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Abstract

Motivation: Accurate and wide-ranging prediction of thermodynamic parameters for biochemical

reactions can facilitate deeper insights into the workings and the design of metabolic systems.

Results: Here, we introduce a machine learning method with chemical fingerprint-based features

for the prediction of the Gibbs free energy of biochemical reactions. From a large pool of 2D

fingerprint-based features, this method systematically selects a small number of relevant ones and

uses them to construct a regularized linear model. Since a manual selection of 2D structure-based

features can be a tedious and time-consuming task, requiring expert knowledge about the

structure-activity relationship of chemical compounds, the systematic feature selection step in our

method offers a convenient means to identify relevant 2D fingerprint-based features. By comparing

our method with state-of-the-art linear regression-based methods for the standard Gibbs free

energy prediction, we demonstrated that its prediction accuracy and prediction coverage are most

favorable. Our results show direct evidence that a number of 2D fingerprints collectively provide

useful information about the Gibbs free energy of biochemical reactions and that our systematic

feature selection procedure provides a convenient way to identify them.

Availability and implementation: Our software is freely available for download at http://sfb.kaust.

edu.sa/Pages/Software.aspx.

Contact: hiro.kuwahara@kaust.edu.sa or xin.gao@kaust.edu.sa.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Thermodynamic data provide useful information to constrain the

functional repertoire of metabolic networks from their structures

(Ataman and Hatzimanikatis, 2015; Beard et al., 2004; Held and

Sadowski, 2016; Toure and Dussap, 2016). With advances in the

characterization of the metabolome, thus, increasingly important

becomes the role of thermodynamics in functional analysis of the

endogenous metabolism of organisms (Feist et al., 2007; Großkopf

and Soyer, 2016; Henry et al., 2006; Kümmel et al., 2006) and meta-

bolic engineering for natural product biosynthesis (Carbonell et al.,

2014; Kuwahara et al., 2016; Lee et al., 2012; Nielsen, 1998; Yim

et al., 2011). Unfortunately, however, experimental thermodynamic

data for metabolic reactions have thus far been limited to only a small

fraction of known biochemical reactions (Flamholz et al., 2012;
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Goldberg et al., 2004), making in silico prediction of biochemical

thermodynamic parameters not only necessary but also essential to a

deeper understanding of the workings of metabolic systems.

The Gibbs free energy prediction problem can be treated as a re-

gression problem with linear constraints imposed by the first law of

thermodynamics, and a number of computational methods have

been proposed to tackle this thermodynamics constrained regression

task (e.g. Jankowski et al., 2008; Jinich et al., 2014; Mavrovouniotis

et al., 1988; Noor et al., 2013; Rother et al., 2010). Most commonly

applied ones are variants of the group contribution method

(Jankowski et al., 2008; Mavrovouniotis et al., 1988; Noor et al.,

2012, 2013). The group contribution method is a linear regression

method which uses predefined 2D substructures as features and esti-

mates the Gibbs free energy of formation of a compound by the sum

of the weight of substructure fragments into which this compound

can be decomposed. Because these substructure fragments can be

combined to compose molecules that are not seen in the training set,

the group contribution method has a potential to cover a wide range

of biochemical reactions. The main challenge of the group contribu-

tion method is to identify useful 2D substructure fragments that can

be used as its features. The manual selection of such substructure

fragments is a complex, tedious and time-consuming task requiring

expert knowledge on the structure-activity-relationship (SAR) of

metabolites. This is because the selection of substructure features

needs to satisfy two objectives: (i) to compose all compounds in the

training by the substructure fragments and (ii) to have useful sub-

structure fragments for the biochemical thermodynamic prediction.

Furthermore, since the selection of these features depends strongly

on the compounds present in the training set, its decision also needs

to take into account the characterization of the 2D structure of un-

seen compounds so as to avoid severely limited prediction coverage.

In this paper, we introduce a new linear regression-based

method, called the fingerprint contribution (FC) method, that we

developed for the prediction of Gibbs free energy of biochemical

reactions. The FC method is a two-step method which represents

chemical compounds by features based on 2D fingerprints and mo-

lecular descriptors. In the first step, from a large pool of 2D

fingerprint-based features, it systematically selects a smaller set of

relevant ones that is expected to exhibit low generalization error,

and in the second step, it uses the selected features in a regularized

regression method to construct the final linear model. This new

method overcomes usability limitations found in the group contribu-

tion method. While substructure fragment-based features used in the

group contribution method can only represent chemical compounds

that can be composed by some substructure fragments in the feature

set, 2D fingerprint-based features used in our new method can repre-

sent any chemical compounds with concrete 2D structures. Thus,

the FC model can cover a much wider range of chemical reactions

than the group contribution variants. Indeed, the FC model is able

to predict Gibbs free energy of virtually any biochemical reactions in

which structurally characterized compounds participate.

Furthermore, unlike the group contribution method, in which sub-

structure fragment-based features are manually selected in a tedious

process to ensure that they cover the composition of all chemical

compounds in the training set, the FC method uses 2D fingerprinting

methods to generate potential features and systematically select rele-

vant ones in a much more convenient and efficient way.

Here, to analyze the value of the FC method, we compared its

performance with that of state-of-the-art linear regression-based

methods for the Gibbs free energy prediction. Our results demon-

strated that the FC method outperformed the other method in terms

of the prediction accuracy and the prediction coverage. These suggest

that a number of 2D fingerprints provide useful information about the

biochemical thermodynamics and that our systematic feature selection

procedure can identify relevant fingerprints to improve the prediction

of the Gibbs free energy of biochemical reactions.

2 Materials and methods

2.1 Significance test of the range-based partition for

accuracy
With a null hypothesis that the observed difference in the prediction

error between these linear dependency-based subgroups can be

obtained by chance, we performed random permutation test, in

which we randomly partitioned the Noor et al.-based dataset 1 mil-

lion times into two subgroups based on the size of the in-range-

reactions and the out-of-range reactions. Let nOR and �OR be the

size and the mean absolute error (MAE) of the out-of-range reac-

tions, respectively. Then, we performed random permutation test, in

which we randomly sampled reactions of size nOR from the Noor

et al.-based dataset 1 million times and measured the MAE for each

sample as the test statistic. With this, we computed the P-value as

the probability that the test statistic is higher than or equal to �OR in

this sampling distribution. Clearly, this P-value is also the same as

the probability that the MAE of the unchosen reactions is lower

than or equal to the MAE of the in-range reactions.

2.2 Prediction error estimation for the KEGG dataset
The weighted average approach we used for the estimation of pre-

diction error for the KEGG reactions is as follows:

�̂KEGGðmÞ ¼ aKEGGðmÞ�ORðmÞ þ ð1� aKEGGðmÞÞ�IRðmÞ; (6)

where �̂KEGGðmÞ is a predicted MAE for model m on the KEGG

dataset, aKEGGðmÞ is the fraction of the out-of-range reactions in the

KEGG dataset with respect to the design matrix for the construction

of model m, �ORðmÞ is the MAE of the out-of-range reactions from

m in the leave-one-out cross validation (LOOCV), and �IRðmÞ is the

MAE of the in-range reactions from m in the LOOCV. To evaluate

the prediction accuracy of the FC model, the, group contribution

(GC) model and the reactant contribution (RC) model with this

measure, thus, the linear dependency of each reaction in the KEGG

dataset was analyzed by examining whether its feature vector is a

linear combination of the row vectors of the design matrix (Noor

et al., 2012). In the case of component contribution (CC) model,

since it is a hybrid model of the RC model and the GC model, a reac-

tion in the KEGG dataset was determined to be an in-range reaction

if it is an in-range reaction in either the RC model or the GC model

and an out-of-range reaction otherwise (Noor et al., 2013).

3 Results

3.1 Fingerprint contribution model
3.1.1 Energy conservation constraint

The reaction Gibbs energy prediction problem can be treated as a re-

gression problem with a linear constraint imposing the principle of

energy conservation. The energy conservation constraint can be seen

via the expression of the standard reaction Gibbs free energy of a

chemically balanced reaction based on the standard Gibbs free en-

ergy of formation of the participating compounds. Let C ¼
fc1; . . . ; cng be a set of n chemical compounds and Df G0 ¼
ðDf G

0
1; . . . ;Df G

0
nÞ

T be an n-dimensional vector whose ith element,

Df G
0
i , represents the standard Gibbs free energy of formation of

compound ci. Then, the first law of thermodynamics implies that the
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standard reaction Gibbs free energy of chemical reaction Rj, DrG
0
j ,

be expressed by the following expression:

DrG
0
j ¼ ðDf G0ÞTmj; (1)

where mj ¼ ð�j1; . . . ; �jnÞT is an n-dimensional vector whose ith elem-

ent, �ji, represents the stoichiometric coefficient of compound ci in

reaction Rj. This shows that the standard reaction Gibbs free energy

is a linear transformation of the stoichiometric vector, and the en-

ergy conservation constraint can be described by the additive prop-

erty of linear transformation. To illustrate this point, suppose there

is a set of the following three reactions:

R1 : c1�c2; R2 : c2�c3; R3 : c3�c1:

Then, since these three reactions create a futile cycle, the energy

conservation constraint implies that DrG
0
1 þ DrG

0
2 þ DrG

0
3 ¼ 0.

Because the violation of the first law of thermodynamics most likely

leads to physically irrelevant solutions, similar to state-of-the-art

methods such as those based on the group contribution method

(Jankowski et al., 2008; Mavrovouniotis et al., 1988; Noor et al.,

2012, 2013), we treat the energy conservation constraint as a hard

constraint in the reaction Gibbs energy prediction problem.

3.1.2 Chemical fingerprint-based linear model

Fingerprint-contribution (FC) model is a linear model with chemical

fingerprint and molecular descriptor-based features for the predic-

tion of the standard Gibbs free energy of biochemical reactions. By

representing the chemical transformation of each reaction Rj by a

numerical vector of 2D fingerprint-based features, xj 2 R
p, the FC

model forms the following linear function:

f ðxjÞ ¼ wTDxj; (2)

where w 2 R
p is a vector of the feature weights and D is a P-by-P di-

agonal matrix to normalize the input feature vector. This linear

model can be derived from Equation 1 by assuming that each Df G
0
i

be represented by the weighted sum of chemical fingerprint-based

features. That is, with a function h : C7!R
p which maps compound

ci 2 C to a P-dimensional numerical vector of chemical fingerprint-

based features, we express Df G0 by FDw where F ¼
ðhðc1Þ; . . . ;hðcnÞÞT is an n-by-P compound-feature matrix. From

this, the standard Gibbs free energy of reaction Rj can be character-

ized in terms of the chemical fingerprint-based features as

DrG
0
j ¼ ðFDwÞTmj ¼ wTDxj; (3)

where xj ¼ FTmj. This shows that the P-dimensional feature vector

in the FC model is a linear transformation of the n-dimensional stoi-

chiometric vector via the compound-feature matrix. Thus, the FC

model satisfies the energy conservation constraint.

3.2 Overview of the FC method
We assume to be given a training set fðR1; y1Þ; . . . ; ðRm; ymÞg where

each yj is the observed standard reaction Gibbs free energy of reaction

Rj. Given this training set, we first select a subset of relevant fingerprint-

based features, and then we apply a regularized linear regression using

only the selected features based on the following equation

y ¼ DXwþ e (4)

where y ¼ ðy1; . . . ; ymÞT is an m-dimensional vector for the observed

standard reaction Gibbs free energies, X ¼ SF is the m-by-P design

matrix derived from the product of the m-by-n stoichiometric ma-

trix, S ¼ ðm1; . . . ; mmÞT , and an n-by-P compound-feature matrix, F,

and e is an m-dimensional vector of uncorrelated random variables

with zero mean and finite variance. In this regression, since X

is known and D is derived from X, our objective is to learn the

weight w.

We first select a subset of relevant fingerprint-based features,

and then we apply a regularized linear regression using only the

selected features to learn the weights w. Let h0 : C7!R
p0 be a func-

tion which maps each compound to a p0-dimensional vector that

contains the original set of chemical fingerprint-based features. With

feature selection, we wish to filter out many features and select a

smaller subset of relevant ones from the original features (i.e.

p� p0). By using h0, we can represent each compound by the initial

chemical fingerprint-based features and generate an n-by-p0

compound-feature matrix F0, which, in turn, allows us to construct

the m-by-p0 initial design matrix X0 ¼ SF0 where S ¼ ðm1; . . . ; mmÞT

is the stoichiometric matrix.

We first remove each feature that gives a zero-column in X0. To

further filter the features, we analyze the multicollinearity of the

remaining features and remove those features that can be safely rep-

resented by some other features. By defining highly correlated fea-

tures to be those whose columns have pairwise correlation values

greater than threshold q, we remove features so that none of the

pairs in the remaining features has a correlation value larger than q.

Note that, in this unsupervised filtering step, we only screen for

strong positive correlations, and we do not consider those features

that have strong negative correlations for filtering.

Next, we construct a linear regression model based on the

remaining features using lasso, which is a regularized least square re-

gression that penalizes the sum of the absolute value of the feature

weights (Tibshirani, 1996). By regularizing the feature weights by

the ‘-1 penalty, lasso tends to obtain a sparse solution (i.e. solution

with many zero weights), allowing us to identify irrelevant features.

However, because of this ‘-1 penalty, lasso cannot guarantee a

unique optimal solution, and the presence of collinearity in the fea-

tures in such cases can lead to inconsistent feature selection (Leng

et al., 2006; Rajaratnam et al., 2016; Zou, 2006). Thus, to alleviate

the chance of inconsistent feature selection, we deliberately apply

the aforementioned collinearity-based filtering as a preprocessing of

this lasso-based feature selection. In this lasso-based filtering, we

first optimize klasso, the tuning parameter that controls the amount

of regularization. To this end, we perform grid search with leave-

one-out cross validation (LOOCV) based on the mean absolute error

(MAE) criterion on the training set. After identifying the optimal

value of klasso, we focus on the LOOCV results of the regression

model trained with this hyperparameter choice and measure the

weight of the features for each left-out sample. By choosing thresh-

old value h which represents the cutoff for the number of zero

weights, we filter out features whose weights are assigned zero val-

ues at least h times in the LOOCV samples. Note that, while this

grid search is able to fine-tune hyperparameters, it cannot guarantee

to find the globally optimal hyperparameter combination.

Through this feature selection step, we obtain a function h that

maps each compound to a P-dimensional vector of 2D fingerprint-

based features. Given the training set and this feature representation

of each compound, we seek to learn the value of w to estimate y by

DXw where X is the m-by-P design matrix which is expressed by

X ¼ SF and D is the P-by-P diagonal matrix that is used to normal-

ize each column vector of X by its infinity norm.

Since the size of available thermodynamic quantities is typically

small, we often have p� m (Flamholz et al., 2012; Goldberg et al.,

2004; Noor et al., 2013). In addition, many biochemical reactions

can often be represented by linear combinations of other

2636 M.Alazmi et al.



reactions (i.e. many rows of S are often linearly dependent)

(Gunawardena, 2003; Kuwahara et al., 2017; Lee et al., 2000;

Orth et al., 2010). Even when we have P<m with the filtering of

features, the rank of X often ends up being smaller than P. In such

cases, thus, the ordinary least-square regression becomes ill-posed

and results in an infinite number of optimum solutions for w. To

construct an FC model under such circumstances, thus, we use ridge

regression, which is a regularized least-square regression that, by

penalizing the amount of the squared weights, obtains a unique glo-

bal optimum solution as follows:

ŵ ¼ ðZTZþ kridgeIÞ�1ZTy; (5)

where kridge > 0 is a tunable parameter that controls the amount of

shrinkage and Z ¼ DX is the normalized design matrix. By reducing

a squared Euclidean norm of the weights, ridge regression can re-

duce variance, which helps reduce the generalization error (i.e. alle-

viate the overfitting problem). Because of the inclusion of the

penalty term in the objective function, however, one consequence of

this is that the resulting linear model introduces a bias. Thus, to find

a regularization parameter value for a good compromise which is

expected to achieve a low bias with an acceptable variance, we use a

cross validation.

3.3 Learning of an FC model
To learn an FC model, we used a dataset that contains experimental

measurements of standard reaction Gibbs energies for 697 unique

reactions. This dataset was derived from the thermodynamic dataset

curated by Noor et al. (2013) (see Supplementary Section S1). Since

it has 681 chemical compounds, the dataset contains more reactions

than the compounds. However, since a number of reactions in this

dataset are linearly dependent, the rank of the stoichiometric matrix

is 523, making the identification of the unique solution for the

standard Gibbs energy of formation of the compounds via the ordin-

ary least square regression impossible.

To represent each compound in this Noor et al.-based dataset,

we generated 2D fingerprint-based numerical features by gathering

881 binary features from the Pubchem fingerprint scheme, 307 bin-

ary features from Open Babel fingerprint (FP4), 166 binary features

from MACCS Keys and 190 molecular descriptors implemented in

RDKit. In addition to these features, since the 2D structure of 41

chemical compounds in the dataset was not concretely specified—

mainly due to the presence of the R group in their structures—we

created additional features to accommodate these unknown-

structure compounds. In total, thus, we represented each compound

in the dataset by using 1585 numerical features (see Supplementary

Section S2).

By performing our systematic feature selection procedure on the

initial 1585 features, we were able to remove a substantial number

of features and retained a small fraction of relevant ones. We first

removed 687 features with zero-columns in the initial design matrix.

Among these unused features, 639 were not used at all to represent

the compounds in the training set. The other 48 features correspond

to non-zero column vectors that are in the null space of the stoichio-

metric matrix. These 48 features were, thus, determined to be can-

celed out because they were conserved between the reactants and the

products of each reaction. Next, by defining the correlation of 0.99

as the threshold value for a high degree of collinearity (i.e.

q ¼ 0:99), the collinearity-based filtering removed 222 features,

making the number of remaining features 676.

With these remaining features, we applied the lasso-based feature

selection. Grid search to minimize the validation error found klasso ¼

0:1 to be the optimal value of the regularization parameter (see

Supplementary Table S1). By examining the distribution of the sign of

the feature weights from the LOOCV samples, we observed highly

consistent patterns (Fig. 1). Among the 676 features, 266 consistently

had zero weight for all 697 left-out samples, while 414 and 423 had

zero weight for � 90% and � 50% of the samples, indicating that ir-

relevant features were highly consistent in our LOOCV results.

Of the 410 non-zero-weight features, there were 121 features

that contributed to the spontaneity of reactions in at least one

LOOCV sample. Out of these 121 features, 115 had negative

weights in more than 90% of the samples, of which 38 consistently

had negative weights in all samples. For example, among those fea-

tures which had negative weights for all 697 samples, the topologic-

al polar surface area feature (Open Babel FP4 90) had the average

weight of �233.15, while a feature to test a specific atom neighbor

pattern based on hydrogen, carbon and oxygen atoms (Pubchem fin-

gerprint 339) had the average weight of �6.60. Because a reaction

with negative Gibbs free energy favors the forward direction, finger-

print features with negative weights in a given compound contribute

to attracting the flow of the reaction to produce that compound.

We also found highly consistent patterns in the features with

positive weights. Among the 135 features that had positive weights

in at least one sample, 122 had positive weights in more than 90%

of the samples, of which 47 consistently had positive weights in all

LOOCV samples. For example, the Pubchem substructure feature to

test the presence of atom pair O–O (Pubchem fingerprint 309) had

positive weights for all 697 reactions with the average weight of

1746.58, while another Pubchem feature which checks the presence

of simple substructure pattern based on nitrogen and carbon atoms

(Pubchem 516) also had positive weight consistently with the aver-

age weight of 10.92.

We searched for adequate values of the zero-count threshold h

and the ridge regularization parameter kridge through the minimiza-

tion of the MAE from the LOOCV as the objective in search space

with 14 different values for each parameter (Fig. 2). Among these

hyperparameter combinations, h¼14 and kridge ¼ 0:0001 resulted

in the lowest LOOCV error. To further optimize the hyperpara-

meter combination, we adjusted the value of kridge from 0.0001 with

a fine increment, while keeping the value of h as 14. This fine-tuning

allowed us to identify h¼14 and kridge ¼ 0:0006 as the optimal

hyperparameter combination.

In total, with the feature selection procedure, we were able to re-

duce the number of features from 1585 to 223. With these selected

features, the design matrix became skinny and had a dimension of

697 by 223. However, the rank of the design matrix is 218, which is

less than the full rank. Thus, we used the aforementioned regular-

ized linear regression method to construct an FC model.

3.4 Effects of feature selection
To understand how our systematic feature selection procedure

affects the accuracy performance, we first performed LOOCV for

an FC model with original 898 non-zero features for various values

of kridge (Supplementary Table S2). That is, by comparing the

LOOCV results with and without applying the systematic feature se-

lection procedure for the best performing kridge, we set out to ana-

lyze the effects of the feature selection using various accuracy

criteria. We found that the FC model with the final features outper-

formed the one with the original non-zero features (Table 1). In par-

ticular, the results show that the feature selection enabled a 25%

improvement in the MAE (from 21.24 to 16.02 kJ/mol). Moreover,

the results from other accuracy measures such as Pearson’s
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correlation, Spearman’s rank correlation and the root mean squared

error consistently demonstrated the performance gain achieved by

the feature selection. Next, we performed LOOCV for FC models

with various subsets of the original features and analyzed the MAEs

(Supplementary Table S3). We found that the validation accuracy of

these FC models varied significantly depending on combinations of

2D fingerprint features. We also found that the accuracy of the FC

model with the final features was higher compared to these models.

Our results indicate that a combination of 2D fingerprints strongly

affects the prediction accuracy our systematic feature selection

procedure is able to determine a small subset of relevant ones from a

large pool of 2D fingerprint-based features to increase the prediction

accuracy.

3.5 Performance comparison via cross validation
To evaluate the value of the FC method, we compared its prediction

performance with that of state-of-the-art methods on the same data-

set and performed the same LOOCV. In this comparison, we used a

least-square regression method based on Equation 1 that constructs

a linear model with representatives of pseudoisomers as its features

Fig. 1. Heatmaps showing the classification of the weight of selected chemical fingerprint and molecular descriptor features based on the leave-one-out cross-val-

idation analysis of the lasso model

A B

Fig. 2. Hyperparameter based on the leave-one-out cross-validation (LOOCV) results of the ridge regression. (A) Grid search of hyperparameters. Each cell shows

the mean absolute error (MAE) from the LOOCV results for a specified combination of the zero count threshold h and the ridge regularization parameter kridge.

The color of each cell indicates the ranking of its prediction performance based on the mean absolute error. (B) The number of selected features for each feature

filtering step. With h¼14, the number of the selected features turns out to be 223. The unit of the LOOCV MAE is kJ/mol

2638 M.Alazmi et al.
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(Noor et al., 2012) which we refer to as the reactant contribution

(RC) method. We also used two versions of the group contribution-

based methods: one is a version developed by Noor et al. (2012)

which, similar to the RC method, has the pseudoisomer-based pre-

processing for the compounds, which we call the GC method, and

the other is a more recent addition of a GC variant, called the com-

ponent contribution (CC) method, which is a hybrid of the RC

method and the GC method (Noor et al., 2013). Based on the obser-

vation that the prediction accuracy of the RC method is higher than

the GC method for certain biochemical reactions, the main idea of

the CC method is to use the RC method when it is expected to per-

form well and use the GC method for the other cases (Noor et al.,

2013). These methods are all publicly accessible at https://github.

com/eladnoor/component-contribution.

From the LOOCV results, we compared predicted values of

DrG
0 to the corresponding observed ones and examined the distri-

bution of their absolute error (Fig. 3). We found that the FC model

achieved the strongest positive correlation (r¼0.99) and the small-

est MAE (l ¼ 16:02 kJ/mol) among the four models (Fig. 3A). The

CC and GC models performed similarly in terms of the quality of

the linear correlation with the observed data, both resulting in cor-

relation coefficient of r¼0.95 (Fig. 3B and C). However, their data

showed that, while many of the estimates appeared to be in close

agreement with the corresponding observed ones, there was a small

subset of the estimates that had noticeably large deviations from

the observed values. While these deviations had small effects on

the correlation, they might have contributed substantially to their

inferior performance in terms of the MAE (l ¼ 32:29 kJ/mol for

the CC model and l ¼ 33:17 kJ/mol for the GC model). This issue

was further pronounced in the RC model, resulting in much lower

correlation (r¼0.66) and substantially higher prediction error

(l ¼ 217:9 kJ/mol). These LOOCV results, thus, indicate that the

predictive performance of the FC method is superior to the other

methods, mainly because its prediction error was less sensitive to

changes in the training set compared with the other three.

3.6 The effects of linear dependency on the prediction

accuracy
Although its overall LOOCV results were poor, the RC method was

reported to perform well for the prediction of the Gibbs free energy

of certain reactions (Noor et al., 2013). Specifically, these reactions

are those whose stoichiometric vectors are in the row space of the

stoichiometric matrix S for the training set. That is, whether or not

the stoichiometric vector of a given reaction is a linear combination

of those for the reactions in the training set was demonstrated to be

an important factor for the prediction accuracy of the RC method.

Building on this observation, we analyzed the extent to which

the prediction error is influenced by the linear dependency of reac-

tion features in the validation set with respect to the reaction fea-

tures in the design matrix. To this end, we classified reactions into

two groups: in-range reactions and out-of-range reactions. An in-

range reaction is a reaction whose feature representation is linearly

dependent on those of the reactions in the training set, while an out-

of-range reaction is a reaction whose feature representation is linear-

ly independent of those of the reactions in the training set. In other

words, reaction Rk is an in-range reaction if xk is in the column

space of XT , the transpose of the design matrix and an out-of-range

reaction otherwise.

Table 1. The effects of feature selection on the prediction

performance

FC model # features MAEa Pearsonb Spearmanc RMSEd

None-zero features 898 21.24 0.993 0.90 51.06

Final features 223 16.02 0.994 0.95 49.46

Note: Various prediction performance measures from the leave-one-out

cross validation (LOOCV) in kJ/mol are computed and are compared between

an FC model with the initial none-zero features and an FC model with the

final selected features.
aThe mean absolute error from LOOCV.
bThe Pearson correlation coefficient.
cThe Spearman rank correlation coefficient.
dThe root mean square error.

A

B

C

D

Fig. 3. Comparison of the results from the leave-one-out cross validation

(LOOCV). The left pane shows scatter plots in which the observed values for

the standard Gibbs energy (x-axis) and the predicted values (y-axis) are com-

pared. The Pearson correlation coefficient (r) between the observed data and

the predicted data is shown for each model. The right pane displays the distri-

bution of the absolute error computed for each pair of observed and pre-

dicted values. The x-axis uses a base-10 log scale. The mean prediction error

(l) is shown for each model. (A) fingerprint-contribution (FC) model, (B) com-

ponent-contribution (CC) model, (C) group-contribution (GC) model and (D)

reaction-contribution (RC) model. The unit of DG0 is kJ/mol
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By measuring the distribution of the absolute error for the two

groups, we found that all of the models had large discrepancies in

the prediction accuracy between the two groups in the LOOCV

results (Fig. 4). We consistently observed substantially higher predic-

tion error in the out-of-range reactions. Specifically, the MAE of the

out-of-range reactions was 14.77, 35.16, 31.37 and 95.95 times as

high as that of the in-range reactions for FC, CC, GC and RC, re-

spectively. Our results confirm the previous study (Noor et al.,

2013) in that, while the RC model produced the highest LOOCV

error (l ¼ 217:86 kJ/mol), it had the lowest prediction error for the

in-range reactions (l ¼ 4:15 kJ/mol). This indicates that the RC

model was highly overfit towards the prediction of the standard

Gibbs free energy of the in-range reactions since the weights of the

chemical compounds participating in those reactions were uniquely

determined from the training set. Conversely, we found that the FC

method can contain the deviations between the two groups the

most. That is, while the MAE of the in-range reactions for the FC

model was on par with those for the CC model and the GC model,

the FC model was able to produce the lowest overall LOOCV error

because its proportion of the out-of-range reactions was the smallest

(n¼41) and its MAE for the out-of-range reactions was the lowest

(l ¼ 116:36 kJ/mol) among the four models. These suggest that the

FC model was generalized the most among the four models to deal

with unseen biochemical reactions.

3.7 Performance analysis using the KEGG dataset
To further examine the generalization property, we analyzed the

performance of the four methods on the KEGG REACTION dataset

which contains a wide range of biochemical reactions. By inspecting

10 668 reactions, we decided to use 7929 that were deemed to be

valid for this analysis (see Supplementary Section S3). However,

since the KEGG dataset does not contain experimentally observed

thermodynamic data, we first needed to determine how to evaluate

the prediction performance in order to use the KEGG dataset for

analysis of the prediction accuracy.

Since we found that the prediction error of in-range reactions

were much lower than that of out-of-range reactions (Fig. 4), we

considered an evaluation approach that estimates the prediction ac-

curacy based on the fractions of in-range reactions and out-of-range

reactions in a testing set. To understand whether this approach is

sound, however, we first analyzed the statistical significance of the

relation between this linear dependency-based grouping and the

LOOCV prediction error (see Section 2). Table 2 shows the results

from our analysis on various models, which consistently indicates

that it is highly unlikely to find a partition of the LOOCV prediction

errors into two subgroups by chance to produce the MAE as ex-

treme as the one observed in the in-range reactions and the out-of-

range reactions (P < 10�6). This shows statistically significant evi-

dence that in-range reactions are expected to have low prediction

error, while out-of-range reactions are expected to have high predic-

tion error.

With these results in hand, we proceeded to estimate the predic-

tion error on the KEGG dataset by a weighted average approach

based on the partition of the in-range and the out-of-range reactions

(see Section 2). To this end, we first generated the distribution of the

in-range reactions, the out-of-range reactions and reactions outside

of the prediction coverage (i.e. ‘not-covered’ reactions) for each

model (Fig. 5A). Of 7929 valid KEGG reactions, we found that all

of the reactions are in-range reactions in the FC model. Both the GC

model and the CC model had the same distribution, and they had

5950 in-range reactions, 1005 out-of-range reactions and 974 not-

covered reactions. Among the four models, the RC model had the

highest proportion of not-covered reactions and the lowest propor-

tion of the in-range reactions. It had only 803 in-range reactions,

while it had 200 out-of-range reactions and 6926 not-covered reac-

tions. Because of this substantially limited prediction coverage, we

excluded the RC model from the performance analysis.

By using these distributions, we computed the accuracy estimate

of the three models (Fig. 5B). Since all of the valid KEGG reactions

are in-range reactions, the MAE estimate for the FC model was

exactly the same as the MAE of the in-range reactions from the

LOOCV results, which is 9.75 kJ/mol. On the other hand, since

about 15% are out-of-range reactions in both the CC model and the

GC model among the 6595 covered reactions, we estimated the

MAE for the CC model and the GC model to be 49.26 and 50.05 kJ/

mol, respectively. Thus, our performance analysis indicates that the

FC model would outperform the other three models for the

Fig. 4. Boxplots showing how the distribution of the absolute errors is parti-

tioned for in-range reaction samples and out-of-range reaction samples in

each model. In each boxplot, the number shown in the upper side of the plot

indicates the sample size, while the diamond-shaped point represents the

mean absolute error (MAE). Open circle points represent outliers which are

defined to be those samples that are outside of the range between the lower

quartile minus 1.5 times the interquartile distance (IQD) and the upper quar-

tile plus 1.5 times the IQD. The unit of absolute error is kJ/mol
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prediction of the standard Gibbs free energy for the KEGG reac-

tions, largely because of its proportion for the in-range reactions.

Furthermore, this analysis demonstrated that the prediction cover-

age of systematically selected 2D fingerprint-based features used in

the FC method can be substantially higher than those features used

in the other three methods.

4 Discussion

In summary, we have developed a statistical method called

fingerprint-contribution (FC) which, by systematically selecting rele-

vant 2D fingerprint-based features, constructs a regularized linear

model for the prediction of the Gibbs free energy of biochemical

reactions. By representing each chemical compound by features

based on 2D fingerprints and molecular descriptors, the FC method

can predict the Gibbs free energy of reaction in a manner that is con-

sistent with the first law of thermodynamics, and its prediction can

cover virtually any biochemical reactions in which compounds with

concrete 2D structures participate. At the same time, the systematic

feature filtering procedure allows for a convenient way to select a

small set of relevant 2D fingerprint-based features to improve the

quality of prediction accuracy.

With the ability to represent the 2D structure of each molecule in

a high-dimensional feature space, 2D fingerprints have been widely

used as a means to quantify the similarity of molecules (Willett

et al., 1998). In the SAR analysis, such structural similarity coeffi-

cients have been successfully applied, for example, to ligand-based

virtual screening to reduce the search space for the experimental

evaluation for the identification of novel hits (Cereto-Massagué

et al., 2015; Eckert and Bajorath, 2007; Lavecchia, 2015;

Ripphausen et al., 2011; Willett, 2006). The idea of 2D fingerprint-

based similarity has also been applied to the prediction of DrG
0 be-

fore. Indeed, IGERS measures reaction similarity via Tanimoto coef-

ficient and infers DrG
0 of a reaction by that of the most similar one

Table 2. Relation between the magnitude of the mean absolute error (MAE) in kJ/mol and the linear dependency-based subgrouping in the

leave-one-out cross-validation results

All samples In-range Out-of-range Permutation test

Model MAE Size MAE Size MAE Samples P-valuea

FC 16.02 656 9.75 41 116.36 106 <10�6

FC-50b 16.90 649 8.97 48 124.16 106 <10�6

FC-origc 21.24 494 9.16 203 50.64 106 <10�6

CC 32.29 638 8.30 59 291.80 106 <10�6

GC 33.17 638 9.29 59 291.39 106 <10�6

RC 217.86 319 4.15 378 398.21 106 <10�6

Note: Statistical significance was measured by computing the P-value of MAE based on the partitions for the in-range reaction subset and the out-of-range reac-

tion subset for various models.
aEach P-value was computed as the probability that the MAE of a randomly selected in-range-reaction-size reaction set is lower than or equal to the observed

MAE for the in-range reactions in the sampling distribution.
bFC model generated based on the lasso-based feature selection with the zero-count threshold being 349 (i.e. 50% of 697).
cFC model based on the original non-zero features.

A B

Fig. 5. Estimation of the prediction accuracy for the KEGG reactions by each model trained by the Noor et al.-based dataset. (A) A bar graph showing the propor-

tion of valid KEGG reactions that are partitioned into the three coverage-based groups: ‘in range,’ ‘out of range’ and ‘not covered.’ In the KEGG dataset, there are

7929 valid reactions, each of which is chemically balanced and reacts chemical compounds whose 2D structures are specified. Here, ‘in range’ means reactions

whose feature vectors are linear combinations of the feature vectors in the training set, ‘out of range’ means a group of reactions whose feature vectors are not

linear combinations of the training set, and ‘not covered’ means a subset of ‘out of range’ reactions that cannot be represented by the features in a given model.

(B) Estimation of prediction accuracy based on the weighted average of the prediction errors for in-range reaction group and out-of-range reaction group from

the leave-one-out cross-validation (LOOCV) results for the three models with a higher reaction coverage. Square points indicate the sample mean of absolute

error of the three models for the KEGG reaction set based on this weighted average approach with 100 reaction sets, while error bars represent their sample

standard deviation. For each model, the reaction set is sampled from the LOOCV results to have the same proportion of in-range and out-of-range reactions as

the KEGG reactions. The unit of the absolute error is kJ/mol
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from a set of predefined reference reactions based on manually

picked chemical attributes (Rother et al., 2010). However, since this

method does not consider DG0 at the compound level, its prediction

may lead to the violation of the first law of thermodynamics, which

can result in modeling of metabolic systems with severely inconsistent

thermodynamic parameters. Furthermore, since this reaction

similarity-based approach can only predict DrG
0 of reactions that are

sufficiently similar to those in the reference set, its prediction coverage

can be greatly limited (Noor et al., 2012; Rother et al., 2010).

Here, we have demonstrated the value of the FC method over

the state-of-the-art methods in terms of the prediction accuracy and

coverage. By classifying reactions into the in-range reactions and the

out-of-range reactions, we found that the superior accuracy

achieved by the FC method in the LOOCV results was due to the re-

duction in the prediction error and the size for the out-of-range reac-

tions. Because the FC method had the smallest accuracy difference

between the in-range reactions and the out-of-range reactions, our

results suggest that the FC model has the best generalization quality

to deal with the Gibbs energy prediction of unseen biochemical reac-

tions. Indeed, our results from the performance analysis on the

KEGG reactions supported this and showed further evidence that

the FC method performs well on a wide range of biochemical reac-

tions in terms of prediction accuracy and coverage. Since all of the

prediction methods examined here were linear regression-based

methods, our study also points to the value of 2D fingerprint-based

features on the prediction of reaction Gibbs free energies. In add-

ition, we have demonstrated that the systematic feature filtering pro-

cedure improved the prediction accuracy of an FC model by

selecting a small number of relevant features. Taken together, this

study suggests the effectiveness of the use of 2D fingerprints and mo-

lecular descriptors on the biochemical thermodynamic prediction

and highlights that a systematic filtering procedure allows for a con-

venient way to select most relevant ones which provide useful infor-

mation to quantify the Gibbs free energy.

Our future work includes the development of a fingerprinting

method to generate more suitable features and a nonlinear modeling

approach to achieve higher prediction accuracy for the Gibbs free

energy prediction problem. To that end, we have already performed

several computational experiments. For example, we have analyzed

the performance of FC models with a different type of chemical fin-

gerprints, which were generated via a neural network (see

Supplementary Section S5). While we found that these existing neur-

al network features did not perform as well as expected, we saw a

potential to such learning method to customize chemical fingerprint

features for the Gibbs energy prediction problem. In addition, we

have studied the possibility of using neural network models for this

prediction problem (see Supplementary Section S6). Although our

initial neural network model was not very useful as it violated the

energy conservation principle, its validation accuracy was found to

be reasonable, which was higher than that of the GC and CC mod-

els. Thus, to develop a high-performing nonlinear modeling ap-

proach to the Gibbs energy prediction problem, we plan to study

how neural network models can be customized to meet the energy

conservation constraints and to increase the prediction accuracy.
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