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Endotoxemia is a condition in which endotoxins enter the blood stream and cause 
systemic and sometimes lethal inflammation. Zebra fish provides a genetically tractable 
model organism for studying innate immunity, with additional advantages in live imaging 
and drug discovery. However, a bona fide endotoxemia model has not been established 
in zebra fish. Here, we have developed an acute endotoxemia model in zebra fish by 
injecting a single dose of LPS directly into the circulation. Hallmarks of human acute 
endotoxemia, including systemic inflammation, extensive tissue damage, circulation 
blockade, immune cell mobilization, and emergency hematopoiesis, were recapitulated 
in this model. Knocking out the adaptor protein Myd88 inhibited systemic inflammation 
and improved zebra fish survival. In addition, similar alternations of pathways with human 
acute endotoxemia were detected using global proteomic profiling and MetaCore™ 
pathway enrichment analysis. Furthermore, treating zebra fish with a protein tyrosine 
phosphatase nonreceptor type 11 (Shp2) inhibitor decreased systemic inflammation, 
immune mobilization, tissue damage, and improved survival in the endotoxemia model. 
Together, we have established and characterized the phenotypic and gene expression 
changes of a zebra fish endotoxemia model, which is amenable to genetic and pharma-
cological discoveries that can ultimately lead to a better mechanistic understanding of 
the dynamics and interplay of the innate immune system.
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inTrODUcTiOn

The clinical manifestations associated with Gram-negative bacterial infection, such as vascular 
damage and leakage, disseminated intravascular coagulation, tissue hypoxia, systemic inflammation, 
cytokine storm, and in extreme cases elevation into sepsis (1, 2), are often caused by the presence 
of bacteria cell wall contents. Principally among these components are endotoxins or lipopolysac-
charides (LPS) (3), which enter the blood circulation (4). A reductionist approach is taken to obtain 
a clean understanding of the host response elicited upon recognizing endotoxins in cell cultures 
and mice models, leaving out the complex interactions associated with tissue damage caused by live 
bacteria (5). Cultured cells offer a potent platform to dissect the signaling pathways activated by an 
LPS stimulation, but not the interactions of different cell types in vivo. Mice models have offered 
many significant insights at the whole organism level in response to endotoxemia yet suffer from 
the throughput, as well as divergence in the altered pathways (6). As such, there is a need to develop 
other animal models that can complement the cell culture and murine models.
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The zebra fish is a fully sequenced model organism (7) with 
a highly conserved innate immune system, including cell types 
and signaling molecules (8, 9). Zebra fish larvae develop innate 
immune cells within 2  days post fertilization (dpf) while the 
adaptive immune system is not present until approximately 3 
weeks post fertilization (10, 11), making it a favorable model 
to study innate immune-dominant responses. The transparent 
nature of zebra fish larvae allows imaging of dynamic interactions 
between immune cells and somatic tissues at the whole organism 
level (8, 12). Additional advantages of using zebra fish include 
high fecundity and ease of gene editing, making it an ideal model 
for high-throughput genetic and compound screening (13).

Despite a lack of a complete understanding of the LPS receptor 
in zebra fish (14), the downstream immune adaptors, pathways, 
and general immune response to LPS (9, 15) are highly conserved. 
It is expected that a zebra fish endotoxemia model will advance 
our understanding of the initiation and resolution of the systemic 
inflammation during acute endotoxemia in humans.

Lipopolysaccharide has previously been used as an immune-
stimulant to cause inflammation in zebra fish larvae and to screen 
for anti-inflammatory compounds, through injection into the 
yolk (16) or bathing of the whole larvae. A single injection of 1 ng 
LPS into the yolk of 3 dpf zebra fish larvae caused upregulation of 
pro-inflammatory cytokines and caused 100% lethality at 24 hpi. 
The limitation of this approach is a lack of yolk equivalent tissue 
in humans and poor physiological conservation (16). The LPS 
bath model has been used in several studies (12, 17, 18), where 
vascular damage/leakage, tail fin edema, and immune activation 
were observed. However, the constant presence of LPS in the 
bath causes an overwhelming systemic inflammation that initi-
ates at the epithelial surface and does not allow the detoxification 
of LPS and subsequent resolution of the inflammation (12, 17, 
18). The pivotal role of immunostimulant introduction has been 
previous reported where bacterial injection and emersion caused 
dysregulation of overlapping but distinct responsive genes (19). 
Furthermore, an administration route that faithfully mirrors 
human immune interactions is necessary to facilitate a true endo-
toxemia model (13). Hence, a bona fide zebra fish endotoxemia 
model still needs to be developed.

We have designed a 3D-printable injection plate to facilitate a 
higher throughput for zebra fish larvae intravenous (IV) injection. 
Delivering LPS into the blood stream leads to acute systemic inflam-
mation that starts to resolve at 24 hpi. Conserved phenotypic and 
gene expression changes are also observed in our model. Together, 
we have developed and characterized a zebra fish endotoxemia 
model that represents the fundamental biological processes of 
endotoxemia in humans. This model can be used in combination 
with murine models to fully dissect the molecular mechanisms 
regulating the magnitude of inflammation and to discover com-
pounds that would mitigate detrimental consequences in the host.

MaTerials anD MeThODs

Fish husbandry
This study was carried out in accordance with the recommen-
dations of “Use of Zebrafish in the NIH Intramural Research 

Program.” The Animal Care and Use Protocol was approved by 
The Purdue Animal Care and Use Committee (PACUC) (Protocol 
number: 1401001018). The transgenic lines Tg(NF-kB:GFP) (20), 
Tg(mpx:mcherry) (21), and Tg(mpeg:EGFP-H2B) (22) were previ-
ously described. SecAV-YFP was PCR amplified using the for-
ward: 5'- TATAGGGCGAATTGGGTACCGCCACCATGCATA 
AGGTTT-3' and reverse: 5'- ACCGCGGTGGCGGCCGCTTAC 
TTGTACAGCTCGTCC-3' from pBH-UAS-secA5-FP (Addgene 
plasmid #32359) and inserted into the KpnI/NotI cloning site of 
pMe Gateway plasmid (Invitrogen). A three-way LR reaction with 
p5e-βactin, pMe-SecAV-YFP, and p3e-SV40polyA was performed 
in pDestR4R3 backbone to obtain pTol2-βactin:SecAV-YFP. The 
plasmids will be deposited to Addgene before acceptance of 
the paper. More than three founders (F0) for Tg(βactin:SecAV-
YFP)pu17 were obtained as described (23). All experiments were 
performed with embryos at 3 dpf unless noted otherwise.

injection Plate Design
A 3D printer (Model Ultimaker 2+) was used to print the mold 
from an autoCAD schematic drawing with solid filling at 150-µM 
resolution. The mold is a negative of a 10-cm Petri dish with the 
upper portion resting on the walls of the dish; 3% Agar/E3 media 
were heated and poured directly into the Petri dish, and the mold 
was directly layered on the top. The mold was then removed from 
the Petri dish and the injection plate was ready for use.

Microinjection
All injections were performed by microinjection. Embryos were 
collected before the first cell division and injected directly into 
the cell. Injection needles (Warner instruments 6100TF-3) were 
pulled with P-1000 micropipette puller (Sutter instruments) 
using program #37 with ramp = 540. Embryos were placed under 
a Leica M125 dissection microscope. Microinjections were per-
formed with a picospritzer II (Parker Hannifin) with an output 
pressure of 30 psi and a pressure duration between 20 and 30 ms. 
Injection volume was calibrated using volume = 4/3 πr3, where a 
radius (r) of 5 µm gives a volume of 1 nl. To perform blood injec-
tion, staged larvae were placed in the injection mold under an 
Olympus SZ61 dissection microscope. Injection needles (Sutter 
instruments BF100-5810) were pulled with P-1000 micropipette 
puller (Sutter instruments) using program #34 with ramp = 570. 
Injection was performed with a picospritzer III (Parker Hannifin) 
with an output pressure at 40 psi and a pressure duration between 
30 and 50 ms. Injection volume was calibrated and set to 1 nl as 
described above.

survival assay
Larvae were injected with 1 nl of 25 ng/nl LPS (Sigma L9143) into 
the tail vein and incubated individually in 96-well plates. Survival 
was tracked for 5 days or when one group reached 100% mortality. 
Representative experiments of at least three independent repeats 
(n = 20 larvae in each experiment) were shown.

Proteomic analysis
For global proteomic analysis, 40 larvae at 3 dpf were injected 
with PBS or LPS IV, with 40 uninjected larvae as control. At 8- 
and 24-h post injection (hpi), 20 larvae each were deyolked and 
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frozen at −80°C and sent for proteomic analysis. Samples from 
three individual repeats were collected, and the global proteom-
ics profiling and downstream statistical analysis were performed 
by the Purdue Proteomics Facility. The results from the mass 
spectrometer were processed using the MaxQuant computational 
proteomics platform version 1.5.8.3 (24). The peak list generated 
was searched against the Danio rerio sequences from UNIPROT 
retrieved on April 27, 2017, and a common contaminants data-
base. The following settings were used for MaxQuant: default 
Orbitrap parameters, minimum peptide length of seven amino 
acid, data were analyzed with “Label-free quantification” (LFQ) 
checked and the “Match between runs” interval set to 1  min, 
protein FDR was set to 1%, enzyme trypsin and LysC allowing for 
two missed cleavage and three modifications per peptide, fixed 
modifications were carbamidomethyl (C), variable modifications 
were set to Acetyl (Protein N-term) and Oxidation (M). An 
in-house script was used to perform the following steps on the 
MaxQuant results: removal of all the common contaminant pro-
teins, log-transformed [log2(x)] the LFQ intensity values, input 
the missing values using the average values of the other two sam-
ples when just one sample was missing, and use half of the lowest 
intensity when all three samples were missing in one group and 
presented in all three samples in the other group. The heat maps 
and statistical analyses were performed in the R-environment 
(www.cran.r-project.org). A t-test was performed on the LFQ 
intensities, and only proteins with a p-value of <0.05 and a fold 
change greater than 1.5 or less than −1.5 were used for the heat 
map and pathway analyses. The pathway analysis was conducted 
with MetaCore™ version 6.30 build 68,780, and the selected 
genes were mapped to the Homo sapiens pathways. Proteomic 
data were deposited to Mass Spectrometry Interactive Virtual 
Environment (MassIVE) at UCSD. MassIVE ID: MSV000081612 
(ftp://MSV000081612@massive.ucsd.edu provisory Username: 
MSV000081612 Password: hsualan2017; these data will be freely 
available after publication).

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP-Biotin nick end labeling 
(TUnel) and acridine Orange (aO) 
staining
Terminal deoxynucleotidyl transferase-mediated dUTP-biotin 
Nick End Labeling staining was performed as described (23). 
Briefly, embryos were fixed in 4% paraformaldehyde in phosphate-
buffered saline for 2 h and stored in 100% methanol overnight 
before rehydration and staining with TUNEL label and enzyme 
Mix (Roche). AO staining was performed by incubating larvae in 
the dark for 30 min with 5 µg/ml AO (Sigma A6014), followed 
by washing with fresh E3 for at least five times and visualization 
with the GFP channel.

live imaging and image Quantification
Larvae at 3 dpf were placed on a glass-bottomed dish in E3 media 
containing 0.02% tricaine (Sigma). Representative images were 
taken with AXIO Zoom V16 microscope (Zeiss) at 70% mag-
nification (zoom 7) at the trunk region in AO and SecAV-YFP 
imaging, 100% (zoom 10) magnification for TUNEL imaging, 

and 25% (zoom 2.7) for whole-body imaging. All images were 
taken with the same exposure to avoid saturation of the CCD 
detector. Images were processed with Image J by background 
subtraction with the rolling ball radius as 50 and then quantified 
for signal intensity in the region of interest. For quantification 
of fluorescence-labeled neutrophils and macrophages, cells were 
counted blindly in the indicated caudal hematopoietic tissue 
(CHT) regions at the designated time points. Each experiment 
included at least 20 zebra fish larvae and was independently 
repeated three times. Graphs were generated using PRISM 6 
(GraphPad).

reverse Transcription-Quantitative Pcr 
(qPcr)
Total RNA was extracted using RNeasy RNA purification kit 
(Qiagen). Messenger RNAs were reverse-transcribed with 
Transcriptor First Strand cDNA Synthesis Kit (Roche). qPCR 
were performed with the FastStart Essential DNA Green Master 
(Roche). Primers are listed in Table S1 in Supplementary Material. 
All primers amplified a single product according to the melt-
curve analysis. The relative fold change is calculated following 
instructions provided by real-time PCR Minor with correction of 
the primer efficiencies (http://ewindup.info/miner/data_submit.
htm). At least 20 larvae were used in each biological replicate 
to generate an average value that was used to calculate the final 
mean ± SD from three independent experiments.

Knockout With crisPr/cas9
Myd88 knockout was performed as previously described (25). 
Briefly, sgRNAs against MyD88 and RFP without off-targeting were 
selected using CRISPRScan (26). Two individual sgRNAs were 
synthesized for myd88 and rfp. Solution of 1 nl containing 400 ng/
µl sgRNAs and 400 ng/µl Cas9 protein (PNA, CP01) was injected 
into the one-cell stage of fertilized embryos. No development 
abnormality was observed at 3 dpf (25). Primers used to synthesize 
templates of sgRNAs are listed below from 5' to 3': MyD88 sgRNA1 
forward: TAATACGACTCACTATAGGCGGCAGACTGGAG 
GACAGGTTTTAGAGCTAGAAATAGCAAG; MyD88 sgRNA2 
forward: TAATACGACTCACTATAGGAAAAGGTCTTGACG 
GACTGTTTTAGAGCTAGAAATAGCAAG; RFP sgRNA1 for-
ward: TAATACGACTCACTATAGGAGGGCTTGCCTTCGCC 
CTGTTTTAGAGCTAGAAATAGCAAG; RFP sgRNA2 
forward: TAATACGACTCACTATAGGTCGGGGATGCC 
C T G G G T G G T T T TA G A G C TA G A A A TA G C A A G . 
The reverse primer for all sgRNA templates is 5'-A 
A A A G C A C C G A C T C G G T G C C A C T T T T T C A A G T 
TG ATA AC G G AC TAG C C T TAT T T TA AC T TG C TAT T 
TCTAGCTCTAAAAC-3'.

anti-inflammatory chemical and Drug 
Treatment
Larvae at 3 dpf were incubated in dexamethasone (sigma) and 
hydrocortisone (sigma) at a final concentration at 100 µM, in 1% 
DMSO in E3 as previously reported (27), or with 0.6 µM (3ki) 
Shp2 inhibitor 11a-1 (28). At the specified concentrations, no 
development abnormality was observed.
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FigUre 1 | Zebra fish intravenous (IV) injection plate design and IV lipopolysaccharide (LPS) injection. (a) Illustration of the zebra fish IV injection plate. (B) A 
representative image of zebra fish larvae at 3 days post fertilization injected with PBS containing 1% Phenol Red. Scale bar: 500 µm. (c) Survival curve of zebra fish 
after PBS or 10, 15, and 25 ng LPS IV injection. One representative experiment of three independent biological repeats (n > 20 each group) is shown. **p < 0.01, 
****p < 0.0001, Gehan–Breslow–Wilcoxon test. (D) Representative images of zebra fish larvae injected with PBS or LPS at 8 hours post injection (hpi). Scale bar: 
500 µm. Boxed regions of the pericardium and tail fin are enlarged. Scale bar: 200 µm. Images representative of three independent experiments are shown (n = 20). 
(e) Percentage of fish with tail fin edema, pericardial edema, and circulation obstruction in PBS- or LPS-injected larvae at 8 hpi. Results are presented as 
mean ± SD (n = 3 independent experiments with over 20 larvae each/experiment). ***p < 0.001, ****p < 0.0001, Mann–Whitney test. (F,g) Representative images 
and quantification of inflammatory phenotypes in LPS- or PBS-injected larvae as (D,e) at 24 hpi.
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statistical analysis
Statistical analysis was carried out using PRISM 6 (GraphPad) 
and Mann–Whitney test (comparing two groups), and Kruskal–
Wallis test (when comparing to a single group). For qPCR, each 
gene was normalized to the reference gene ef1α and compared 
with Sidak’s multiple comparison test for gene panels and Mann–
Whitney test for single comparisons. For survival assays, Gehan–
Breslow–Wilcoxon test was performed with a log-rank test and 
confirmed with Kaplan–Meier curve to ensure compatibility.

resUlTs

establishment of an endotoxemia Model
To efficiently inject LPS through the IV route, we adapted a 
previously reported method (29) and further optimized it by 
positioning larvae in an injection plate custom-made with a 
3D-printed mold (Figures  1A,B; Figure S1 in Supplementary 
Material and 3D printing file). This plate can hold 20 zebra fish 
larvae in individual clefts and allows the injection of 1–5 dpf zebra 

fish larvae into any position in the trunk. Utilizing this setup, we 
were able to inject 3 dpf larvae IV at a rate of 150 larvae/h. With 
any immune process, the dose and duration of challenge greatly 
dictates the immune response and phenotype (30, 31). LPS from 
Pseudomonas aeruginosa was selected because of its virulence in 
the bath model (17), and in addition, the Pseudomonas species 
are a prevalent cause of infections and acute inflammation in 
intensive care units (32). The injection of 10, 15, and 25 ng LPS 
induced a dose-dependent mortality ranging from 20 to 60% 
at 5  days post injection (Figure  1C). Control larvae injected 
with PBS did not show any mortality. As such, a dose of 25 ng, 
reproducibly causing approximately 50% mortality, was selected 
for future experiments. At 8 hpi, the majority of LPS-injected 
larvae exhibited pericardial edema and circulation obstruction 
(Figures 1D,E; Movie S1 in Supplementary Material). However, 
only a few larvae displayed tail fin abnormalities, in contrast 
to the observation made when bathing the fish with LPS (18). 
At 24 hpi, the percentage of pericardial edema and circulation 
obstruction in LPS-injected larvae group decreased, suggesting 
a recovery in some of the larvae that have survived the acute 
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FigUre 2 | Intravenous (IV) lipopolysaccharide (LPS) activates NF-κB pathway and elicits a systemic immune response. (a) Tg(NF:κB:GFP) larvae were IV injected 
with PBS, LPS, or left uninjected. Representative images of GFP signals at indicated time points post injection. Images representative of three independent 
experiments were shown (n = 20). Scale bar: 200 µm. (B) Quantification of the GFP intensity in the caudal fin region (red box in Figure 2a). Results are presented 
as mean ± SD (D) (n = 3 independent experiments with over 20 larvae each/experiment). **p < 0.01, ****p < 0.0001, Kruskal–Wallis test. (c,D) Transcript levels of 
genes encoding pro-inflammatory and anti-inflammatory cytokines in whole larvae injected with either PBS or LPS at 8 hpi (c) and 24 hpi (D). Results were 
normalized with ef1α and are presented as means ± SD (n = 3 biological repeats with 20 larvae in each group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, 
Sidak’s multiple comparisons test.
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challenge (Figures 1F,G; Movie S2 in Supplementary Material) 
despite some larvae still having abnormalities. Our model 
coincides with pulmonary edema and circulatory obstruction 
which have been reported to be outcomes of acute endotoxemia 
in humans (33, 34).

systemic nF-κB activation in the 
endotoxemia Model
Systemic inflammation is a hallmark of endotoxemia (2, 35) 
where multiple receptors are activated and signals converge to 
activate the NF-κB family of transcription factors (36, 37). To 
determine the degree of inflammation in the whole larvae, an 
NF-κB reporter zebra fish line, Tg(NF-κB:GFP) (38), was used, 
where the transcription of the GFP reporter gene is activated by 
NF-κB. Compared to uninjected or PBS-injected controls, LPS-
injected larvae exhibited an increase in GFP level throughout the 
body, indicating systemic NF-kB activation. The tail fin region 
was selected for quantification, where minimal basal auto-
fluorescence was present. GFP intensity significantly increased 
at 8 and 24 hpi in the LPS-injected larvae (Figures  2A,B). 
This is consistent with the time frame in acute human endo-
toxemia when systemic NF-kB and inflammation were noted 
(39). Furthermore, pro-inflammatory cytokine levels and the 

complement component c3a were significantly upregulated at 
8 hpi in endotoxemic larvae compared to PBS-injected controls 
(Figure  2C), consistent with previous studies (40, 41). This 
upregulation of pro-inflammatory cytokines and complement 
component persisted at 24 hpi, though the magnitude decreased 
significantly, while il-10, a signature anti-inflammatory cytokine, 
was significantly upregulated (Figure  2D) (42), suggesting the 
initiation of the resolution of the systemic inflammation induced 
by LPS, at a time point similar to those observed in mice and 
humans (43–46).

Tissue Damage in the endotoxemia Model
To determine the degree of tissue damage in the live animal, 
we generated a zebra fish line Tg(βactin:secA5-YFP)pu17, where 
AnnexinV tagged with YFP is constitutively produced and 
secreted (Figure  3A). Apoptotic cells induced with UV are 
efficiently labeled as originally characterized by van Ham et al. 
(20) (Figure S2 in Supplementary Material). LPS-injected larvae 
possessed more AnnexinV puncta in the trunk as well as in 
the vasculature at 12 and 24 hpi (Figures 3B,C). Two separate 
approaches, TUNEL (Figures 3D,E) and AO (Figures 3F,G) (47) 
staining, were used to confirm the results at 24 hpi when the cell 
death was most prominent. Again, extensive tissue damage, in the 
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FigUre 3 | Lipopolysaccharide (LPS) induces tissue damage. (a) Diagram of the construct used to generate the apoptosis reporter line where a secreted AnnexinV 
tagged with a YFP protein is driven by the β-actin promoter. (B,c) Tg (β-actin:secANV-YFP) were injected with PBS or LPS. Representative images (B) and 
quantification (c) of the YFP-positive foci in trunks at indicated time points post injection. (D–g) WT zebra fish larvae were injected with PBS or LPS. Representative 
images (D) and quantification (e) of terminal deoxynucleotidyl transferase-mediated dUTP-biotin Nick End Labeling (TUNEL)-positive cells in the trunk at 24 hours 
post injection (hpi). Representative images (F) and quantification (g) of the Acridine Orange (AO)-positive cells in the trunk at 24 hpi Scale bar: 100 µm. Results are 
presented as mean ± SEM (n = 3 independent experiments with over 20 larvae each/experiment). *p < 0.05, ****p < 0.0001, Mann–Whitney test. (B,D,F) Images 
representative of three independent experiments were shown (n = 20). (h,i) Transcript levels of genes encoding vascular and cell junction proteins in whole larvae 
injected with either PBS or LPS at 8 hpi (h) and 24 hpi (i). Results were normalized with ef1α and are presented as means ± SD (D) (n = 3 biological repeats with 
20 larvae in each group). **p < 0.01, ***p < 0.001, ****p < 0.0001, Sidak’s multiple comparisons test.
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vascular tissue and CHT, the bone marrow equivalent in zebra fish 
larvae, was observed in the LPS-injected group. To further evalu-
ate vascular and cell junction integrity, we measured the mRNA 

levels of cell junction genes. Occludin members and Claudin-5 
genes were significantly downregulated, whereas claudin-2 was 
significantly upregulated at 8 hpi (Figure 3H), suggesting loss of 
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FigUre 4 | Immune cell mobilization and emergency hematopoiesis induced with lipopolysaccharide (LPS) injection. (a). Tg(mpeg:H2B-GFP) fish were crossed 
with Tg(mpx:mCherry) label macrophages (green) and neutrophils (red). The quantification of neutrophil (B) and macrophage (c) numbers and representative images 
(D) in the caudal hematopoietic tissue (CHT) (orange box) after PBS or LPS injection. Images representative of three independent experiments were shown (n = 20). 
Scale bar: 200 µm. (e,F) mRNA level of lyzC (e) and mfap4 (F) in the whole larvae injected with PBS or LPS. Results were normalized with ef1α and are presented 
as means ± SD (D) (n = 3 independent experiments with over 20 larvae each/experiment). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Mann–Whitney test. 
(g,h) mRNA level of csf3 and csf1 in whole larvae injected with PBS or LPS at 8 hpi (g) and 24 hpi (h). Results were normalized with ef1α and are presented as 
means ± SD (n = 3 biological repeats with 20 larvae in each group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Mann–Whitney test.
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vascular cell junction integrity (18, 48). Vascular junction genes 
returned to physiological levels at 24 hpi (Figure 3I) with a higher 
expression of Occludin family genes which have been shown to 
facilitate tissue repair (49). These results faithfully recapitulated 
tissue damage throughout the body which is another hallmark of 
endotoxemia (1).

emergency hematopoiesis in the 
endotoxemia Model
As a result of profound inflammation, high levels of acute 
phase cytokines such as granulocyte and macrophage colony-
stimulating factors, and TNF-α are released into the circulation 
that mobilize the myeloid cells out of the bone marrow reservoir 
and induce a rapid differentiation of common myeloid progeni-
tors to replenish the innate immune cells in a process termed 
“emergency hematopoiesis/granulopoiesis” (50). This phenom-
enon has been observed during endotoxemia in humanized 
mice models (51). To determine the kinetics of immune cell 
mobilization and emergency hematopoiesis, we used a trans-
genic zebra fish line with macrophages and neutrophils labeled 
separately, Tg(mpx:mcherry/mpeg:GFP-H2B) (Figure  4A) (21, 
22). Upon the induction of endotoxemia, neutrophils and 
macrophages mobilized out of the CHT (orange box region) 
by 2 hpi and entered the vasculature and the trunk tissue. 
Immune cells continued to mobilize, and only scarce amounts 
of phagocytes resided in the CHT at 12 hpi followed by recov-
ery to normal levels at 24 hpi (Figures 4B–D). PBS injection 

induced a regional inflammatory response which was resolved 
by 8 hpi and did not induce significant depletion of immune 
cells in the CHT. For a more quantitative measure in the whole 
larvae, qRT-PCR for neutrophil (lyzC) (52), and macrophage 
(mfap4) (53), specific genes were performed. Similarly, tran-
sient declines in both lyzC and mfap4 were noted from 4 to 
12 hpi, followed by a full recovery at 24 hpi (Figures  4C,E). 
Consistently, the hematopoiesis-stimulating growth factors, 
csf3 (g-csf) and csf1 (m-csf) (54), were upregulated at both 8 and 
24 hpi (Figures 4F,G) as previously reported during emergency 
hematopoiesis (55). This is the first in vivo observation of the 
dynamics of immune cell mobilization and emergency hemat-
opoiesis in the hematopoietic tissue and at the whole organism 
level during endotoxemia.

Myd88 Mediates inflammation in the 
endotoxemia Model
Myd88 is a critical adaptor protein mediating pro-inflammatory 
signaling downstream of Toll-like receptors via the activation of 
the NF-ĸB pathway (56). Although the LPS receptor in zebra fish 
is not clear (12), we next determined whether Myd88 is required 
for LPS-induced systemic inflammation. We utilized the CRISPR/
Cas9 system to knock out myd88 as previously described (25) 
and observed a decrease in baseline NF-κB activity in the unin-
jected larvae (Figures 5A,B). The disruption of myd88 reduced 
NF-κB-induced GFP signal intensity in LPS-injected larvae at 8 
and 24 hpi (Figures  5C,D), which coincides with significantly 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 5 | Knockout of MyD88 dampens NF-κB activation and reduced mortality in the zebra fish endotoxemia model. Zebra fish embryos of Tg(NF:κB:GFP) were 
injected with sgRNA against myd88 or rfp at the single-cell stage. (a,B) Representative images (a) and quantification (B) of the GFP intensity in the head (red circle) 
of uninjected 3dpf larvae. Scale bar: 500 µm. Results are presented as mean ± SD (D) (n = 3 independent experiments with over 20 larvae each/experiment). 
****p < 0.0001, Mann–Whitney test. (c,D) myd88 or rfp KO larvae were injected with LPS. Quantification of NF-κB activity (c) and representative images (D) of the 
GFP intensity in the Tg(NFκB:GFP) background in the indicated region (red box). Scale bar: 500 µm. Results are presented as mean ± SD (n = 3 independent 
experiments with over 20 larvae each/experiment). ****p < 0.0001, Kruskal–Wallis test. (e) Survival curve of myd88 or rpf KO larvae injected with LPS. One 
representative experiment of three independent biological repeats (n = 20 each group) is shown. **p < 0.01, Gehan–Breslow–Wilcoxon test.
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improved survival rates (Figure 5E), suggesting that MyD88 is a 
central mediator of inflammation downstream of the LPS recep-
tor in fish, further confirming the conservation of zebra fish and 
humans (57).

global Proteomic Profiling in the 
endotoxemia Model
Next, we sought to address whether the biological response 
to endotoxemia in zebra fish larvae would mimic that seen in 
humans. Larvae were injected with PBS, LPS, or left uninjected, 
followed by whole larvae proteomic analysis at 8 and 24 hpi. 
The proteomes of PBS-injected larvae and those of uninjected 
control were found to be similar (raw data uploaded, see section 
“Materials and Methods”). Proteins with significant (p < 0.05) 
and over 1.5-fold changes among the PBS- and the LPS-injected 
groups were converted to the human orthologs and subjected 
to MetaCore™ pathway enrichment analysis using the Uniprot 
database (Tables S2 and S3 in Supplementary Material). At 8 
hpi, many of the enriched pathways were involved in cell mobi-
lization and motility, cell junction alterations, as well as innate 
immune functions (Figure 6A), suggesting an acute activation 
of immune cells and inflammation in tissues during endo-
toxemia (18, 58). At 24 hpi, Creb-signaling pathways, reverse 
cholesterol transport, ROS, and Ask1 activation pathways 
were enriched, showing a more sustained biological response 
and pathway crosstalk (59–62) (Figure  6B). In immune/
inflammation-related pathways (Figures  6C,D; full list in 
Table S4 in Supplementary Material), pathway enrichments of 

hematopoiesis and chemotaxis along with inflammation were 
seen at 8 hpi (Figure 6C). While at 24 hpi, Hmga/b, IL-3, and 
IL-6 response pathways were enriched, which are hallmarks of 
prolonged over-inflammation (Figure 6D) (63–65). To further 
investigate the dynamics of the individual proteins involved in 
the inflammation processes, a heat map was generated for both 
time points (Figure 6E). The upregulation of Gsk3b (66) and 
downregulation of Stat3 (67) during acute phases of endotox-
emia were observed, consistent with their role in promoting 
inflammation. At 24 hpi, Stat3 and Sod1/2 (68) were upregu-
lated possibly to facilitate resolution. Meanwhile, immune 
effector proteins such as Mif were upregulated, suggesting the 
persistence of systemic inflammation (69).

shp2 inhibitor suppresses inflammation  
in the endotoxemia Model
To demonstrate the feasibility of using our model for drug 
discovery and mechanistic study, two different classes of 
pharmacological agents were evaluated. Corticosteroids have 
been extensively used for the suppression of inflammatory 
responses, including zebra fish studies (27, 70), where a mixture 
of hydrocortisone and dexamethasone was used (71). We also 
determined the effect of a previously published protein tyrosine 
phosphatase inhibitor, the Shp2 (Ptpn11a) inhibitor 11a-1 (28), in 
our endotoxemia model. Shp2 is required for pro-inflammatory 
cytokine production, ROS production, and macrophage M1 
polarization (72, 73), but has not been tested as a drug target in 
endotoxemia. As expected, significant decreases in the NF-ĸB 
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FigUre 6 | Global proteomics analysis in the zebra fish endotoxemia model. Three days post fertilization larvae were either injected with PBS or lipopolysaccharide 
(LPS). Samples were flash-frozen at 8 and 24 hours post injection (hpi) and subjected to proteomics analysis. Proteins with significant difference in expression levels 
were then subjected to pathway analysis. (a,B) Top 10 global-enriched pathways at 8 (a) and 24 hpi (B) in LPS-injected larvae compared to that of PBS-injected 
control. (c,D) Top 10 immune pathways enriched at 8 (c) and 24 hpi (D) LPS-injected larvae compared to that of PBS-injected control. The −log10 p-values below 
the graph were calculated by MetaCore software and indicate the magnitude of alteration of the whole network (n = 3 independent experiments with over 20 larvae 
each/experiment). (e) Fold changes of proteins involved in the top 10 enriched immune pathways at 8 and 24 hpi. The heat map presents the relative expression of 
proteins in LPS-injected larvae compared to that of PBS-injected control. Three independent experiments are shown.
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levels (Figures 7A,B) and mortality (Figure 7C) in LPS-injected 
larvae treated with either the Shp2 inhibitor or corticosteroid 
were noted. In 11a-1-treated larvae, inflammatory cytokines 
were decreased, whereas anti-inflammatory il-10 was increased 
at 8 hpi (Figure 7D). Tissue damage was significantly reduced 
(Figures 7E,F), and the vascular junction genes were preserved 
at 8 hpi when treated with 11a-1 (Figure 7G). In addition, 11a-1 
treatment also preserved the phagocyte numbers in the CHT 
(Figures 7H–J) as well as in the whole larvae (Figure 7K) and 
mitigated the increase of myelopoiesis-stimulating growth factors 
at 8 hpi (Figure 7L). Together, our finding that corticosteroids 
can suppress the LPS-induced inflammatory responses in the 
zebra fish endotoxemia model further validated its utility for the 
discovery of novel therapeutic agents to treat endotoxemia. The 

observed anti-inflammatory and protective effects by compound 
11a-1 in our LPS-induced endotoxemia model suggest that 
Shp2 inhibition may provide a potential strategy for combating 
endotoxemia.

DiscUssiOn

Here, we report a zebra fish endotoxemia model facilitated by IV 
injection of LPS into 3 dpf larvae. Hallmarks of acute endotox-
emia including systemic inflammation, extensive tissue damage, 
loss of vascular junction integrity, immune cell mobilization, 
emergency hematopoiesis, and host mortality were observed 
herein. It is well known that during systemic inflammation, 
neutrophils and macrophages migrate out of the zebra fish CHT, 
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FigUre 7 | Shp2 inhibitor reduces lipopolysaccharide (LPS)-induced systemic inflammation and mortality. (a,B) Zebra fish embryos of Tg(NF:κB:GFP) were treated 
with DMSO, Shp2 inhibitor (11a-1), or corticosteroids and injected with LPS. Representative images (a) and quantification (B) of the GFP intensity in the indicated 
region. Scale bar: 500 µm. Results are presented as mean ± SD (D) (n = 3 independent experiments with over 20 larvae each/experiment). ***p < 0.001, 
****p < 0.0001, Kruskal–Wallis test. (c) Survival curve LPS-injected larvae treated with DMSO, 11a-1, or corticosteroid. One representative experiment of three 
independent biological repeats (n = 20 each group) is shown. *p < 0.05, ***p < 0.001, Gehan–Breslow–Wilcoxon test. (D) Transcript levels of genes encoding 
pro-inflammatory and anti-inflammatory cytokines in whole larvae treated with DMSO or 11a-1 at 8 hpi. Results were normalized with ef1α and are presented as 
means ± SD (n = 3 biological repeats with 20 larvae in each group). *p < 0.05, **p < 0.01, ****p < 0.0001, Sidak’s multiple comparisons test. (e,F) Tg(β-
actin:secANV-YFP)pu17 were treated with DMSO or 11a-1 and injected with LPS. Representative image (e) and quantification (F) of apoptotic cell puncta in the trunk. 
Scale bar: 200 µm. ****p < 0.0001, Mann–Whitney test. (g) Transcript levels of genes encoding vascular and cell junction proteins in whole larvae at 8 h post LPS 
injection treated with DMSO or 11a-1. Results were normalized with ef1α and are presented as means ± SD (n = 3 biological repeats with 20 larvae in each group). 
**p < 0.01, ***p < 0.001, Sidak’s multiple comparisons test. (h–J) Tg(mpeg:H2B-GFP) were crossed with Tg(mpx:mCherry), treated with DMSO or 11a-1 and 
injected with LPS. Representative images (h) and quantification of neutrophil (i) and macrophage (J) numbers in the caudal hematopoietic tissue (orange box). One 
representative result of three independent experiments was shown (n = 20). Scale bar: 200 µm. Results are presented as mean ± SD (n = 3 independent 
experiments with over 20 larvae each/experiment). **p < 0.01, ****p < 0.0001, Mann–Whitney test. (K,l) Transcript levels of genes encoding lyzC and mfap4 (K), 
csf3 and csf1 (l) in whole larvae treated with DMSO or 11a-1 after LPS injection. Results were normalized with ef1α and are presented as means ± SD (n = 3 
biological repeats with 20 larvae in each group). *p < 0.05, **p < 0.01, ****p < 0.0001, Mann–Whitney test.
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enter the circulation and peripheral tissues, and perform immune 
functions to combat the immunostimulus (23, 74). With a single 
dose of LPS administration, emergency hematopoiesis happened 
quickly, and by 24 hpi, the immune cells in the CHT and the 
entire larvae were replenished. Therefore, our model provides 
a great tool in mechanistic studies of emergency hematopoiesis 
and resolution of the systemic inflammation. We have reiterated 
several characteristics of the resolution after systemic inflamma-
tion such as elevated il-10 levels to shift the immune response 
to anti-inflammation (Figure  2D) (42), increased Occludin-5 
which facilitate vascular tissue repair (Figure 3I) (49), upregu-
lated hematopoiesis growth factors to replenish the immune 
reservoir (Figure 4H) (55), while also identifying many proteins 
associated with inflammation resolution with proteome analysis 
(Table S2 in Supplementary Material). With this model, we may 
be able to further our understanding on the resolution stages of 
acute endotoxemia.

We were able to recapitulate several previously reported 
changes in protein abundance associated with endotoxemia in 
our proteomic results (75, 76), including proteins and pathways 
involved in inflammation, vascular and organ damage, hemat-
opoiesis, metabolism, inflammation resolution, and tissue 
repair (full list in Table S2 in Supplementary Material). For 
example, the aspartate aminotransferase Got2 was upregulated 
at advanced stages of endotoxemia which is closely correlated 
with liver damage (77, 78). Hmga2, which is often seen upregu-
lated in human sepsis and which has been shown to be involved 
in immune activator functions and tissue damage, increased 
over time in our endotoxemia model (79, 80). Casein kinase 
II (CkII) has been reported to be an anti-inflammatory regula-
tor required for anti-inflammatory cytokine production such 
as Tgf-β (81) and observed to be downregulated in multiple 
inflammatory diseases (82). Here, we observed, for the first 
time in animal models, an upregulation of CkII at the later 
stage of acute endotoxemia, providing supporting evidence that 
CkII possibly drives the initiation of the resolution response. 
Another family of proteins that we have linked to endotoxin 
immune response is the Karyopherin alpha family proteins 
which have been known to promote inflammation via p65 
NF-κB activation (83). However, we were not able to detect 
differences in various immediate inflammatory proteins such 
as Nos2b and IL1b, but were detected to be upregulated at the 
mRNA level. This could be due to the stringent cutoff criteria 
of our proteomic studies (19).

While corticosteroids are often used in a broad spectrum of 
inflammatory conditions, they come with adverse side effects 
(84). As such, there is a constant search for specific drugs to 
treat specific conditions. Shp2 is the first reported oncogenic 
tyrosine phosphatase that regulates multiple cellular process, 
including signal transduction, downstream of growth factor 
receptor signaling, and Schwann cell development (85, 86). 
Multiple variants of Shp2 inhibitors are available for treating 
cancers (87), of which TNO155 synthesized by Novartis is 
currently in phase I clinical trial for lung and head and neck 
cancer (NCT03114319). In regard to innate immune-mediated 
systemic inflammation, Shp2 is an upstream activator of Akt 

and Ras pathways (88, 89) which promotes cardiac mitochon-
dria dysfunction in sepsis mice models (90) and exacerbates 
systemic lupus erythematosus (91). Shp2 inhibition promotes 
innate immune cells to shift toward an anti-inflammatory phe-
notype with more IL-10, Stat3 production, and an M2-dominant 
macrophage phenotype (73, 92). Here, we utilized a recently 
developed Shp2 inhibitor 11a-1 (28) and found drastically 
reduced systemic NF-ĸB and immune activation with decreased 
lethality in treated larvae, suggesting a potential role of the 
Shp2 inhibitor as an anti-inflammatory drug. Although the 
mechanisms of how Shp2 promotes systemic inflammation in 
the zebra fish model requires further investigation; this proof of 
concept demonstrates that our endotoxemia model can be used 
to test candidate drugs at a whole organism level.

Though LPS has been widely used as an immunostimulant, 
in many fields of studies, the response and tolerance toward 
LPS vary greatly between species and is also dependent on the 
routes of administration. Humans have a much lower toler-
ance than other commonly used model animals (93, 94). It is 
speculated that mice have a much higher tolerance to LPS due 
to their innate immunoglobulins against LPS. LPS-antibody 
complexes signal through Fc receptors, enhancing the clear-
ance of LPS by recruited phagocytes (95) or suppressing the 
signals from TLRs (96) which results in divergence from 
the response in humans (6). Zebra fish larvae are also more 
tolerant to LPS compared to humans (17), possibly due to 
their aquatic habitats (8) or the identified TLR4 delivering an 
inhibitory signaling (97). In contrast with the murine models, 
zebra fish larvae younger than 2 weeks do not have a functional 
adaptive immune system. These differences may be the reason 
why LPS-induced signaling pathway changes are not entirely 
conserved among the three species, highlighting the necessity 
of including multiple animal models. Another very interesting 
observation is that immunological priming by commensal at 
early developmental stage shapes inflammatory reactions later 
on (98). Future experiments using germ-free technique can 
be used to determine the effect of the immune priming in our 
endotoxemia model.

In summary, we provide here an endotoxemic model utilizing 
the strength of zebra fish larvae which faithfully represents the 
hallmarks and signatures of acute endotoxemia. We further show 
that our model can be genetically manipulated to study inflam-
mation and treated with drugs to assess the effect of potential 
compounds in an endotoxemic scenario. It is our expectation that 
our newly developed zebra fish endotoxemia model will provide 
a complementary tool for a full understanding of acute inflam-
mation in humans.

eThics sTaTeMenT

This study was carried out in accordance with the recommen-
dations of “Use of Zebrafish in the NIH Intramural Research 
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number: 1401001018).
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MOvie s1 | Circulation defects of LPS injected larvae at 8 hpi. Representative 
movie of the circulation in the caudal artery and vein of PBS injected (top) or LPS 
injected (bottom) larvae at 8 hpi. Red arrows: obstructed circulation. Scale bar: 
100 µm.

MOvie s2 | Circulation defects of LPS injected larvae at 24 hpi. Representative 
movie of the circulation in the caudal artery and vein of PBS (top) or LPS injected 
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