXCL12,31 which was expressed 
at higher levels in Responders, and the costimulatory 
receptor CD40, which was expressed at higher levels in 
non- Responders (figure 6A). GSEA using the Hallmark 
gene sets (figure 6B; see the Methods section) found 
that for these 27 patients with high T- cell abundance, 
lack of Response was associated with higher expression 

of transcripts from the ‘Interferon Alpha Response’ 
and ‘Interferon Gamma Response’ gene sets (figure 6B 
and online supplemental figure S10 and table S12). For 
‘Interferon Gamma Response’, the leading- edge subset 
(the core of the gene set that accounts for the enrichment 
signal18) includes CD40 and several genes with direct roles 
in antiviral recognition, such as the dsDNA sensor IFIH1 
(MDA5) and the RIG- I- MDA5 sentinel protein DDX6032 
(figure 6C and online supplemental table S12).

Association of gene expression classifiers with Response
We assessed transcriptional classifiers previously related 
to the biological characteristics of ccRCC and/or thera-
peutic response to nivolumab. We assigned ‘ccrcc- like’ 
molecular subtypes for CheckMate 009 biopsies using 
the ccrcc groups (see Methods),6 which were established 
in the same sample type as CheckMate 009 (fresh- frozen 
biopsies of metastatic lesions). We also calculated scores 
for the ‘Angiogenesis’, ‘T- effector’, and ‘Myeloid Inflam-
mation’ gene sets from the IMmotion150 trial,5 the 
Tumor Inflammation Signature (‘TIS’),33 the 26 genes 
evaluated in the JAVELIN Renal 101 trial (‘JAVELIN’),11 
the ‘Adenosine’ gene set,34 a gene set related to Fuhrman 
grade,35 and an EMT/stromal gene set associated with 
T- cell exclusion.36

Clustering identified redundancy in the way ccrcc- 
like subtypes and gene set scores classified patients in 
CheckMate 009 (figure 7A). ‘Myeloid Inflammation’ and 
‘Adenosine’ scores were very similar, as they share gene 
content (online supplemental table S1). Both resem-
bled ‘Fuhrman grade’ and, to a lesser degree, the ‘EMT/
stromal’ score. Our ‘CD3TCR’ score was highly correlated 
with ‘TIS’, ‘T- effector’, and ‘JAVELIN’ scores, and these 
four T- cell/inflammation- related scores were highest in 
the ccrcc4- like subtype, although CD274 (PD- L1) was 
their only shared transcript (online supplemental table 
S1). Finally, the ccrcc2- like molecular subtype was associ-
ated with high ‘Angiogenesis’ score, although they share 
no genes (online supplemental figure S11 and table S1).

We evaluated association between Response status and 
the classifiers. Among the molecular subtypes, members 
of ccrcc4- like subtype had a higher rate of Response to 
nivolumab (47% Response rate, p=0.013 relative to non- 
ccrcc4- like; figure 7B). The predictive accuracy of gene 
set scores was evaluated by ROC analysis (figure 7C 
and online supplemental figure S12). ‘Angiogenesis’ 
(which was positively associated with response to suni-
tinib therapy in IMmotion150) showed a negative asso-
ciation with nivolumab Response. The two related scores 
reflecting myeloid biology (‘Myeloid Inflammation and 
Adenosine’) had poor predictive accuracy, similar to the 
‘Fuhrman grade’ score. The four scores related to T- cell/
inflammation status (‘CD3TCR’, ‘TIS’, ‘T- effector’, and 
‘JAVELIN’) had similar predictive accuracy, with AUCs 
around 70%.

The strength of association with Response, as measured 
by the OR, was estimated for each gene set score, for 
the ccrcc4- like subtype, and for PBRM1 mutation status 
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(figure 7D and online supplemental table S13). The gene 
sets had OR estimates that were broadly similar to each 
other, except for ‘Angiogenesis’, for which the direction 
of association was opposite. The previously reported 
association of PBRM1 mutation status with response14 
was recapitulated in this independent analysis of the 
CheckMate 009 dataset (50% Response rate in mutants, 
p=0.011; online supplemental figure S13A). The ccrcc4- 
like subtype and PBRM1 mutation status had ORs of 
similar magnitude. However, PBRM1 status was not asso-
ciated with ccrcc- like subtype in the 33 patients where 

both were evaluable (p=0.91, online supplemental figure 
S13B).

Since the ccrcc4- like subtype was associated with 
Response in CheckMate 009, we evaluated the ability 
of the CheckMate 009 baseline Response genes (online 
supplemental table S3) to predict the ccrcc4 subtype, 
using a published dataset from 51 patients.6 Unsuper-
vised clustering of the transcripts reproduced the direc-
tionality of coregulation seen in CheckMate 009, while 
unsupervised clustering of the samples identified a group 
that was entirely ccrcc4 subtype (n=5 of 7 ccrcc4 samples 

Figure 6 Association between gene expression and Response in patients with high T- cell abundance at day 28. All data shown 
are from the 27 patients with above- median CD3TCR score at day 28. (A) Expression values for the CXCR4 (left panel) or CD40 
(right panel) transcripts, in biopsies provided at day 28 of nivolumab treatment. Data are grouped by response status. Prior 
TKI therapy is indicated by circles, Naïve by diamonds. (B) Normalized enrichment score for GSEA evaluating Hallmark gene 
sets in the result for differential gene expression analyses at day 28 comparing response status. (C) Heat map panel shows 
z- score expression data at day 28 for the 20 transcripts from the Hallmark gene set ‘Interferon Gamma Response’ that were 
negatively associated with Response status (p<0.1). Scale is −1 to 1 (blue to red). Waterfall plot shows percentage reduction of 
the lesion that provided the expression data (index lesions, n=23). Lesions with reduction of ≥20% are indicated in gold. Sample 
annotation tracks show Response (Responders in gold), and CD3TCR score on a scale from blue to red (lowest to highest score 
in the 55 biopsies analyzed at day 28). GSEA, gene set enrichment analysis; RMA, robust multiarray average; TKI, tyrosine 
kinase inhibitor.
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Figure 7 Association of gene expression classifiers with Response. (A) Heat map panel shows scores for the gene sets 
indicated, clustered by their similarity. Samples are ordered by maximal percentage tumor burden reduction for the 56 patients 
with baseline gene expression data, shown in the upper waterfall plot. Reduction of ≥20% is indicated in gold. Lower waterfall 
plot shows maximal percentage reduction of the lesion that provided the expression data (index lesions, n=42). Reduction of 
≥20% is indicated in gold. Sample annotation tracks show Response (Responders in gold), PBRM1 status (truncating mutation 
in gold, wild type in black, unknown are blank), and predicted ccrcc- like subtype (ccrcc1- like as black, ccrcc2- like as red, 
ccrcc3- like as gray, and ccrcc4- like as gold). (B) Response rate in patient groups for each of the four ccrcc- like molecular 
subtypes. Error bars indicate 95% CI for the rate. P value is from Fisher’s exact test of ccrcc4- like versus ccrcc1/2/3- like. (C) 
Receiver operating characteristic curves summarizing predictive accuracy for gene set scores, ranging from TIS (AUC=72%) 
to IMmotion150 angiogenesis (AUC=33%). (D) ORs for Response given PBRM1 status, ccrcc4- like subtype, or gene set 
score. For the gene set scores, the OR compares the odds of response for the 25th versus the 75th percentile. For ccrcc4- like 
subtype and PBRM1 mutant status, the OR compares the odds of Response for ccrcc4- like versus ccrcc1/2/3- like and for 
mutant versus wild type, respectively. Panel displays log2 OR, centered on 0. OR and 95% CIs indicated to the left. (E) Data 
for 51 samples of ccRCC from public dataset E- MTAB-3267. Heat map panel shows z- score expression data for 93 genes for 
which baseline expression was associated with Response (p<0.01 and >1.5- fold difference) in CheckMate 009 (see figure 2A). 
Gene annotation track to the right of the heat map indicates the direction of differential expression in CheckMate 009, with red 
indicating transcripts that were higher at baseline in patients who then responded to nivolumab. Sample annotation tracks show 
the individual’s best response to subsequent therapy with sunitinib (PD indicated in black, SD in green, Clinical Benefit and PR 
in gold) and the ccrc subtype with ccrcc1, 2, and 3 in progressively darker shades of green and ccrcc4 in gold. Samples and 
transcripts are hierarchically clustered. AUC, area under the curve; ccrcc, clear cell renal cell carcinoma; OR, odds ratio; PD, 
progressive disease; PR, partial response; SD, stable disease; TIS, tumor inflammation signature.



12 Ross- Macdonald P, et al. J Immunother Cancer 2021;9:e001506. doi:10.1136/jitc-2020-001506

Open access 

in the dataset) and sunitinib non- responsive (figure 7E 
and online supplemental figure S14). This association 
between expression of the CheckMate 009 Response 
genes and the ccrcc4 subtype was not due to gene content; 
the only shared transcript was for AIM2 (online supple-
mental table S1).

DISCUSSION
We report here the first characterization of associations 
between nivolumab response and biological properties 
of tumor biopsies taken before and during treatment 
of metastatic ccRCC. We discuss below the implica-
tions of our findings for immune infiltrates, for poten-
tial biomarkers, for therapeutic targets, and for current 
combination therapies (nivolumab plus ipilimumab, TKI 
plus anti- programmed death-1 [PD-1]).

RCC tumors are generally highly inflamed and ‘exclu-
sion’ of T cells is rare.23 At baseline, our differential gene 
expression and T- cell abundance analyses showed that the 
subset with highest immune content included subsequent 
Responders but also some non- Responders, explaining 
our observation that immune classifiers have low predic-
tive accuracy. We have previously shown that increased 
immune infiltration in all patients is a pharmacodynamic 
effect of nivolumab treatment.12 Here, both differential 
expression and T- cell abundance analyses showed that, on 
treatment, this infiltration was highest in Responders and 
a subset of non- Responders. Our study design allowed us 
to exclude two possible explanations for the observation 
that some non- Responders had immune content very 
similar to Responders: it was not due to a lymph node 
site for the tumor biopsy or to a differential response for 
the lesion that provided expression data. Instead, the 
recent demonstration of interplay between infiltration 
and somatic alterations is likely to be relevant.23

Regarding potential pretreatment markers for 
response, our most strongly differentially expressed gene 
encodes the cytosolic DNA- sensor AIM2. This protein 
detects altered or mis- localized DNA molecules, trig-
gering assembly of the inflammasome and activating 
inflammatory caspases and cytokines such as IL-1β.22 We 
saw elevated expression of AIM2 in pretreatment biopsies 
from nivolumab Responders in an independent clinical 
dataset, and higher AIM2 expression is also associated 
with the ccrcc4 subtype and poor response to sunitinib.6 
Overall, our pretreatment markers for favorable response 
to nivolumab in CheckMate 009 agree with the previous 
findings of Ascierto et al10 and identify the ccrcc4 subtype 
in the dataset of Beuselinck et al,6 indicating a robust 
molecular grouping of ccRCC that is related to response. 
The single- gene predictive markers from this study also 
include viable candidates to be evaluated as biomarkers 
in the periphery. For example, MMP3, the second- most 
strongly differentially expressed gene, was independently 
identified as a baseline plasma protein marker associated 
with longer OS for the PD- L1 inhibitor atezolizumab.37

Regarding potential on- treatment markers for 
response, in this analysis, we looked for transcripts with 
a change over the 28- day treatment window that differed 
between the Response groups. We could not identify 
markers for non- Responders, but many such transcripts 
that changed in Responders included an increase in IL-18 
mRNA that was also detectable in serum protein levels. 
A differential increase in serum IL-18 associated with 
longer OS was also reported for lenvatinib plus evero-
limus,38 but a decrease was reported for atezolizumab.37 
IL-18 synergizes with IL-12 to increase transcript level for 
IFNG,39 and IFNG is among the 565 genes expressed at 
higher levels in the CheckMate 009 Responders at day 28 
(online supplemental table S5). The conflicting observa-
tions for association between serum IL-18 levels and OS 
with nivolumab,25 lenvatinib plus everolimus,38 or atezoli-
zumab37 may reflect the importance of assay timing rela-
tive to therapeutic response. In sum, IL-18 is a nivolumab 
mechanistic marker that potentially allows monitoring of 
response in the periphery.

Our findings include transcripts for proteins that 
are themselves potential therapeutic targets. One 
immune- associated transcript seen at higher levels at 
baseline in non- Responders was MAN2A1, encoding alpha- 
mannosidase II. Inhibitors of this enzyme profoundly 
affect the Th1/Th2 axis40 and have been clinically tested 
due to their ability to enhance cellular immune responses 
and reduce solid tumor growth in mice.41 Among tran-
scripts at higher levels at baseline in Responders, we saw 
PVRIG, a coinhibitory receptor of the DNAM/TIGIT/
CD96 nectin family. As with TIGIT, antagonism of PVRIG 
increases CD8+ T- cell cytokine production and cytotoxic 
activity,42 and inhibitors are in clinical development.43 We 
saw TBL1XR1 transcripts at higher baseline levels in non- 
Responders. The TBL1XR1 protein plays a role in Wnt 
signaling via interaction with N- CoR and β-catenin,44 and 
we found that transcripts for several other Wnt pathway 
components were associated with lack of response and/
or low T- cell abundance at baseline. This suggests that 
RCC may be among the relevant cancers for harnessing 
currently available Wnt modulators for cancer immuno-
therapy.45 Finally, lower T- cell abundance at baseline was 
associated with non- Response and reflected enrichment 
for ‘Hedgehog Signaling’, which might prove therapeuti-
cally tractable, and increase of ‘Hypoxia’- associated tran-
scripts, including CAIX and CCL28. Targeting hypoxia 
directly with HIF-2α inhibitors may be an effective treat-
ment for patients with RCC.46 Recently completed trials 
with girentuximab, a monoclonal antibody against CAIX, 
showed a non- significant disease- free survival benefit in 
patients with RCC with high CAIX scores,47 while CCL28 
has also been proposed as an oncology target based on its 
role in promoting tolerance and angiogenesis.26

Our study suggests several possible mechanisms 
for synergy between nivolumab and ipilimumab, an 
approved 1 L regimen with superior efficacy to mono-
therapy for RCC.4 First, we saw that our baseline predic-
tors of Response to nivolumab included many transcripts 
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that are regulated by treatment with ipilimumab,21 raising 
the possibility that treatment with ipilimumab promotes 
a tumor environment that predisposes to nivolumab 
response. Second, we saw elevated transcription of the 
Treg chemoattractant CCL28 in biopsies with low T- cell 
abundance, indicating that they may have an unfavorable 
ratio of CD4:CD8 that could be addressed by the antibody- 
dependent cell- mediated cytotoxic effect of ipilimumab 
on Tregs reported in animal models.48 Third, in the 
subset of patients lacking nivolumab Response despite 
high T- cell abundance on therapy, we saw higher levels 
of numerous transcripts related to IFN induction via RIG- 
I- MDA5 signaling. IFN signaling is of increasing interest 
as a mechanism of resistance to PD-1 blockade.49 High 
RIG- I transcriptional activity has recently been reported 
as a predictor of response to ipilimumab,50 implicating 
these patients as a favorable target group.

Our study also suggests a possible mechanism for the 
augmented response seen for the approved 1 L regimens 
that combine CPI therapy (pembrolizumab or avelumab) 
with the selective vascular endothelial growth factor 
receptor TKI axitinib.4 We observed higher Response 
rates for nivolumab in patients with biopsies of the ccrcc4- 
like molecular subtype and lower Response rates when 
biopsies were of the ccrcc2- like subtype. Higher response 
rates for the TKI sunitinib were previously observed in 
patients with biopsies of the ccrcc2 molecular subtype 
and lower response rates when biopsies were of the ccrcc4 
subtype.6 7 We showed that the ccrcc2- like subtype had 
high expression of the ‘Angiogenesis’ gene set, which 
has been positively associated with response to sunitinib.5 
It seems likely that the increase in efficacy with CPI in 
combination with TKI is due to broadening of the respon-
sive population (ccrcc4 plus ccrcc2), instead of deeper 
efficacy in a common patient population. The ccrcc 
subtypes are being prospectively tested in the BIONIKK 
clinical trial (NCT02960906), with overall response rate 
evaluation according to molecular groups (ccrcc1–4) and 
assigned treatment (nivolumab monotherapy, nivolumab 
plus ipilimumab, or TKI monotherapy (sunitinib or pazo-
panib)). The outcome should further illuminate this 
matter.

CONCLUSION
Our characterization of nivolumab treatment using gene 
expression in lesion- paired biopsies before and during 
treatment informs on the relationship of immune infiltra-
tion to response. We have shed light on two phenomena 
related to primary resistance to CPI: low T- cell infiltrate 
at baseline and high T- cell infiltrate on therapy in the 
absence of response. We also identified an association 
between molecular subtypes of ccRCC and response to 
nivolumab, reflecting a biological state that is relevant to 
treatment decisions for both CPI and TKI therapy.
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