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A BERT model generates diagnostically relevant
semantic embeddings from pathology synopses

with active learning
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Abstract

Background Pathology synopses consist of semi-structured or unstructured text summar-
izing visual information by observing human tissue. Experts write and interpret these
synopses with high domain-specific knowledge to extract tissue semantics and formulate a
diagnosis in the context of ancillary testing and clinical information. The limited number of
specialists available to interpret pathology synopses restricts the utility of the inherent
information. Deep learning offers a tool for information extraction and automatic feature
generation from complex datasets.

Methods Using an active learning approach, we developed a set of semantic labels for bone
marrow aspirate pathology synopses. We then trained a transformer-based deep-learning
model to map these synopses to one or more semantic labels, and extracted learned
embeddings (i.e., meaningful attributes) from the model’s hidden layer.

Results Here we demonstrate that with a small amount of training data, a transformer-based
natural language model can extract embeddings from pathology synopses that capture
diagnostically relevant information. On average, these embeddings can be used to generate
semantic labels mapping patients to probable diagnostic groups with a micro-average
F1 score of 0.779 A +0.025.

Conclusions We provide a generalizable deep learning model and approach to unlock the
semantic information inherent in pathology synopses toward improved diagnostics, bio-
discovery and Al-assisted computational pathology.

2 Rohollah Moosavi Tayebi1, Catherine Ross'3, Monalisa Sur'?3,

Plain Language Summary
Pathology synopses are short texts
describing microscopic features of
human tissue. Medical experts use
their knowledge to understand these
synopses and formulate a diagnosis
in the context of other clinical infor-
mation. However, this takes time and
there are a limited number of spe-
cialists available to interpret pathol-
ogy synopses. A type of artificial
intelligence (Al) called deep learning
provides a possible means of
extracting information from unstruc-
tured or semi-structured data such as
pathology synopses. Here we use
deep learning to extract diag-
nostically relevant textual information
from pathology synopses. We show
our approach can then map this tex-
tual information to one or more
diagnostic keywords. We provide a
generally applicable and scalable
method to unlock the knowledge in
pathology synopses as a step toward
exploiting computer-aided pathology
in the clinic.
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aking a diagnosis in pathology is a complex intellectual
M process, involving the integration of information from

multiple pathological and clinical sources!. The
pathologist’s central role is to extract visual information from
microscopic features of human tissue (morphology), thereby
lowering the uncertainty about a suspected disease state?. This
information is then transferred into a written pathology report,
which is synthesized in the context of the inherent world model
and the knowledge accrued by the pathologist over many years.
Therefore, a pathology report is intrinsic semantics of tissue
morphology, which then must be captured and interpreted by an
expert reader in the context of their world model and domain-
specific knowledge. This requires years of specialized training, as
pathologists often do not make a specific diagnostic
interpretation3. Rather, a diagnosis often consists of semantic
information extracted from the pathology specimen, ancillary
testing, and the clinical history described as either unstructured
or semi-structured text (called a synopsis). A pathology synopsis
may give one or more probable diagnoses (i.e., a differential
diagnosis) or may simply describe the salient morphological
information without a differential diagnosis, and it is left to the
expert end-reader to extract the semantic content. The reader
must then map this semantic content to one of a small number of
core concepts that help decide the appropriate next steps and
diagnosis. This poses a challenge for knowledge mining given the
finite number of experts who can do this, specifically when scaled
to a large number of synopses. Tools to automatically extract the
morphological semantics from pathology synopses would have
high value in both the research and clinical domains. For
example, automated annotation of pathology synopses with
semantic labels would provide a clinical diagnostic support tool
by unlocking the semantics for less experienced interpreters, and
a means for knowledge mining by searching large databases of
synopses for semantically similar content. Furthermore, the field
of pathology is now transitioning to using digitally captured
whole-slide images (WSI) for primary diagnosis (digital
pathology)*. Scalable annotation of large WSI datasets with
semantic labels from associated synopses will be essential toward
developing computational pathology approaches for diagnostic
support?.

Artificial intelligence (AI) aspires to create human-like
intelligence®. Successful Al schemes consist largely of numerous
statistical and computer science techniques collectively known as
machine learning (ML)”8. ML algorithms automatically extract
information from data (i.e., learning, or knowledge acquisition)
and then use this knowledge to make generalizations about the
world®. Some notable examples of successful applications of ML
include classifying and analyzing digital images® and extracting
meaning from natural language (natural language processing,
NLP)!0, One particular type of ML, called deep learning (DL), has
been extremely successful in many of these tasks, particularly in
image and language analysis!!. DL algorithms are roughly mod-
eled after the neural structure of the human brain, learning
automatically to make representations from data as a hierarchy of
concepts from simple to more complex 1, a pyramidal multi-
resolution approach that should not be foreign to any pathologist.
Activation weights within the different layers of the network can
be adjusted according to input data, and then used to approx-
imate a function that predicts outputs on new, unseen datall. The
information extracted from data by DL can be represented as a set
of real numbers known as “features”; within a neural network,
low-dimensional embeddings of features are created to represent
information as feature vectors!!. The feature vectors produced by
DL can then be used for a wide array of downstream applications,
including image analysis and numerous NLP tasks such as lan-
guage translation®12-14,

Recently, a DL model called a transformer has emerged at the
forefront of the NLP field!>. Compared to previous DL-based
NLP methods that mainly relied on gated recurrent neural net-
works with added attention mechanisms, transformers rely
exclusively on attention and avoid a recurrent structure to learn
language embeddings!®. In doing so, transformers process sen-
tences or short text holistically, learning the syntactic relationship
between words through multi-headed attention mechanisms and
positional word embeddings!®. Consequently, they have shown
high success in the fields of machine translation and language
modeling!>16. Specifically, Google recently introduced Bidirec-
tional Encoded Representations of Transformers (BERT), a
transformer architecture that serves as an English language model
trained on a corpus of over 800 million words in the general
domain!3, BERT encodes bidirectional representations of text
using self-supervision, allowing for rich embeddings that capture
meaning in human language (i.e., syntax and semantics). A
classification (CLS) feature vector is an output from the last layer
of the BERT model representing the embedding that captures
syntactic and semantic information from the input text, which
can be used to train additional ML models such as a classifier!3.
Importantly, BERT can be easily adapted to new domains by
transfer learning with minimal fine-tuning, providing an ideal
language model for specialized domains such as medicine!1718,

In the pathology domain, NLP methods have mainly consisted
of handcrafted rule-based approaches to extract information from
reports or synopses, followed by traditional ML methods such as
decision trees for downstream classification 19-23. Several groups
have recently applied DL approaches to analyzing pathology
synopses, which have focused on keyword extraction versus
generation of semantic embeddings24~2’. These approaches also
required manual annotation of large numbers of pathology
synopses by expert pathologists for supervised learning, limiting
scalability and generalization?8.

The requirement for large-scale annotation has been a key
obstacle to the supervised training of DL models in specialized
domains such as pathology, given the task’s tediousness and the
lack of experts with domain-specific knowledge to sufficiently
label training data?®. One approach to help mitigate this problem
is known as active learning, where specific instead of random
samples, samples that are underrepresented or represent weak-
nesses in model performance are queried and labeled as the
training data3?. In this way, a relatively small amount of labeled
training data can be generalized to reach a given level of accuracy
and scaled to large unlabeled datasets’0-32. The ideal NLP
approach for analyzing pathology synopses would both auto-
matically extract features (i.e., require no manual feature engi-
neering), generate embeddings that capture the inherent rich,
semantic information, and be rapidly trainable and generalizable
using a relatively small amount of expert-labeled data.

In hematopathology, a bone marrow study is the foundation of
making a hematological diagnosis, and consists of both a solid
tissue histopathology component, called a trephine core biopsy,
and a liquid cytology component, called an aspirate. As per
International Council for Standardization in Hematology stan-
dards, an aspirate synopsis presents the morphological informa-
tion in the specimen extracted by a hematopathologist in a field:
description format. Each field contains a semantic summary of
the pathologist’s visual interpretation of key elements of a bone
marrow specimen, such as adequacy, cellularity, and the status of
each hematopoietic cell lineage33. These synopses must then be
interpreted by an expert end-reader such as a hematologist, who
extracts the semantic information and then maps this to one or
more core semantic labels, either “normal”, or one of various
“abnormal” labels (Fig. 1 and Table 1). These conceptual labels
may rarely represent a specific diagnosis; more commonly, they
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Fig. 1 Generation of semantic labels for bone marrow aspirate synopses and modeling process. An expert reader (a clinical hematologist) interprets
semi-structured bone marrow aspirate synopses and maps their contents to one or more semantic labels, which impact clinical decision-making. In order to
train a model to assign semantic labels to bone marrow aspirate synopses, a synopsis first becomes a single text string and then tokenized as an input
vector. The input vector will go through BERT and the classifier. The final output is a vector of size 21 (the number of semantic labels in our study). It is then

compared with the ground truth vector to adjust the network weights.

Table 1 The evolution of the semantic labels.

Iteration New labels

Label count Sample count

1 Acute lymphoblastic leukemia, acute myeloid leukemia, inadequate, lymphoproliferative disorder, 10 50

Acute leukemia, acute promyelocytic leukemia, chronic myeloid leukemia, hemophagocytosis, hypercellular, 18

mastocytosis, metastatic, myelodysplastic syndrome, myeloproliferative neoplasm, normal, plasma cell
neoplasm
2 Erythroid hyperplasia, iron deficiency
3
hypocellular
4 Basophilia, eosinophilia
5
6 Granulocytic hyperplasia
7
8
9

12 83

20 282
20 296
21 344
21 393
21 408
21 500

semantic labels.

In each iteration, new cases and/or new labels are added to the dataset. In some iterations, we reviewed the labeled cases and added new labels to the previous cases, or added a small number of new

represent broad diagnostic categories or descriptive morpholo-
gical findings?4. The hematologist must then integrate these core
semantic labels with bone marrow histopathology, ancillary
testing, and clinical findings to decide on the most appropriate
differential diagnosis and next steps. Often, these semantic labels
do not appear in the synopsis; for example, the hematologist may
map the content to the semantic label of “normal” based upon
their own interpretation, but the word normal may not appear in
the synopses. Therefore, bone marrow aspirate synopses form the
ideal basis for evaluating NLP tools to extract embeddings that
capture morphological semantics.

Accordingly, here we employ a BERT-based NLP model to
automatically extract features and generate low-dimensional
embeddings from bone marrow aspirate pathology synopses.
We then apply a simple single-layer neural network classifier
mapping these embeddings to one or more semantic labels as
hematopathologists. We approach this problem as a multi-label
classification using a binary relevance (BR) method, where mul-
tiple semantic labels are turned into multiple binary predictions.
The model performs well in label prediction (micro-average
F1 score of 0.779 £ 0.025, 0.778 + 0.034 when evaluated by expert

hematopathologists3®). Using dimensionality reduction, chord
diagrams, and a word-knockout approach, we show that the
model’s embeddings capture diagnostically relevant semantic
information from pathology synopses. Importantly, our model
was trained using <5% of our starting dataset of over 11,000
pathology synopses using an active learning approach, with
minimal manual data annotation by expert pathologists. Our
model3¢ provides an efficient, scalable and generalizable scheme
to unlock the semantic information from pathology synopses
with relatively little data annotation by pathologists. We see the
high relevance of our model and approach to knowledge mining,
improved diagnostics and biodiscovery. A schematic illustration
of our overall modeling pathway is shown in Fig. 1.

Methods

Pathology synopses data and preprocessing. Our study was
approved by the Hamilton Integrated Research Ethics Board,
study protocol 7766-C. As this study was a retrospective chart
review, it was approved by the REB with waiver of consent. We
collected 11,418 historical synopses for bone marrow specimens
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spanning April 2001 to December 2019. The original text data
were saved in a spreadsheet file. Due to the format’s limitation,
the synopsis structure was lost and fields were mixed with
descriptions. In addition, noise (i.e., irrelevant information)
including signatures from doctors and the reporting system’s
context were included in the text. Here, we used our Python
program?® to remove the signatures, remove inline space, remove
end space, and remove the reporting system. The reduction of text
noise likely helped the model learn the semantic information in
this dataset more effectively. It also became more ordered and
comfortable for experts to read and label these samples.

Active learning. Only the primary dataset with 50 cases was
randomly sampled, which was used to train the first model. The
model then predicted the labels of the remaining 11,000 unlabeled
cases. We randomly sampled Threshold — Num(label) cases from
each rare label group based on the model’s predictions. These
CRL candidates were checked by hematopathologists and had
their labels verified. They were then integrated with the existing
dataset to create a new dataset. A new model was then trained on
this new dataset. We repeated the process until all the labels had
more cases than the threshold number. We heuristically set the
threshold as 20, which means that labels having less than
20 samples were considered rare labels. In the early iterations
(iteration 1-5), the threshold was lowered to 10 and 15 to enrich
fewer cases so that the hematopathologist would not be over-
whelmed by the labeling. Iterations consisted of adding new labels
and/or editing the previous labels (Table 1). As a result, the
number of new labels varied in each iteration and we did not set a
fixed number for how many samples the dataset was enriched by
in each iteration (Algorithm 1).

If we had still found new semantic labels or the hematopathol-
ogists had thought the identified semantic labels could not cover
most cases’ semantic information based on their experience, we
would raise the threshold and sample more cases. We did not
discover new semantic labels during the last three iterations
(Table 1), and our hematopathologists confirmed the labels have
covered the semantic information of most cases, which suggested
the labeling is enough and CRL sampling had achieved its goals.

Algorithm 1: Active learning process
Result: A balanced dataset with more than 20 cases for each label
dataset = {50 randomly sampled cases};
while COUNT(rareLabels) > 0, where rareLabels = {label: COUNT(Casejaper) < 20} do
Sampling process; // see Algorithm 2;
while COUNT(candidates) > 100 do
threshold = threshold — 5;
Sampling process; // see Algorithm 2);
end
pathologists verify CRL candidates’ labels and may add new labels;
dataset = dataset U verified CRL;
end

Algorithm 2: Sampling process

Result: CRL candidates

candidates < {3;

for label in rareLabels do
randomly sample threshold — COUNT (existedCases) CRL candidates from pre-
dicted label group;
candidates.append(CRL candidates)

end

return candidates;

Model training. Our overall process can be regarded as a multi-
label classification, a type of supervised learning problem where
an instance may be associated with multiple labels. This is dif-
ferent from the traditional task of single-label classification (i.e.,
multi-class or binary), where each sample is associated only with

a single class label3”. We approach this classification by problem
transformation, which transforms the multi-label problem into
one or more single-label classification problems. We used the
most common problem transformation method, namely the BR
method?3, to transform the multi-label prediction into multiple
single binary predictions. As a result, each case’s semantic label
was converted into a binary vector of size 21, the number of
different individual labels, to frame the training as multiple binary
predictions.

Sentences in descriptions were combined into a single text
string using our augmentation methods. The text was tokenized
to form an input vector, which was the concatenation of “input
IDs”, “attention mask”, and “token type IDs”. The input IDs
were the numerical representations of words building the text; the
attention mask was used to batch texts together; and token type
IDs provided the classifier token [CLS].

The input vector went through BERT’s 12 encoder layers. Each
layer applied self-attention and passed its results through a feed-
forward network to the next encoder. The output from the special
[CLS] token was used as the input for a classifier. The classifier
consisted of a dropout layer with a 0.5 dropout rate to improve
the generalization and a fully connected layer with 21 nodes. It
took a vector of size 768 from [CLS] as input and computed a
logit of size 21 as output. In prediction, the sigmoid function
(Eq. 1)%°, turned the logit into a prediction score vector from 0 to 1:

1 e*
S = e Tt )

The final output was a vector of size 21. The output denoted
the model’s confidence that one predicted label is true. We treat
each label independently and use binary cross entropy (Eq. 2) to
calculate the loss, where N is the batch size and o is Sigmoid:

L(x,y) = mean(L),L = {I;,1,,- - ,lN}T, L,
_Wn[ynlog U(xn) + (1 _yn)log(l - G(xn))]

With the loss value, we used the Adam algorithm with weight
decay fix0 (weight decay = le—2, learning rate = le—3) to fine-
tune the network weights interconnecting the layers (Fig. 1),
using HuggingFace’s Transformers*!, a Python package. The
labeled case set was randomly split into a training set (80%) and a
validation set (20%). We trained models based on a training set
with the ten epochs. We saved the model each epoch and
compared them by the micro-average F1 score on the validation
set. The best-performing model was later used to predict the
labels. During the active learning stage, to make sure the training
set included all labels, so that model could learn all the labels and
help sampling CRL, we first assigned at least 1 case for each label
to the training set, then randomly separated the rest to the
training set and validation set to achieve the 8/2 split. After the
active learning stage, we used modified Monte Carlo cross-
validation (MCCV) (Algorithm 3)%2, which was adapted by us to
guarantee the validation set has at least a certain number of cases
for each label, to create four final datasets. We trained four final
models from them. Experts reviewed the predictions whereas the
embeddings are from one randomly selected final model.

(@)

Algorithm 3: The adapted MCCV process
Data: cases, validationSizeRatio
Result: trainingSet, validationSet
trainSet < (;
validationSet < (;
tmpSet <« @;
validationSize = len(cases) * validationSizeRatio;
minValidationCaseNum = min(COUNT(Casep.;)) * validationSizeRatio;
random.shuffle(cases);
for case in cases do
if any(COUNT (validationCasep;scaseraver < minValidationCaseNum) then
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validationSet.add(case);
else
tmpSet.add(case);
end
end
random.shuffle(tmpSet);
for case in tmpSet do
if len(validationSet) < validationSize then
validationSet.add(case);
else
trainSet.add(case);
end
end
return trainSet, validationSet

Synopsis conversion and augmentation. The semi-structured
synopses needed to be converted into single text instances first. As
the schema of synopses was a table with field:description and
table columns’ order would not influence its content, we could
construct the text using different orders of the synopses’ parts, i.e.,
columns (Supplementary Fig. S1 and Supplementary Table S1).

In the computer vision field, data augmentation, a technique to
increase the diversity of the training set by applying transforma-
tions such as image rotation, is usually used to solve data
insufficiency challenges*3. These transformations introduce
changes but keep the data’s core patterns, and therefore, act as
regularizers to reduce overfitting when training a model*4.
Likewise, thanks to the irrelevance of text order in the synopses
to its semantic content, we could randomly shuffle the sequence
of the synopses’ components to make different text strings to
augment the dataset. This augmentation could also be applied for
prediction (Supplementary Fig. S2). We shuffled the fields with
their descriptions to create different text representations. The
model computed the prediction scores on all of them. By
concatenating them and only considering the maximum value for
each label’s score, we obtained the result of an augmented
prediction.

Evaluation. We reviewed the NLP system’s performance in pre-
dicting labels using precision and sensitivity measures®>. We
recorded specificity, accuracy, and Fl-score values based on
the counts of true positives (hits), false positives (false hits), true
negatives (correct rejections), and false negatives (misses) for each
prediction. These performance measures were a set of equations
defined as follows:

e DPrecision (reproducibility, PPV)

. TP
recision = ———
P TP + FP
e Sensitivity (recall or hit rate)
TP
recall = ———
TP + EN

e F-score (harmonic mean of precision and sensitivity)

F =2 precision x recall
=4X ——
! precision + recall

We used micro-average F1-score, i.e., the F1-score of all labels’
aggregated contributions, to represent the overall performance.
Micro-averaging emphasizes the common labels of the dataset
because it puts the same importance on each sample. This was
suitable for our problem, as labels that were very uncommon in
the dataset were not intended to notably affect the overall F1-
score if the model performed well in the other, more common

labels. Micro-average F1-score®¢ is defined as:

TPsum
TPsum + FPsum
TPSum
TPSUm + FNsum
Micro — precision x Micro — recall

Micro — precision =
Micro — recall =

Micro — F; = 2x

Micro — precision + Micro — recall

Word knockout. We removed a word from a synopsis and use
the model to predict each label’s score. We compared the outputs
with the original outputs. Since other factors remained unaltered,
the change in the output was caused by the word only. We call the
change the “influence score” (INF) (Supplementary Fig. S3). We
did the same computation for all the words in the 500 labeled
synopses’ descriptions. We grouped the influence scores by the
synopses’ semantic labels and calculated their sum. Then we
normalized each word’s influence score by dividing the sums with
the their L,-norm (Eq. (3)) where A, = {INF : label/word = x}.

NormINF(wordX,,poy) =
ZINFEAX INF

- (INFe Ay) )
(S NE) -+ (S, INF)

27

Replication and blinding. This study’s procedure is programmed
as a pipeline in our supplied software. The process was repeated
four times on the same local servers to ensure repeatability. It was
also partly run once on the Google Colab to ensure hardware
independence. We also provide a Jupyter Notebook “demo_-
BERT_active_learning.ipynb” in our supplied software to guide
other researchers to replicate our study.

Blinding is not relevant as all data were de-identified, and the
study design did not entail a blinding step in the design.
Researchers trained ML models to predict diagnostic labels, and
hematopathologists reviewed model performance on predicting
diagnostic labels. Pathologists were not aware of original
diagnostic labels when evaluating model performance.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results

Using active learning to develop a labeled dataset capturing
semantic information in aspirate synopses. We first sought to
develop a set of labels for the >11,000 bone marrow aspirate
synopses (the raw data), with a corresponding dataset of a rela-
tively small number of labeled synopses (the development data-
set) capturing the morphological semantics in the raw data.
To accomplish this efficiently, we designed an iterative active
learning process (Fig. 2a). In this process, we used models to
sample cases with rare or underrepresented labels (CRL) (Section
“Active learning”) to help expert hematopathologists develop
labels and assign these labels to new cases. Initially, a core set of
labels were created by hematopathologists to represent the mor-
phological semantics in the raw data (Table 1). Subsequently, we
performed sampling-training-sampling iterations for CRL, and
the number of semantic labels evolved within the process (Fig. 2a
and Table 1). Each label was considered independently of all
other labels; except in the case of "iron deficiency”, a “normal”
label was always assigned mutually exclusive of an “abnormal”
label. A given synopsis could have as many abnormal labels as the
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Fig. 2 The active learning process and its result. a Active learning iteration for dataset building is shown. The primary purpose of iterations was to explore
the dataset and develop semantic labels to represent the information in the 11,418 cases. In each iteration, the model trained from current dataset predicts
the semantic labels for the unlabeled cases. Next, several cases are sampled from each label using an active learning approach to enrich for rare labels, to a
minimum of 20 cases (a limit heuristically set) per label. Then, hematopathologists review the samples and confirm their labels. Meanwhile, new semantic
labels may be discovered and they will be next iteration’s focus (they are the rarest now). These cases are merged with the current labeled dataset to form
a new dataset. A new model is trained on this new dataset, and the iterations continue until the dataset includes at least 20 cases for each label. b Stable
model performance was attained with a relatively small labeled dataset through active learning. We used the final training dataset of 400 labeled synopses
to train models and measured their performance using the same 100 validation cases as a benchmark. The micro-average F1 score reaches a plateau, 0.770,
at around 350 cases. With the same size of training data, models trained on random sampling instead of active learning can only reach a micro-average
F1 score of 0.577. We have used error bars to show the standard error of the mean computed across four different experiment runs.

hematopathologists found necessary (Table 1). We found the
number of semantic labels stabilized at 21 over seven active
learning sampling-training-sampling iterations (Table 1), at
which point when no new labels were deemed needed to repre-
sent the semantics of newly sampled CRL in the subsequent
iterations. Over the active learning iterations, reviewed CRL were
added into the development dataset until no more CRL were
identified (Section “Active learning”). The final development
dataset consisted of <5% of the raw data, having 500 aspirate
synopses annotated with 21 different semantic labels assigned by
expert hematopathologists (Table 1). We then partitioned this
development dataset into 400 training cases (called the training
set), and 100 validation cases (called the validation set) used to
test model performance. Another 1000 cases were randomly
sampled from the rest 10,918 cases (11,418 cases to 500 cases
labeled) and used as an evaluation set (Supplementary Fig. S4).
To confirm the development dataset had enough cases to
capture salient semantic information in the raw data, we explicitly
evaluated the relationship between model performance and
sample size. Here, we trained models in batches of 50 annotated
synopses from the training set and used the validation set as the

standard benchmark (Fig. 2b). We found that at 350 total
annotated synopses, the models’ micro-average F1 score in
predicting semantic labels plateaued at 0.77, suggesting that
model performance stabilized, i.e., the relatively small training set
covered most of the semantic information in the raw data.
Furthermore, for comparison, we also performed the same
experiment to train models on random samples (400 cases from
the evaluation set reviewed by two expert hematopathologists
who did not participate in labeling). In this case, the model only
reached a micro-average F1 score of 0.62, highlighting the active
learning process’s high efficiency versus random sampling
(Fig. 2b). We subsequently applied the model trained on the
400 annotated training samples to extract low-dimensional BERT
embeddings and map these embeddings to the semantic labels.

Visualizing BERT-generated embeddings in the development
dataset. To gain insight into diagnostic relevance of the low-
dimensional embeddings (768 dimensions) generated by BERT
during the active learning process, we visualized the embeddings
of development dataset in 2 dimensions using t-distributed sto-
chastic neighbor embedding (t-SNE)#7 (Fig. 3a). We found that
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“myelodysplastic syndrome” group and the “acute myeloid leukemia” group. This suggests the model learned subtle patterns from the dataset and can map
synopses to low-dimensional vectors according to diagnostic semantics. b 2D projection of synopsis embeddings from the 1000 cases in the evaluation set
is shown. Embeddings are colored according to the combination of semantic labels. Dots represent the cases whose predictions match pathologists’
assessments. Crosses represent the cases whose predictions do not match their assessments. Only combinations with more than 12 cases are shown in the
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also interact with the graphs on https://storage.googleapis.com/pathopatho/label_tsne.html and https://storage.googleapis.com/pathopatho/

unlabel_tsne.html, respectively]

the embeddings tended to cluster meaningfully according to the
semantic labels assigned in the development phase, suggesting a
similar semantic embedding space. For example, the embeddings
from synopses labeled as “normal” clustered relatively loosely,
which is expected as these represent a heterogeneous group of
patients. Similarly, the embeddings from synopses labeled with
disease states, such as “plasma cell neoplasm” or “acute myeloid
leukemia (AML)”, cluster relatively compactly, suggesting a more
homogeneous clinical group as expected. Embeddings annotated
more complexly with multiple labels tended to fall between major
clusters; for example, the embedding labeled with “acute leuke-
mia; myelodysplastic syndrome” fell intermediate between the
clusters representing embedding for “acute leukemia” and
“myelodysplastic syndrome”. These synopses represent AML with

myelodysplasia-related changes (AML-MRC), which would be
conceptually expected by a hematopathologist or hematologist to
have features of both semantic labels*8. These findings suggested
both that the semantic labels assigned by hematopathologists
were valid, and furthermore that the embeddings generated by
BERT during the development phase with active learning were
diagnostically relevant and captured the morphological semantics
from pathology synopses.

To further evaluate our model’s ability to generate diagnosti-
cally relevant semantic embeddings, we again applied t-SNE to
visualize the embeddings from an evaluation set of 1000 cases and
had expert pathologists review the semantic labels (Fig. 3b).
Similar to the hematopathologist-annotated development set,
embeddings generated by our model from the evaluation set
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tended to cluster meaningfully, according to semantic labels
assigned by the model (Fig. 3b). Expert hematopathologists then
validated all of the labels assigned by the model to these
embeddings (Fig. 3b, “closed circles”). Cases that were discrepant
between the model’s prediction and the hematopathologist’s
evaluation tended to have more complex label assignment (two or
more semantic labels), and fall toward the edges of the clusters,
suggesting these were borderline cases (Fig. 3b, “x’s”). For
example, some cases predicted by the model as “hypercellular” or
“granulocytic hyperplasia” were annotated as “normal” by a
pathologist, which is expected given the nuances in semantic
interpretation of normal by individual pathologists. Other cases
demonstrated clearly discrepant model and pathologist semantic
label prediction, particularly in cases with more complex labeling

patterns or more broad labels such as “hypocellular”. Overall,
these findings suggested that our model efficiently generated
diagnostically relevant semantic embeddings from bone marrow
aspirate synopses.

Evaluating the mapping of BERT embeddings to individual
semantic labels. The overall model performance showed a micro-
average F1 score of 0.783 in predicted semantic labels (Fig. 4a).
When considered independently, the model tended to predict
semantic labels that constituted a specific diagnosis, or more
specific diagnostic category with the highest confidence (Fig. 4a).
For example, the label “chronic myeloid leukemia” was predicted
with a micro-average F1 score of 1.0, but the broad descriptive
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Fig. 4 Model performance in label prediction. a The mean F1 scores and the standard deviation computed across four validation experiments for each label
from the final models are shown. Our training strategy was to treat all labels independently. On average, the micro-average F1 score is 0.779
(Supplementary Table S2). Interestingly, the label “acute lymphoblastic leukemia” and “acute leukemia” has the lowest F1 score (0.59 and 0.60), though its
sample size in the dataset is similar to that of “acute promyelocytic leukemia” (0.94). This may imply the performance is not determined solely by data
size; other factors also play an important role. b Marginal improvement with expert feedback on randomly selected cases is shown. Pathologists reviewed
the model’s predictions in 8 batches (100 randomly selected cases per batch, 800 cases in total). For each batch, the newly reviewed cases were added to
the training set to re-train the model, and the updated model was used to make the next batch’s predictions (Supplementary Fig. S6). Dots represent each
model generation’s performance as judged by the hematopathologists. When tested against the validation set (lines), the model started at the micro-
average F1 score of 0.779. With more labeled cases provided, the model’'s performance improves slightly to reach a maximum of 0.811, which shows that
more cases only provide marginal improvement when randomly selected (i.e., not enriched for rare labels by active learning). We used the feedback to
simulate this experiment on another three models. The values here are the average of the results from the four experiments.
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label “hypocellular” was predicted with an F1 score of 0.56
(Fig. 4a). Conceptually, this is not unlike the practice of an expert
reader such as a hematologist, where more specific diagnostic
categories are easily predicted from a synopsis, and more broad
descriptive labels may be more challenging to assign. Some spe-
cific labels, however, were predicted with lower confidence; the
semantic label “acute lymphoblastic leukemia (ALL)” showed an
F1 score of 0.33, while “AML” showed an F1 score of 0.9, which
may reflect the imbalance in the training dataset between these
diagnoses (Supplementary Fig. S5). Collectively, these findings
suggested that with minimal training using active learning on a
relatively small number of labeled cases, a BERT Base and simple
neural network classifier model efficiently generates diagnostically
relevant low-dimensional embeddings that capture morphological
semantics, and maps these embeddings to one or more semantic
labels with on average high confidence.

Next, we used the evaluation set reviewed by two expert
hematopathologists who did not participate in labeling to further
test the model’s performance to investigate the effect of increasing
training data using random sampling. This aims to simulate a
training process where users’ feedback is not derived from
specifically selected samples (i.e., active learning), but rather from
random samples. We found that pathologists’ micro-average
F1 scores for agreement with the model’s predicted semantic
labels ranged from 0.80 to 0.87, close to the stable micro-average
F1 score of 0.77 we observed in model training (Figs. 2b and 4b).
This both suggested that semantic labels applied in the
development stage were valid, and that model’s performance
tends to plateau with the initial training set. To assess the impact
of pathologist evaluation on model performance, we re-trained
the model in batches of 100 evaluated cases selected by random
sampling, and then assessed the impact on micro-average
F1 score. We found that after the predictions were adjusted by
evaluating pathologists, the micro-average F1 score tended to
improve (Fig. 4b). However, with more labeled cases provided,
the model’s performance only improved slightly to an F1 score of
0.81, This suggested that the training cases represented the
majority of morphological semantics in the dataset, and selecting
more cases by random sampling provides only marginal
improvement, i.e. the CRL sampling is highly efficient.

Evaluating the co-occurrence of semantically similar label
predictions. To further evaluate our model’s ability to capture the
morphological semantics of pathology synopses, we assessed the
frequency by which semantic labels predicted by our model co-
occurred using a chord diagram (Fig. 5). Although our approach
was a BR method3 where each label was considered indepen-
dently, we hypothesized that if the model captured semantic
information from aspirate synopses, semantically similar labels
should frequently co-occur. Using the evaluation set of 1000
randomly selected synopses that were assigned semantic labels by
our model, we found that semantically similar labels tended to co-
occur in the model’s prediction with high frequency (Fig. 5). For
example, the label “myelodysplastic syndrome” co-occurred often
with the labels “acute myeloid leukemia” and “hypercellular”, as
would be conceptually expected by a hematopathologist. Simi-
larly, the label “myeloproliferative neoplasm” tended to co-occur
with the labels “chronic myeloid leukemia”, “hypercellular”,
“basophilia” and “eosinophilia”, again as would be conceptually
expected as aspirates in myeloproliferative neoplasms often
contain all of these findings. This suggested that our model
captured the morphological semantics from aspirate synopses
despite label prediction being a binary classification problem,
allowing the model to annotate the same pathology synopsis with
distinct but semantically similar labels.

Exploring the model’s semantic label prediction process. To
gain insight into how our model was assigning semantic labels, we
designed and implemented a simple word-knockout approach to
evaluate the influence of individual words in pathology synopses
on model performance (Section “Word knockout”). With this
approach, we identified the top-5 words used by the model to
predict a given semantic label (Fig. 6) each associated with a
normalized importance score (Section “Word knockout”). We
found that for most semantic labels, the words weighted most
highly for model prediction were either identical, or semantically
similar to the label (Fig. 6, leftmost columns). For example, the
semantic label “metastatic” was associated with “metastatic” or
“clump”, as invasive tumor cells are often present in “clumps” in
bone marrow aspirates. The semantic label “normal” was most
associated with the word “remission”, as bone marrows in
remission are often semantically interpreted as being normal#’.
Other words were more difficult to interpret; words like “in”,
“not” and “seen” that have no obvious semantic relationship to
the labels were weighted in the top 3-5 words by the model for
several labels (Fig. 6). Analogous observations have been reported
in other DL domains such as image recognition®. Overall, these
findings suggested that our model learned semantically mean-
ingful relationships between predicted labels and individual
words within bone marrow aspirate synopses.

Discussion

Tools to scalably unlock the semantic knowledge contained
within pathology synopses will be essential toward improved
diagnostics and biodiscovery in the era of computa-
tional pathology and precision medicine®!. This knowledge is
currently limited to a small number of domain-specific experts,
forming a crucial bottleneck to the knowledge mining and large-
scale diagnostic annotation of WSI that is required for digital
pathology and biodiscovery. In this work, we present an NLP
model based on the BERT transformer architecture and a simple
neural network classifier that can automatically and efficiently
generate diagnostically relevant semantic embeddings from
pathology synopses, and map these embeddings to one or more
labels representing semantic information. Our model accom-
plished this with a relatively small amount of labeled cases
(training set with a size of 400), overall high confidence (micro-
average F1 score of 0.779 + 0.025, 0.778 £ 0.034 when evaluated
by experts) using an iterative active learning process. Further-
more, we provide insight into how the model is making these
predictions, which to our knowledge is the first example of
exploring the mechanisms by which a transformer model gen-
erates semantic text embeddings in pathology.

We propose three main applications of our system. First, the
BERT model enables the vectorization of pathology synopses. The
vectorization, i.e., converting text into numerical representations
in the form of feature vectors, supports many types of down-
stream analysis, including semantic search®2; a database of WSI
files could be queried based on a text string for WSI that contains
semantically similar content. The vector distance between text or
WSI is directly correlated to semantic similitude that can be
analyzed using techniques such as Euclidean distance or Cosine
distance: the smaller the distance, the higher the similarity. Our
model, similar to Google’s universal sentence encoder!4, could
also be used to bring semantic experience into pathology research.
Second, the embeddings from vectorization can be used to gen-
erate semantic labels to map patients to probable diagnostic
groups. In clinical settings, pathology synopses are generally not
used to facilitate computational pathology®3. With automatic
tagging, synopses can be arranged, cataloged, and retrieved in
order. For example, our model could be used as a basis for a triage
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“basophilia”, and “eosinophilia”. d The model does not learn the exclusiveness of the label “normal”. [An interactive web version can be accessed via

https://storage.googleapis.com/pathopatho/chord.html]

or workflow support tool, where synoptic reports are identified
and assigned semantic labels to organize according to clinical
urgency. In addition, dimensionality reduction techniques could
be used to visualize embeddings providing a rapid visual assess-
ment of probable patient diagnostic groups as a diagnostic
workflow support tool. Last, combined with the word-knockout
technique described in this paper, our model can compute each
word’s importance score in a synopsis, highlighting essential
words. Words extracted by this knowledge mining method can
optimize the general workflow because readers generally prefer
text that is easily and rapidly scannable®*. By highlighting the
most important words in synopses, end-users such as family
physicians or even patients who do not have the same level of
domain knowledge as a specialist may understand the synopses
more effectively. Our findings also show that some words used by
the model to predict semantic labels with lower confidence are
not semantically similar to the label (Fig. 6). This problem is not

unique to our study, as other DL domains such as image classi-
fication report similar anomalies®. Such findings suggest that
parameters beyond individual words, such as syntactic word
relationships, may be involved in model prediction. Future works
may explore this in more detail. The observation that some labels
were predicted with lower confidence than other labels is not
unexpected in real-world datasets. Labels with lower F1 scores
tend to have a lower frequency in the training set (Supplementary
Fig. S5), which may partially explain this observation. One
example is the semantic label ALL. Given the relatively rarity of
both B and T ALL in adults, these diagnostic categories were
considered as one label for this study, which may have affected
model performance. Future work on larger datasets could address
these rare diagnostic categories independently, specifically if
designed for clinical implementation. Other factors may provide
nuances in how synopses are associated with these semantic labels
are structured; for example, labels such as “hypocellular” and
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Fig. 6 The Top-5 words the model relies on for label prediction. The color of each cell represents the L,-normalized importance score of the word. The
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as when specific no abnormal findings are identified by a hematopathologist, the case is semantically interpreted as normal. In this way, our knockout
method provided some insight into the complex and opaque prediction process of the model.

“inadequate” tend to occur in a wide range of clinical scenarios,
which may pose challenges to the model in recognizing these
labels as distinct in a variety of circumstances. In addition to
improving model performance with additional labeled data via
active learning iterations, one solution to such problems in
complex cases is “human-centric AI”, where labels assigned below
certain confidence would be channeled to an expert reader for
review.

Active learning is one potential solution to improve model
performance and generalize a small amount of annotated training
data to large datasets where high domain-specific knowledge is
required. This has been a significant problem in medical domains
such as pathology. We think sampling CRL as specific instances to
develop a balanced dataset, where each label reaches a given
threshold, is an effective adaptation of active learning for labeling
tasks requiring high domain-specific knowledge. Common active
learning strategies, e.g., least confidence®, uncertainty sampling®’
and etc., select data based on models’ confidence, aiming to
improve the models” performance on an established stable set of
labels. Our study was uniquely designed around a pathology
clinical workflow application, requiring an active learning strategy
that allowed us to develop a label set covering the semantic
information in pathology synopses, as well as address imbalance
in the dataset. Like any real-world dataset, the semantic labels for
pathology synopses are naturally imbalanced (for example,
“normal” cases are more common than “erythroid hyperplasia”
cases). Thus, our active learning strategy was specifically designed
to uncover new labels and also to supply underrepresented labels
with more cases to alleviate imbalance. Our strategy leverages the
multi-label approach to explore a dataset and discover new labels.
When pathologists verify CRL candidate labels and find new
semantic labels, the sampling’s focus in the next iteration will be
on the new labels, which are now the rarest, and more cases with
the new label will be found. Visually, it’s similar to moving from a
semantic group’s edge boundary to its center or another
boundary with a different semantic group (Fig. 3a). Second, when
we add more cases with rare labels, the class imbalance will
naturally be reduced. This sampling method appears to be highly
efficient, as our results show the model learned the core semantic
content of the dataset from a small number of training cases via
this active learning approach, and more cases randomly selected

only provide marginal improvement. Additional active learning
strategies, such as least confidence, uncertainty sampling, and
discriminative active learning®, could be explored in future work
once a stable and balanced set of labels is attained. One could
envision using such approaches in an “adaptive Al system” where
pathologists continually evaluate model performance and provide
feedback in real-time based on underrepresented labels, to a point
where the model performance is difficult to distinguish from an
expert colleague. Such an approach may be an avenue toward
validating and implementing a similar model as a clinical work-
flow support tool.

We used a BR method (Section “Model training”), to transform
the multiple semantic labels into multiple binary predictions. The
drawback of this method is that it ignores the information that
can be extracted from considering label correlations; this may be
why the model does not grasp the exclusiveness of “normal”
(Fig. 5). However, this approach is resistant to overfitting label
combinations because it does not expect samples to be related to
previously observed label combinations. Therefore, it can handle
very irregular labeling (some labels are exclusive and some are
inclusive), which is expected in pathology domains. Moreover,
since labels have a one-to-one relationship to binary models,
labels can be added and removed without noticeably affecting the
rest of the model. These advantages make it applicable to the
annotation of pathology synopses, where the sample size is small
(high risk of overfitting) and the labels are continuously evolving
(Table 1). Although the number of semantic labels is 21 as active
learning process concluded, this number could be increased as
additional pathologists continue to review cases leading to
increasingly complex and granular combinations of semantic
labels.

Finally, our approach is relatively straightforward compared
with other studies'®-23 in this area. The rule-based systems need
to formalize handcrafted rules for specific tasks, while our method
skips the feature engineering and further manual intervention.
Training a neural network from scratch requires an extensive
training corpus, but by fine-tuning the pre-trained BERT model
with additional augmentation steps (described in the “Methods”
section), e.g., sampling-training-sampling iteration, data aug-
mentation, and prediction augmentation, we can use this
sophisticated transformer model with only 500 labeled samples
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and achieve 0.779 +0.025 micro-average Fl-score during final
evaluation. We have packaged our approach as a Python appli-
cation. Other researchers only need to provide their samples and
labels. Therefore, we expect this model will be easily generalizable
and scalable to other pathology and medical domains.

Data availability

The data that support the findings of this study are available on reasonable request from
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