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The associations between clinical phenotypes (tumor grade, survival) and cell phenotypes, such as shape, signaling activity,

and gene expression, are the basis for cancer pathology, but the mechanisms explaining these relationships are not always

clear. The generation of large data sets containing information regarding cell phenotypes and clinical data provides an op-

portunity to describe these mechanisms. Here, we develop an image-omics approach to integrate quantitative cell imaging

data, gene expression, and protein–protein interaction data to systematically describe a “shape-gene network” that couples

specific aspects of breast cancer cell shape to signaling and transcriptional events. The actions of this network converge on

NF-κB, and support the idea that NF-κB is responsive to mechanical stimuli. By integrating RNAi screening data, we identify

components of the shape-gene network that regulate NF-κB in response to cell shape changes. This network was also used to
generate metagene models that predict NF-κB activity and aspects of morphology such as cell area, elongation, and protru-

siveness. Critically, these metagenes also have predictive value regarding tumor grade and patient outcomes. Taken togeth-

er, these data strongly suggest that changes in cell shape, driven by gene expression and/or mechanical forces, can promote

breast cancer progression by modulating NF-κB activation. Our findings highlight the importance of integrating phenotyp-

ic data at the molecular level (signaling and gene expression) with those at the cellular and tissue levels to better understand

breast cancer oncogenesis.

[Supplemental material is available for this article.]

A tenet of genetics is that visually observable phenotypes can be
used to infer the levels of unobservable biological properties,
such as mRNA expression, protein levels/localization, and enzy-
matic activity. In the case of cells, quantifiable phenotypes such
as cell shape can be used to infer the activation state of different
signaling networks that regulate aspects of cell physiology, such
as proliferation, survival, migration, and differentiation, even if
the signaling activity of all these networks cannot be directly mea-
sured (Bakal et al. 2007; Sailem et al. 2014). Thus, visual pheno-
types such as shape can be used to infer signaling states (Fig. 1A).

The relationship between cell shape and signaling states plays
a role in the diagnosis and treatment of cancer. Even before the
definition of a gene existed, observations were made that cancer
cells have a different shape from normal cells and that disruptions
in tissue architecturewere symptomatic of cancer—findingswhich
still remain a foundation of cancer pathology (Fig. 1A; Faguet
2015). It is now clear that the expression of oncogenes, or loss of
tumor suppressors, affects numerous transcriptional, epigenetic,
and post-translational processes, and thus signaling states, to pro-
mote cancer cell survival, proliferation, and invasion, and ulti-
mately changes in cell shape (Fig. 1A; Simons et al. 1967). This
three-way relationship between cell shape, signaling state, and
clinical outcomes allows clinicians to make key decisions regard-
ing patient treatment based partially on visual inspection of tumor
tissue.While the relationship between signaling states and clinical

outcomes is well understood—i.e., that oncogenic signaling can
drive cancer—how cell shape is related to signaling is less clear.
Most known relationships between the two properties are largely
descriptive and qualitative in nature. Establishing quantitative
and predictive relationships between cell shape and signaling
states could increase the accuracy of patient diagnosis based on vi-
sually observable properties of tumor tissue.

A complicating factor in understanding the relationship be-
tween cell shape and signaling states is the bidirectional nature
of this relationship (Fig. 1A). It is often assumed that the up-regu-
lation of a gene and/or the activation of a protein results in cell
shape changes—i.e., by altering cytoskeletal dynamics. However,
in both stem and differentiated cells, cell shape regulates signaling
and transcriptional activities (Orsulic et al. 1999; Miralles et al.
2003; Zheng et al. 2009; Olson andNordheim 2010). In particular,
shape regulates signaling via the actions of mechanosensitive
components, including cell–cell adhesions, cell–matrix adhesions,
and the cytoskeleton which can sense extracellular forces from the
extracellularmatrix (ECM), neighboring cells, and biological fluids
(Mammoto et al. 2012). These mechanosensitive components, in
turn, regulate cell shape and stiffness, as well as the signaling
and transcriptional activities, in a process termed mechanotrans-
duction. For example, changes in actin organization can affect
the localization and activation of the YAP and TAZ transcription
factors (TFs) (Yu and Guan 2013), and changes in the nuclear
membrane structure can affect transcription via the action of lam-
ins, which are both nuclear membrane scaffolds and TFs (Dahl
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progression, we need to develop methods for integrating informa-
tion from cell shape as well as signaling states and transcriptional
activities to study how these factors impact each other.

Previously, we have demonstrated that cell shape is a major
regulator of the NF-κB signaling pathway in breast cancer cells
using Bayesian learning-based methods (Sero et al. 2015). In nor-
mal cells, NF-κB regulates gene transcription in response to stress
stimuli as a means to modulate the immune response, survival,
proliferation, and tissue repair. NF-κB activity also plays a critical
role in cancer progression, either by activating target genes in
cancer cells and/or in infiltrating immune cells (Greten et al.
2004). Constitutive activation of NF-κB is characteristic of many
cancers and as such there are intensive efforts to develop inhibitors
of NF-κB signaling (Park and Hong 2016). Although activating
mutations in the NF-κB signaling pathway are common in many
lymphoid malignancies, they are rare in carcinomas (DiDonato
et al. 2012); suggesting that NF-κB activation in solid tumors is
driven in large part by extrinsic factors (Mantovani et al. 2008).
While inflammation is clearly the primary activator of NF-κB in
cancer cells, our work demonstrates that mechanical cues, such
as those coming from the loss of cell–cell adhesions, or increases
in cell autonomous contractility, can also up-regulate NF-κB activ-

ity via changes in cell shape (Sero et al. 2015). Because tumor cells
often lose cell–cell adhesion, and remodel their microenviron-
ment in a way that results in both increased stiffness and deposi-
tion of ECM which increases cellular contractility (Butcher et al.
2009), mechanical activation of NF-κB could represent an impor-
tant means by which NF-κB is extrinsically activated in cancer
cells.

Results

Identifying genes that correlate with cell shape features

in breast cancer cells

To describe the signaling networks that couple cell shape to tran-
scriptional regulation, we identified genes whose expression corre-
lates with differences in cell shape across different breast cancer
lines (BCLs) (Fig. 1B).We speculated that these genes should either
regulate cell shape and/or act as part of mechanotransduction
pathways that alter gene expression in response to changes in
cell shape. To generate these networks, we made use of (1) a data
set where we measured shape features in 307,643 cells across 18
BCLs (Supplemental Table S1; Sailem et al. 2015; Sero et al.

Figure 1. Integrating imaging and expression data. (A) The three-way relationship between cell shape, signaling states, and cancer progression.
(B) Workflow for linking cell shape to transcription and patient outcome. (C) Representative images of different breast cancer lines (BCLs) to illustrate
the variation in nucleus/cell area ratio (N/C area) MDA-MB-453, CAMA1, hs578T, and HCC1143 cells, where cell lines to the left have the highest N/C
area and cell lines to the right have the lowest N/C area. Red: DAPI, cyan: DHE. Scale bar = 30 µm.
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2015), and (2) a data set describing the expression of 28,376 genes
across these same 18 BCLs (Grigoriadis et al. 2012). Ten morpho-
logical features that we have previously shown to be predictive
of TF activation were used in our analysis (Sero et al. 2015).
These include: the dimensions and area of the cell and the nucleus;
nucleus/cell area ratio (N/C area); centers distance (the dis-
tance between the cell center and the nucleus center); neighbor
fraction (NF—the fraction of cell border in contact with other
cells); cellular protrusions (areas at the periphery of the cell with
lower intensity than the rest of the cell, reflecting thinner cellular
regions); and cell ruffliness (variation inmembrane region intensi-
ty) (Fig. 1B,C).

Cell shape features were integrated with gene expression data
by measuring the correlation between the average and the stan-
dard deviation (SD) of the morphological features and the expres-
sion of each gene (Fig. 1B). Genes with low variability across BCLs
were filtered out, resulting in 11,314 genes that were used in the
analysis (Methods). We found 504 genes (termed shape-correlated
genes hereafter) to be significantly correlated with themorpholog-
ical features (absolute Spearman correlation > 0.7, P-value <
0.0012, False Discovery Rate [FDR] < 23%) (Supplemental Figs.
S1, S2; Supplemental Table S2).

Morphological features can be linked to genes that regulate cell

shape at the molecular level

To investigate whether different shape-correlated genes encode
components which regulate specific cellular processes, we per-
formed enrichment analysis of the 504 genes using Gene
Set Enrichment Analysis (GSEA) (Subramanian et al. 2005) and
DAVID (Huang et al. 2009). We only considered terms enriched
at an FDR P-value < 0.05. Shape-correlated genes are enriched for
cellular processes associated with cell morphogenesis, especially
those involved in differentiation and cell migration (Sup-
plemental Table S3). Additionally, shape-correlated genes are en-
riched for adhesion-related processes such as cell adhesion, ECM
organization, ECM-receptor interaction, focal adhesion, and cell
projection morphogenesis (Supplemental Table S3). The enrich-
ment of these categories strongly supports the idea that these
genes are either regulated by or regulate changes in cell shape.

We also performed enrichment analysis for genes correlated
with each shape feature individually (versus enrichment analysis
of all 504 genes simultaneously). For example, cell elongation, as
measured by cell-width/cell-length ratio (cell W/L), correlates
with 135 genes that are involved in processes that ultimately affect
cell elongation, such as cell cytoskeleton (six genes), regulation of
cell proliferation (eight genes), and cell adhesion (nine genes)
(Supplemental Table S4). Seven of the 86 genes that correlate
with N/C area are in the KEGG “focal adhesions pathway,” and
eight genes are categorized by gene ontology as ECM components
(Supplemental Table S4). This analysis also resulted in unexpected
links between genes and some phenotypic features. For example,
10 of the 43 genes that correlate with nuclear roundness encode
mitochondrial components (Supplemental Table S4). Using
GSEA analysis, we also found that 20 of N/C area-correlated genes
are shown to be down-regulated in luminal-like cell lines, such as
CAMA1 and MDA-MB-453, versus mesenchymal-like cell lines,
such as HCC1143 and hs578T (Fig. 1C), including the genes
HMGA2, PIK3CD and VCL. By integrating gene expression data
with phenotypic data of cell lines from the same tissue, we are
able to link morphological features to the expression of specific
genes.

Building a shape-gene interaction network

The biggest intra- and inter-cell line shape differences in this
data set can be linked to epithelial-like or mesenchymal-like mor-
phologies. Thus, we were particularly interested in understanding
how phenotypic features and shape-correlated genes interact with
a set of TFs that are involved in epithelial-mesenchymal transition
(EMT), such as RELA (the p65 subunit of NF-κB), SMAD2, SMAD3,
SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2 (Garg 2013; Bogachek
et al. 2014; Puisieux et al. 2014). As mesenchymal cells have
been described to have stem-like properties (Samavarchi-Tehrani
et al. 2010), we also investigated interactions between genes in
these data and TFs that regulate stemness and differentiation,
such as KLF4, MYC, and SOX2 (Li et al. 2010; Samavarchi-
Tehrani et al. 2010). Finally, we also determined the relationship
between shape-correlated genes and the mechanosensitive TF
YAP1, which has roles in cell proliferation and EMT (Yu and
Guan 2013). Of these preselected genes, only SMAD3 expres-
sion correlates with breast cancer cell shape; specifically, SMAD3
expression correlates with cell W/L (Supplemental Fig. S1;
Supplemental Table S2). That the expression of the other selected
TFs does not correlate with cell morphology is not unexpected
because TF activity is often regulated by post-translational mecha-
nisms, such as subcellular localization and/or phosphorylation.

We used the STRING database (Jensen et al. 2009) to retrieve
interactions between proteins encoded by shape-correlated genes
and between proteins encoded by shape-correlated genes and
the selected TFs. We considered STRING interactions that were
of medium confidence (combined STRING score≥ 0.4), where
the combined score is calculated based on known experimentally
derived and curated interactions, as well as predicted interactions
based on neighborhood, gene fusions, co-occurrence, and co-ex-
pression (Methods). This resulted in 210 interactions, 22 of which
are between shape-correlated proteins and our selected TFs as fol-
lows: SMAD3 (eight interactions), RELA (six), MYC (four), KLF4
(two), SMAD2 (one), and YAP1 (one) (Supplemental Table S5). In
addition to interactions between proteins encoded by shape-corre-
lated genes, we added shape feature-gene correlations as interac-
tions (514 edges). The resulting list of interactions was used to
build a shape-gene interaction network that shows how morpho-
logical features are linked to different genes and selected TFs (Fig. 2).

Network analysis

We analyzed the main attributes of nodes in the shape-gene net-
work including node degree, stress, and closeness. Node degree is
the number of node interactions with other nodes (between one
and 16 in our network) (Fig. 3). The stress of a node is determined
by calculating the number of shortest paths that span a node and
reflect the activity of the node (Shimbel 1953). The closeness of a
node represents the reciprocal of the average length of shortest
paths that span across the node and indicates how fast information
can spread from that node through the network (Newman 2005).
Interestingly, we found that many cell-ECM adhesion nodes, in-
cluding ITGB1, ITGA1, COL6A2, COL18A1, PTK2, and VCL,
have high degree and closeness values (Fig. 3). This suggests that
mechanical signals, such as changes in adhesion/shape, received
by these nodes are rapidly propagated throughout the network.
We also observed that the TFs SMAD3, Androgen Receptor (AR),
and RELA have high node degree and stress values compared to
all other nodes in the network (and not just other TFs), suggesting
that these TFs are highly active in coordinating the actions of mul-
tiple network components. That we identified a central role for
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RELA/NF-κB in this network in a largely unsupervised manner is
consistent with our previous observation that NF-κB activity is reg-
ulated extensively by cell shape (Sero et al. 2015).

As RELA and SMAD3 nodes have particularly high degree and
stress scores, we sought to determine the shortest paths that exist
between each of the shape features and these TFs (Methods;
Supplemental Fig. S3). These paths represent potential interactions
linking cell shape to transcription. YAP1 was also included in
the analysis for comparison, because it is a well-known mechano-
responsive protein. We only considered direct paths that do not

involve other phenotypic features or other preselected TFs
(Supplemental Table S6; Supplemental Fig. S3A,B) and considered
both optimal, as well as suboptimal, paths (Methods). Nodes in
these paths are either mechanosensitive genes that possibly regu-
late SMAD3 and RELA directly or indirectly or are regulated by
SMAD3 and RELA and are thus mechanoeffector genes.

From the interactions in the path analysis, we built a SMAD3-
NF-κB subnetwork (Fig. 4; Supplemental Table S6). In this network,
SMAD3 activation is linked to both a “nuclear morphology”mod-
ule (containingLMNA)and a “focal adhesion”module (containing

Figure 2. Shape-gene interaction network. A network of the interactions between the proteins encoded by shape-correlated genes, selected TFs, and
shape features. Node size and font size represent the betweenness of a node, which reflects the centrality of the node.
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PTK2 and TNS3). An AR module (containing AR, GAK, RAD9A,
DEPDC1, and FAM174B), as well as TRIO, HMGA2, and ODC1
gene nodes, are linked to both SMAD3 and RELA. Thus, the archi-
tecture of this network depicts how nuclear shape, adhesion, and
cytoskeleton can be linked to SMAD3 and NF-κB signaling.

Predicted regulators of SMAD3 and RELA activation

We sought to identify mechanosensitive nodes in the SMAD3-NF-
κB subnetwork that regulate the activation and transcriptional ac-
tivity of SMAD3 and RELA versus those that might regulate the
mRNA levels of each TF (Supplemental Fig. S3C). To perform the
analysis, we used the Broad Institute’s Library of Integrated
Network-based Cellular Signatures (LINCS) RNAi data set that de-
scribes the expression of 3287 essential genes in MCF7 breast can-
cer cells after 22,268 gene knockdowns (Duan et al. 2014). To
predict whether a shape-correlated gene node in the SMAD3-NF-
κB subnetwork is a regulator of SMAD3 or RELA, we identified
gene nodes in the network whose depletion affects the expression
of downstream targets of SMAD3 or RELA (absolute z-score = 1.5)
without changing the expression of the TF itself (Methods). We
also identified gene nodes whose depletion affects TF mRNA ex-
pression (i.e., expression of RELA and SMAD3 mRNA). A protein
was considered to affect the TF activation significantly if its deple-
tion affects the expression of at least 10% of the TF targets and the
overlap between the protein’s putative target genes and the TF’s
target genes is statistically significant using hypergeometric prob-
ability (P-value < 0.05) (Supplemental Table S7). We further esti-
mated whether proteins encoded by shape-correlated genes
promote or suppress TF activity by determiningwhether the deple-
tion of the protein affects the expression of TF targets in a similar
way as TF knockdown (activators) or has the opposite effect (sup-
pressors) (Methods). For example, knockdown of TRIO signifi-
cantly changes the expression of 518 genes of which 134 genes
were identified as SMAD3 targets and 112 were identified as
RELA targets (P-value≤ 0.01). Since TRIO knockdown affects
RELA and SMAD3 targets in similar ways as the TF knockdowns,
we predict that TRIO activates SMAD3 and RELA (Fig. 4). Using
this method, we found that many of the nodes in Figure 4 are
RELA and SMAD3 activators/inhibitors (i.e., through post-transla-
tional mechanisms) and identified nodes whose activity regulates
RELA and SMAD3 expression. Because the expression of these

genes correlates with cell shape, these are likely mechanosensitive
genes that regulate SMAD3 and/or RELA activation in response to
mechanical cues.

SMAD3 and RELA targets that correlate with cell shape

We determined whether any of the shape-correlated genes in the
SMAD3-NF-κB subnetwork were changed after SMAD3, RELA, or
YAP1 knockdown and thus could be considered mechanoeffector
targets of these TFs (Methods). We found that SMAD3 knockdown
significantly increases expression of the RAD9A and ETS1 TFs,
while it significantly decreases PRKAR1B expression (absolute z-
score > 1.5). RELA knockdown significantly increases TRIO and
HMGA2 expression and decreases ODC1 and ARHGEF7 expression
(Fig. 4). YAP1 knockdown significantly decreases PLXNA1 expres-
sion (Fig. 4). These results suggest that components of the network
such as TRIO and RAD9A regulate SMAD3 and/or RELA activity,
which in turn regulate ARHGEF7, ETS1, ODC1, HMGA2,
PRKAR1B, RAD9A, and TRIO via feedback loops. The expression
of these target genes, especially ARHGEF7 and TRIO, is likely to
change cell shape (Moshfegh et al. 2014).

Genes regulating SMAD3-NF-κB subnetwork are differentially

expressed in different BCL molecular subtypes

We and others have shown that different BCL molecular subtypes
have distinct cell morphologies, where luminal cell lines adopt pri-
marily epithelial shapes, while basal cell lines adopt mesenchymal
shapes (Fig. 5A; Neve et al. 2006; Sero et al. 2015). Clustering of ex-
pression profiles of the genes in the SMAD3-NF-κBmechanosensi-
tive subnetwork reveals two main clusters of BCLs that also
correlate with BCL luminal and basal subtypes (Fig. 5B). We re-
derived SMAD3-NF-kB subnetworks to highlight the difference
in transcriptional activities between luminal and basal cells (Fig.
5B,C;Methods). These networks reveal that SMAD3 activity is like-
ly to beminimal in luminal BCLs,while the activity of theARmod-
ule is very high. Interestingly, the expression of SLC9A3R1,
encoding a protein that sequesters YAP1 in the cell membrane
(Mohler et al. 2015), is highly expressed in the luminal network
(Fig. 5C). On the other hand, SMAD3, ETS1, and HMGA2 expres-
sion is high in basal cells, which is consistent with their role in
EMT. RELA is not differentially expressed in basal versus luminal
BCLs, although RELA localization has been shown to correlate
with BCL molecular subtypes (Sero et al. 2015). Taken together,
we propose that the activity of the SMAD3-NF-κB subnetwork,
which acts in response to, and drives, cell shape changes, may be
responsible for a number of phenotypic differences between these
cell types.

Derivation of morphological metagenes

We next sought to determine if the signaling state of the BCL
shape-gene network in Figure 2 contributes to the progression of
breast cancer in patients. Therefore, we investigated if the expres-
sion of genes encoding components of this network that correlate
with a specific shape feature also correlate with diagnostic and/or
clinical outcome. This approach allows us to leverage the “three-
way” relationship between shape, signaling state (as determined
by gene expression), and disease progression and to overcome
the issue that, while many generated patient data sets contain in-
formation about tumor grade, patient outcomes, and gene expres-
sion, they do not contain information regarding single-cell shape.

We derived multilinear regression models that estimate the
value of a morphological feature or the SD of that feature based

Figure 3. Analysis of the shape-gene network. A plot of the properties of
gene nodes summarizing degree, closeness, and stress. Protein names for
nodes that have high values for any of these features are shown.
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on the expression of a selected subset of genes that correlate with
that feature (Supplemental Tables S8,S9; Methods).We termed the
model predictions ofmorphological features based on gene expres-
sion “morphological metagenes,” which can be considered as a
weighted sum of the expression of genes that correlate with that
morphological feature. For example, the cell area SD metagene is
described by the model

Cell area SD = 0.23× CHRAC1+ 0.25× LARP4B− 0.15

× CHST15+ 1.21.

To investigate the in vivo relevance of ourmetagenes, we used
breast cancer patient data from the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC). This data set in-
cludes expression profiles, clinical features, and disease-specific
survival for 1981 breast cancer patients; 995 patients in the discov-
ery cohort and 986 patients in the validation cohort (Curtis et al.
2012). We found that the expression of different metagenes corre-
lates with tumor grade that is based on the extent of cell differen-
tiation and invasion (Fig. 6A,B; Elston and Ellis 1991). For
example, we found that cell W/L and cell area metagenes are neg-
atively correlated with tumor grade (Jonckheere–Terpstra test P-
value < 0.0005) (Fig. 6A). Because high values of cellW/Lmetagene
are indicative of epithelial shape, while lower values are indicative
of amoremesenchymal shape (Zhao et al. 2016), this suggests that
genes associated with epithelial shapes are down-regulated in
highly aggressive breast cancers. Moreover, this supports the idea

that the activity of the shape-gene network contributes to disease
progression.

Additionally, the expression of the NF metagene, which pre-
dicts local cell density, and hence, proliferation rate (Snijder et al.
2009), and the protrusion metagene, are significantly higher in
grade 3 tumors (P-value < 0.0001) (Fig. 6A). That genes associated
with high NF and protrusions have high expression in more ag-
gressive tumors is in line with the idea that aggressive tumors
have regions of high cell density driven by high rates of prolifera-
tion and have protrusive invasive fronts (Jögi et al. 2012; Zhao
et al. 2016).

Metagenes that predict variability in cellular morphology in
BCLs also correlate with tumor grade. The NF SD, protrusion area
SD, and cell area SD metagenes correlate positively with tumor
grade (P-value < 0.0005) (Fig. 6B). On the other hand, the cell W/
L SD metagene correlates negatively with tumor grade (Fig. 6B).

To validate the significance of the correlation between the ex-
pression ofmorphological metagenes and clinical data, we derived
a random variable and built a regression model to predict this var-
iable from20 randomly drawn genes, as we have done for the other
metagenes (Methods). As expected, the random metagene does
not correlate with tumor grade (P-value = 0.2698).

Prognostic value of morphological metagenes

We also determined whether morphological metagenes could
stratify patients based on 10-yr patient-specific survival. To dichot-
omize our metagenes, we selected the cut-offs that produce the

Figure 4. SMAD3-NF-κB subnetwork. Proteins that are in a direct path from a phenotypic feature to RELA, SMAD3, or YAP1 (Supplemental Table S6) and
their interactions based on STRING. Edges in dashed lines are based on gene expression and indicate feedback from a TF to proteins encoded by shape-
correlated genes.
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best prognostic predictions based on the discovery cohort
(Methods; Nawaz et al. 2015). Patients with high values of the
cell area and cell W/L metagenes have significantly better survival
in both the discovery and validation cohorts (log-rank test P <
0.01) (Fig. 6C,D). Patients with high values of NF SD metagenes,
which indicates high variation in cell density, have significantly
worse prognosis (log-rank test P < 0.0056) (Fig. 6E). Furthermore,
tumors with high expression of the cell area SD metagene also
have a worse prognosis (log-rank test P < 0.0014) (Fig. 6F).

We performed a multivariate Cox proportional hazards mod-
el to identify whether these metagenes can provide independent
prognostic factors from other clinical factors including tumor
size, grade and lymph node status. We found that the cell W/L
and NF SDmetagenes significantly predict prognosis independent
of tumor size and existence of lymph nodes (P-value < 0.05 in
both discovery and validation cohorts) but not tumor grade
(Supplemental Table S10). Interestingly, only the cell area SD
metagene significantly predicts prognosis independently of tumor
size, grade, and node status (P-value < 0.05 in both discovery and
validation cohorts) (Supplemental Table S10). These results further
illustrate that our morphological metagenes recapitulate the grad-
ing performed by pathologists and suggest a prognostic value of

the cell area SD metagene. These data further support the idea
that the activity of the shape-gene network contributes to breast
cancer progression in patients.

NF-κB activation metagene

Because metagenes encoding components of the shape-gene net-
work are predictive of clinical outcomes and of the central position
of RELA/NF-κB within this network, we reasoned that NF-κB activ-
ity may play a role in cancer progression in response to the actions
of this network. For example, changes in cell shape may affect the
activity of the shape-gene network, and thusNF-κB activity, to pro-
mote tumor cell proliferation, survival, and invasion. To test this
hypothesis, we defined a metagene that correlates with RELA acti-
vation in response to TNF across 18 BCLs which is measured as the
ratio between nuclear RELA intensity and cytoplasmic RELA inten-
sity (Methods; Fig. 7A; Sero et al. 2015). The response of RELA to
TNF is defined as the log of the average RELA ratio (+TNF) divided
by the average RELA ratio (−TNF). To build a regression model of
the NF-κB response metagene, we used BCLs expression data of
genes that affected either RELA activation or expression in Figure
4 (Supplemental Table S11; Methods). We found a significant

Figure 5. The expression profiles of shape-correlated genes that drive transcriptional activities of SMAD3 and RELA in luminal versus basal breast cell
types. (A) Representative examples of luminal vs. basal shapes. Red: DAPI, blue: DHE. Scale bar = 50 µm. (B) Clustering of 18 BCLs based on the expression
of shape-correlated genes in Figure 4 separates cell lines into luminal (green) and basal (blue) subtypes. The basal cluster includes only basal cell lines. The
luminal cluster includes mostly luminal cell lines and the basal A cell lines HCC70 and HCC1954. (C) Networks of the expressed genes in the luminal/basal
clusters in B, where differentially expressed genes between luminal and basal clusters are represented as circles. Genes that have a higher average expression
difference between luminal and basal cluster have a larger node size. Node color indicates the average expression values in each cluster.
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association between theNF-κB responsemetagene and Pam50 sub-
type (P-value < 0.0005), which groups patients into luminal A, lu-
minal B, HER2, basal, and normal subtypes (Sorlie et al. 2001).
Interestingly, the expression of the NF-κB response metagene is
higher in basal and HER2 tumors compared to luminal tumors,
which is consistent with our 2-D data (Fig. 7B,C).

The NF-κB response metagene also correlates with tumor
grade (P-value < 0.0005) (Fig. 7D). Furthermore, the NF-κB re-
sponse metagene predicts patient survival, although this is only
significant in the METABRIC discovery cohort (P-value < 0.05)
(Fig. 7E). These results provide in vivo support for our previous
finding that NF-κB signaling is modulated by cell shape (Sero
et al. 2015), which may drive cancer cell survival, proliferation,
and invasion (DiDonato et al. 2012). Furthermore, these results
suggest that changes in the activity of the shape-gene network
can impact NF-κB activation to drive disease.

Discussion

The accumulation of large data sets describing cell shape, gene ex-
pression, and tumor phenotypes provides a starting point from

which to better quantify the three-way relationship between cell
shape, signaling states, and cancer prognosis. However, there are
still several challenges in integrating these data sets. In particular,
it remains technically challenging to collect such data sets on the
same cells. Moreover, different omic data sets are collected at dif-
ferent levels. Imaging data sets might define cell shape using hun-
dreds of features for millions of single cells; gene expression data
sets typically contain the average gene expression for thousands
of genes in a population; and clinical data sets might contain
gene expression and outcome data for hundreds of patients but
have very little data concerning cancer cell shape. Here, we devel-
oped a method that overcomes many of these challenges by lever-
aging different data sets of breast cancer cells that have been
quantitatively imaged and expression-profiled in parallel to gener-
ate a shape-gene network. This network can be used not only to
gain insights into the interaction between cell shape and transcrip-
tion via the actions of different signaling pathways but can also be
used to derive metagenes that have clinically predictive value.

For decades, pathologists have diagnosed tumors based on
phenotypes, such as nuclear morphology and differentiation sta-
tus of cells from hematoxylin- and eosin-stained tumor images,

Figure 6. The prognostic value of the morphological metagenes and their associations with the clinical parameters in the METABRIC data set. (A)
Association between tumor grade and cell W/L, cell area, NF, and protrusion area metagenes. All these associations are significant, with P-value <
0.0005 using the Jonckheere–Terpstra test. Error bars indicate the standard error of the mean (SEM). (B) Association between tumor grade and NF SD,
protrusion area SD, cell W/L SD, and cell area SD metagenes. These associations are significant, with P-value < 0.0005 using the Jonckheere–Terpstra
test. Error bars indicate the SEM. (C–F) Kaplan–Meier curves to illustrate the disease-specific survival probabilities of patient groups in discovery and vali-
dation cohorts in the METABRIC data set stratified by (C) cell area, (D) cell W/L, (E) NF SD, and (F) cell area SD metagenes.
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where tumors with a more normal epithelial organization are giv-
en lower grades, while tumors with a less epithelial organization
are given higher grades. Indeed, our morphological metagene
models suggest that cancer cells in higher tumor grades are more
elongated and protrusive, which is consistent with the idea that
cells in these tumors are more mesenchymal-like (Mani et al.
2008). We also found that cell area, NF, and protrusiveness SD
metagenes correlate positively with tumor grade, while the cell
W/L SDmetagene correlates negatively with tumor grade. One im-

plication of these findings is that pheno-
typic heterogeneity in terms of
proliferation and protrusion correlates
positively with poor prognoses, but het-
erogeneity in terms of cell shape (as mea-
sured by W/L) does not. We speculate
that such variation in cell W/L may re-
flect the fact that less aggressive tumors
still retain some aspect of normal mam-
mary tissue architecture, such as the pres-
ence of both myoepithelial (more
elongated) and luminal cells (less elon-
gated). More studies are required to vali-
date the extent to which these
morphological metagenes recapitulate
the morphology of in vivo tumor cells.
Nonetheless, based on the consistency
of our findings with the literature, we
propose that the derivation of morpho-
logical metagenes allows us to infer tu-
mor cell shape and phenotypes and to
effectively bridge the gap between cell
shape and patient outcomes that is pre-
sented by the lack of shape data in clini-
cal data sets.

A limitation of ourmetagenes is that
they are based on 2-D cell shape data that
might not reflect the whole variation of
cell shape in a 3-D tissue environment.
However, we believe that imaging of cells
in 2-D is particularly advantageous as it
enables us to generate high-quality quan-
titative phenotypic signatures of relative-
ly homogenous cancer cell populations,
allowing us to make strong correlations
between signaling states and specific
cell shape features. Moreover, even as
single-cell phenotyping technology con-
tinues to evolve (Lee et al. 2014), linking
shape, signaling states, or gene expres-
sion to cancer progression by analyzing
single cancer cells in tumors will still be
challenging because of the complex 3-D
architecture of tumors (Egeblad et al.
2010).

We have previously shown that NF-
κB activity is regulated by breast cancer
cell shape in 2-D cell culture conditions.
In particular, cell protrusiveness, cell
spreading, nuclear shape, and cell–cell
contact can predict levels of RELA trans-
location (Sero et al. 2015). Moreover,
we have demonstrated that cell-to-cell

differences in shape can lead to sharp gradients of RELA activity
in a tissue, such as between mesenchymal-like cells at the edge
of a wound and epithelial cells completely surrounded by other
cells (Sero et al. 2015). However, the mechanisms by which cell
shape is linked to NF-κB signaling and whether shape-mediated
regulationhas a role to play in cancer remained unclear. By system-
atically analyzing the interactions between shape-correlated genes
and key EMT TFs, we confirm that NF-κB, as well as SMAD3, play a
major role in sensing shape information in BCLs. Through the

Figure7. Derivation of NF-κB responsemetagene and its associationwith the clinical parameters in the
METABRIC data set. (A) CAMA1 and SUM159 cells stained with anti-RELA/NF-κB antibody (−/+TNF).
Scale bar = 50 µm. (B) Representation of sevenmorphological BCL features and RELA response (fold chan-
ge +TNF/−TNF) using PhenoPlot (Sailem et al. 2015), where BCL glyphs are positioned based on the val-
ue of cell W/L (x-axis) and protrusion area (y-axis). Cell line label color indicates molecular subtype. Red:
luminal, green: basal A, and blue: basal B. (C ) Association between Pam50 subtype and NF-κB response
metagene (Jonckheere–Terpstra test P-value < 0.0005). Error bars indicate the SEM. (D) Association be-
tween tumor grade and NF-κB response metagene (Jonckheere–Terpstra test P-value < 0.0005). Error
bars indicate the SEM. (E) Kaplan–Meier curves to illustrate the disease-specific survival probabilities of
patient groups in the discovery cohort in theMETABRIC data set, stratified by NF-κB response metagene.
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analysis of transcriptional profiles following systematic knock-
downs of the components of this network, we are able to classify
particular components as regulators or effectors of NF-κB signaling
and thus classify these genes as mechanosensitive or mechanoef-
fectors, respectively. Importantly, we show that the expression of
metagenes explaining RELA translocation in tissue culture
correlates with poor prognosis in vivo, which strongly suggests
that the actions of this shape-gene network converge on NF-κB
to drive tumorigenesis and potentially metastasis. We believe
that this convergence largely explains why other shapemetagenes
(i.e., protrusion) also correlate with poor patient outcomes, al-
though we cannot exclude the possibility that the expression of
shape metagenes regulates the activity of other TFs (especially
SMAD3) or has post-transcriptional effects on tumorigenesis.
One implication of this work is that NF-κB activity can be driven
by mechanical and geometric cues in breast tumor microenviron-
ments even in the absence of activatingmutations in genes encod-
ing components of theNF-κB pathway. The role ofmechanical and
geometric cues in regulatingNF-κB, in addition to the inflammato-
ry nature of many tumors, may in part explain why mutations of
this pathway are relatively infrequent in solid carcinomas, even
though NF-κB has been shown to be a common driver of disease
(DiDonato et al. 2012).

That cell shape can regulate signaling states has important
implications for our understanding of cancer evolution and pro-
gression, as it is clear that cancer cells oftenmanipulate their envi-
ronment to alter mechanical forces in a way that favors survival
and proliferation. Thus, changes in gene expression and associated
patient outcomes may not necessarily be driven by genetic events
such as mutation or copy number variation, which alter the activ-
ity of prosurvival and proliferative pathways, but instead may be
due to changes in mechanical forces experienced by tumor cells.

Methods

Experimental methods

The experimental protocols for the used data sets are described
in detail in the associated publications. Expression profiling
in Grigoriadis et al. (2012) and image profiling in Sero et al.
(2015) were performed using the same batches of cell lines and
under similar culture conditions. For imaging experiments, 1000
cells per well were seeded in 384-well plates and cultured for three
days. Different cell lines were monitored for cell crowding. Cells
were stained with DAPI, DHE (Invitrogen), and anti-RELA/NF-κB
antibody (Abcam).

Data analysis

All analyses were performed using MatLab (http://www.
mathworks.com/) unless stated otherwise.

Identifying shape-correlated genes

The threshold of genes with low variability across BCLs was
identified by plotting the distribution of SD values for all genes
across BCLs. A bimodal distribution was observed where a cut-off
of 0.3 separates genes with low variability versus genes with high
variability across BCLs (Supplemental Fig. S4A). We measured
the Spearman correlation between each shape feature against
the expression of each gene. The cut-off for significant correlation
is 0.7 (P-value < 0.0012, FDR < 23% as estimated by “mafdr”
MatLab function).

Selected TFs

The TFs that were included in the shape-gene network are: KLF4,
MYC, RELA/NF-κB, SOX2, SMAD2, SMAD3, SNAI1, SNAI2,
TWIST1, ZEB1 and ZEB2, and YAP1.

Building a shape-gene interaction network

STRING interactions (Jensen et al. 2009) between shape-correlated
genes and selected TFs with a combined score > 0.4 based on
Neighborhood, Gene Fusion, Co-occurrence, Co-expression,
Experiments, and curated Databases were downloaded (Oct.
2014). Cytoscape 2.8 (Shannon et al. 2003) was used to visualize
the gene–gene and gene–feature interactions.

Network analysis

Network node attributes were calculated using Cytoscape 2.8.
Degree, closeness, and stress attributes were exported from
Cytoscape and visualized in MatLab 2015a.

Enrichment analysis

Enrichment analyses were performed using GSEA analysis provid-
ed by the Molecular Signature Database (Subramanian et al. 2005)
and DAVID (Huang et al. 2009).

Building a SMAD3-NF-κB subnetwork

Optimal and suboptimal paths between each phenotypic feature
and SMAD3 or RELA were determined using the BiNom
Cytoscape plugin (Bonnet et al. 2013). Indirect paths that involve
other phenotypic features or other selected TFs were excluded. The
interactions between the remaining genes in the path analysis
were extracted to build the SMAD3-NF-κB subnetwork.

LINCS RNAi data analysis

To determine the effect of depleting nodes in the SMAD3-NF-κB
subnetwork on SMAD3 and RELA activities, the Broad Institute’s
LINCS RNAi genomic data set, that describes the expression of
3287 genes in theMCF7 cell line following 96 h of RNAi treatment
(Duan et al. 2014), was used. Probes targeting the same gene were
consolidated using GSEA software. The knockdown was only con-
sidered valid if they reduced the level of the gene to a z-score value
<−0.4. Ifmore than one knockdown for one gene is available, then
the average profile for valid probes is used for further computation.

To determine the interaction directionality in the SMAD3-
NF-κB subnetwork, we z-scored gene expression values across all
knockdowns. Then, we defined TF targets as the genes whose ex-
pression is significantly changed after TF knockdown (absolute z-
score > 1.5). Then, we considered the three following scenarios:

1. The protein was considered to regulate TF expression if its
knockdown significantly changes the expression of that TF (ab-
solute z-score >1.5).

2. The protein was considered to regulate a TF activation if
a. the protein knockdown significantly changes the expression

of at least 10% of the TF target genes, and
b. the overlap between the proteins’ targets and TF targets is

statistically significant using hypergeometric probability (P
< 0.05).

3. A TF was considered to regulate a gene if the TF knockdown sig-
nificantly changes the expression of that gene (absolute z-score
>1.5).

We also inferred the directionality, when possible, for exist-
ing STRING interactions in the subnetwork if the knockdown of
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one of the interactors significantly changes the expression of an-
other (indicated by red arrows in Fig. 4).

For proteins that significantly change the activation of a TF,
we further determined whether they activate or inhibit the TF. If
the depletion of the protein affects the expression of the TF targets
in a similar way as TF knockdown, then we infer that the protein
activates that TF, while if the depletion of the protein has the op-
posite effect on the expression of the TF targets compared to
knockdown of the TF, then we infer that the protein inhibits
that TF.

Analysis of the expression of SMAD3-NF-κB subnetwork’s

genes in BCLs

All gene profiles were z-scored across 18 BCLs. The profiles of genes
with more than one probe were averaged. Hierarchical clustering
with Euclidean distance and “complete linkage” was used to clus-
ter BCLs and gene profiles.

Derivation of the basal and luminal networks

The average expression profiles of luminal and basal clusters were
obtained by averaging the z-scored expression of the genes in
the SMAD3-NF-κB subnetwork for the cell lines in the luminal or
basal clusters (Fig. 5B). Average profiles that have a >0.5 z-score
difference between basal and luminal clusters were considered
to be differentially expressed and included in the network.
Nondifferentially expressed genes were eliminated from the
network if their average expression < 7.0 as estimated based on
the distribution of the expression of all genes in the data set
(Supplemental Fig. S4B). Visualization was performed using
Cytoscape 2.8.

Derivation of morphological metagenes

We fitted amultilinear regressionmodel to estimate the average or
SD of a morphological feature from the expression of a selected
subset of genes that correlate with that feature. The genes that
best predict the feature were selected using forward sequential fea-
ture selection in MatLab where at least four genes were selected.
The criterion of the model fitness is the sum of the residuals of
the regression model. Genes were added to the model as long as
R2< 0.9, and the number of selected genes≤ 10. For the random
metagene, we generated a random variable of size 18. After that,
20 genes were randomly drawn from the original subset of genes
(11,314 genes). Then, the same approach for deriving themorpho-
logical metagenes was used to generate the random metagene.

Survival analysis

Survival analyses were performed using R 3.2.0 (R Core Team
2008). Morphological metagenes were binarized based on the
cut-off that best predicts patient survival based on the discovery
cohort. The cut-offs were defined as {0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8} quantiles. The Kaplan–Meier method was used to fit survival
curves. Cox proportional hazards models were used to perform
univariate and multivariate analyses where the Wald test was
used to measure significance. In Cox multivariate analyses, the
lymph node variable was set to 1 if cancer cells have spread to at
least one lymph node, and 0 otherwise. The tumor size variable
was set to 1 if the tumor size > 2 cm and 0 otherwise.
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