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In recent years, the number of diabetic patients has rapidly increased. Diabetic vascular
complications seriously affect people’s quality of life. Studies found that endothelial
dysfunction precedes the vascular complications of diabetes. Endothelial dysfunction is
related to glycocalyx degradation on the surface of blood vessels. Heparanase (HPSE),
matrix metalloproteinase (MMP), hyaluronidase (HYAL), hyaluronic acid synthase (HAS),
and neuraminidase (NEU) are related to glycocalyx degradation. Therefore, we reviewed
the relationship between endothelial dysfunction and the vascular complications of
diabetes from the perspective of enzymes.
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HIGHLIGHTS

The glycocalyx attaches to the intima of blood vessels, senses shear stress, regulates signaling
factors, and protects endothelial cells.
High sugar and an inflammatory environment cause glycocalyx-degrading enzymes to be
upregulated, triggering glycocalyx degradation.
Degradation of the glycocalyx produces heparan sulfate, syndecan fragments which can trigger
inflammatory pathway NF-LB, which in turn leads to many vascular complications.
In vascular complications, glycocalyx-degrading-enzyme expression is upregulated, which further
promotes glycocalyx degradation.

INTRODUCTION

The intimal vascular surface, including the endothelial glycocalyx and other soluble
components, is attached to vascular endothelial cells, and is between the blood and blood
vessels (Zhang J. et al., 2019). Among them, other soluble components include superoxide
dismutase, hyaluronic acid, and albumin adhered to glycogen in plasma (Reitsma et al., 2007;
Sieve et al., 2018a).

The endothelial glycocalyx is a porous, hairlike, regularly organized layer. The glycocalyx is
negatively charged and sheds off to equilibrium under physiological conditions (Lebel, 1991; Zeng,
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2017). The endothelial glycocalyx is composed of proteoglycans
(skeleton proteins that maintain the relationship between
glycosaminoglycan and endothelial cells), glycoproteins
(endothelial cell-adhesion molecules, vascular cell-adhesion
molecules, and platelets), and glycolipids (Dogne et al., 2018).
Proteoglycans consist of glycosaminoglycans (heparan sulfate,
chondroitin sulfate, hyaluronic acid) and protein ligands
(syndecans) (Goligorsky, 2017; Dogne et al., 2018). Research
found that the main component of proteoglycans in glycocalyx
is heparin sulfate, while chondroitin sulfate and hyaluronic acid
account for a relatively small amount (Kalagara et al., 2018), and
the ratio of heparan sulfate and chondroitin sulfate in vascular
endothelium is 4:1 (Sladden et al., 2019). Nonsulfated
glycosaminoglycan hyaluronic acid is noncovalently linked to
glycoprotein CD44, and can be exchanged with the bloodstream,
while heparin and chondroitin sulfate are covalently linked to the
proteoglycan core protein (Yang X. et al., 2018). Studies found
that glycocalyx plays an important role in protecting the integrity
and permeability of vascular endothelial cells; in addition, it can
regulate blood flow, reduce inflammation, and regulate signal
transduction (Mulivor and Lipowsky, 2002; Curry and Adamson,
2012; Salmon et al., 2012; Sieve et al., 2018a; Dogne et al., 2018).

Diabetes is chronic vascular inflammation. Long-term
infiltrating blood vessels in a high-glucose environment causes
endothelial dysfunction, glycocalyx destruction, and vascular
complications. Some reports found that diabetic vascular
complications (atherosclerosis, thrombosis, diabetic foot,
diabetic retinopathy, and diabetic nephropathy)sepsis,
(surgical) ischemia/reperfusion injury, trauma, and acute lung
injury could all cause glycocalyx degradation (Cancel et al., 2016;
Wang et al., 2016; Sieve et al., 2018a). Likewise, glycocalyx
degradation can cause vascular complications (Raffetto and
Mannello, 2014; Cochain and Zernecke, 2017; Shirazi et al.,
2017; Sieve et al., 2018a). Furthermore, Futhermoer, these
diseases involve inflammatory stimulation (NF-LB pathway),
oxidative stress (endothelial nitric oxide synthase (eNOS)
uncoupling), and shear stress (AMP-activated protein kinase
(AMPK) pathway) (Ramnath et al., 2014; Sieve et al., 2018a).
The harmful effects of diabetes or acute hyperglycemia on the
human and mice endothelial cell glycocalyx were confirmed in
multiple studies (Nieuwdorp et al., 2006a; Nieuwdorp et al.,
2006b; Dogne et al., 2016). The glycocalyx coverage area of
db/db mice decreases in the early stages of diabetes, which
triggers a change in permeability, while the length of
glycocalyx decreases in the late stages of diabetes (Targosz-
Korecka et al., 2017). However, Wadowski et al. (2019) stated
that changes in the glycocalyx are related to age. In addition, the
degradation of glycocalyx causes active substances such as
xanthine oxidase, lipoprotein lipase, tissue factor pathway
inhibitor, fibroblast growth factors, vascular endothelial growth
factor, which are attached to the surface of the glycocalyx, to
diffuse into the blood, changing from local to systemic activity
(Lupu et al., 1999; Battelli et al., 2014; Becker et al., 2015).
Previous research found that hyaluronidase (Dogne et al.,
2016), heparanases (Arfian et al., 2019), matrix
metalloproteinases (Ramnath et al., 2014), neuraminidase
(Sieve et al., 2018a), and hyaluronic acid synthetase (Zhang

et al., 2018) are closely related to the degradation of
glycocalyx. When these enzymes are missing or their
expression is inhibited, glycocalyx degradation is reduced.
Therefore, we summarize the degradation of glycocalyx from
the perspective of enzymes, and review the relationship between
enzymes and glycocalyx damage, and the mechanisms involved in
it, providing a new direction for understanding complications of
diabetes.

HYALURONIDASE

Nonprotein-bound hyaluronic acid is a linear, nonsulfate,
negatively charged glycosaminoglycan that consists of
glucuronic acid and n-acetylglucosamine repeating units. In
the glycocalyx, hyaluronic acid binds to the CD44 receptor,
but it is not covalently linked and can freely exchange with
the bloodstream (Sladden et al., 2019). Studies showed that the
human body contains six types of hyaluronidase, which
completes the degradation of hyaluronic acid. However,
HYAL1 and HYAL2 are the main hyaluronidases in
mammalian tissue. They cooperate with each other to
complete the degradation of hyaluronic acid (Cai et al., 2019).
Among them, hyaluronidase 2 is a glycosylphosphatidylinositol
anchor enzyme attached to the outer surface of the plasma
membranes (Kong et al., 2016), and it is responsible for
degrading extracellular high-molecular-weight hyaluronic acid
into a medium fragment of about 20 kDa. Then, intermediate
hyaluronic acid fragments are endocytosed into cells by
endocytosis vesicles, and degraded into small fragments by
HYAL1 (Patel et al., 2013). Studies showed that HYAL1 is the
only hyaluronidase present in the plasma and urine of mammals,
and it is also high in major organs such as the liver, kidneys,
spleen, and heart (Cai et al., 2019). HYAL1 is endocytosed into
lysosomes and is active when pH < 4 (Puissant et al., 2014; Dogne
et al., 2016), while the optimal pH of HYAL2 is 6.0–7.0 < 4
(Puissant et al., 2014; Dogne et al., 2016). Furthermore, a previous
paper pointed out that human platelets contain hyaluronidase 2,
while other cells contain HYAL1 and HYAL2 (Wang G.-H. et al.,
2019).

In hyperglycemic and/or inflammatory environments,
hyaluronidase expression is upregulated, cutting the glycocalyx
and producing hyaluronic acid fragments. Previous studies found
that hyaluronic acid and hyaluronidase activity are increased in
the serum of diabetics patients (Nieuwdorp et al., 2006a) and
mice (Ikegami-Kawai et al., 2003; Leskova et al., 2019). Increased
plasma hyaluronic acid and hyaluronidase activity were detected
in both human Type 1 (Nieuwdorp et al., 2006a) and Type 2
(Broekhuizen et al., 2010) diabetes. Hyaluronidase 1 inhibitors
may play a role in diabetic endothelial dysfunction in
hyaluronidase-deficient mice, and supplementation with
hyaluronic acid analogs can reduce glycocalyx loss (Dogne
et al., 2016). Reducing glycocalyx degradation could also be
observed in sulodexide-treated mice, in which hyaluronidase
activity was decreased in plasma (Henry and Duling, 1999;
Broekhuizen et al., 2010). Monzon et al. (2008) found that
TNF-α and IL-β coordinately upregulate HYAL 1, 2, 3, and
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TNF-α induces HYAL1 mRNA expression. Lokeshwar et al.
(2008) pointed out that NF-LB is located upstream of HYAL,
which indicates that the inflammatory response can upregulate
the expression of HYAL. Therefore, reducing the expression of
hyaluronidase can reduce glycocalyx degradation.

Hyaluronidase cleaves the glycocalyx to produce low-
molecular-weight hyaluronic acid fragments; the properties of
high- and low-molecular-weight hyaluronic acid are very
different. The former enhances the barrier function of
endothelial cells, while the latter destroys endothelial cells,
induces toll-like receptors 2 and 4, and then induces cell
inflammation (Zhang et al., 2018). Low-molecular-weight
hyaluronic acid fragments may in turn stimulate reactive-
oxygen-species production in a size-dependent manner by
phagocytes. Furthermore, hyaluronic acid fragments could
induce the expression of vascular cell-adhesion molecule - 1
and intercellular-adhesion molecule - 1, caused an increase in
macrophages, and further cause inflammation and damage to
endothelial cells (Sieve et al., 2018a; Ali et al., 2019; Zhang H.-M.
et al., 2019). Targosz-Korecka et al. (2020) showed that the
recovery of the endothelial glycocalyx is related to the reduced
expression of e-selectin and intercellular-adhesion molecule 1.
Many researchers intercellular adhesion moleculediscovered that
shear stress induces an increase in the amount of hyaluronidase
enzyme (Sieve et al., 2018a; Ali et al., 2019; Zhang H.-M. et al.,
2019). Kong et al. (2016) found that HYAL2 is related to eNOS-
Ser-633 dephosphorylation. They found that low shear stress
induced the upregulation of HYAL2 expression, which in turn led
to eNOS-Ser-633 dephosphorylation, and then to the
downregulation of NO expression. The alteration of eNOS-
Ser-633 dephosphorylation caused by low shear stress was
eliminated in human umbilical vein endothelial cells
(HUVECs) transfected with HYAL2 siRNA (Kong et al.,
2016). Yang H. et al. (2018) discovered that shear stress can
reduce AMPK α-Thr-172 phosphorylation (this process is
regulated by the ERK1/2 or CD44 pathway), which leads to
AMPK inactivation. Then, it activates the Na+-H+ exchanger 1
(NHE1) pathway (NHE is an ion protein channel that can cause
H+ efflux; extracellular pH is downregulated), causing an increase
expression in HYAL2, which degrades hyaluronic acid and causes
endothelial-glycocalyx damage. Yang H. et al. (2018) pointed out
that low shear stress decreases AMPK Thr172 phosphorylation
levels and increases p47phox activation in HUVECs to upstream
HYAL2, while the siRNA knockout of p47phox reduces
hyaluronic acid activation. A previous paper deemed that,
with the increase in shear force, the content of hyaluronidases,
heparanases, and chondroitinases in the endothelial-cell
glycocalyx gradually increases, resulting in higher glycocalyx
thickness at high-shear-force sites (Yang H. et al., 2018).
However, the thickness of the glycocalyx of endothelial cells in
the low-shear-force region is small, which may lead to weakened
vascular protection, and increased cell adhesion and lipid
deposition, making this site more prone to atherosclerosis
(Zeng, 2017).

In conclusion, hyperglycemia can induce the expression of
hyaluronidases 1 and 2 in humans and mice, and then lead to
glycocalyx degradation and endothelial-cell dysfunction. In

diabetic patients and mice, low shear stress can cause the
upregulation of hyaluronidase 2 expression, and low-shear-
stress-mediated changes in the amount of enzymes are related
to phosphorylated proteins, which suggests that we can study the
relationship between hyperglycemia and the amount of
hyaluronidase from the perspective of transcription. The
cardiovascular complications of diabetes, such as
atherosclerosis, can cause changes in shear stress, while low
shear stress can further cause endothelial-glycocalyx
destruction and vascular disease.

HEPARANASES

Heparanases are the only enzyme that degrades heparan sulfate-
endo-β-D glucuronide in mammals. Heparanase gene knockout
mice also confirmed that only one gene encodes a heparanase
with endoglycosidase activity (Zcharia et al., 2009; Gil et al., 2012;
Zengbo, 2014; Rabelink et al., 2017). Heparanases interactors are
formed by a network of 300 proteins. HPSE upregulates many
adverse diseases, including diabetes, sepsis, and cancer (Levy-
Adam et al., 2003; Zengbo, 2014). HPSE is expressed as a 65 kD
inactive precursor and processed into a 50 kD active isoform by
the cleavage of cathepsin L 6 (Garsen et al., 2016; van den Berg,
2019). After heparanase is activated, its active form is released
from the late inclusion body or lysosome to the outside of the cell.
This process is activated by the extracellular pathway activating
protein kinase Aand protein kinase C signaling pathways (Wan
et al., 2008). In addition, heparanase can be regulated by
regulating gene expression in vivo. The factors that regulate
gene expression may include inflammatory cytokines and
early-growth-response transcription factors (Baker et al., 2009;
Lerolle et al., 2010). Hypoxia can also cause increased heparanase
expression (Simeonovic et al., 2013).

Heparanases are highly related to diabetes and inflammation;
under high glucose conditions, the expression of heparinase can
be upregulated in adipose tissue (Arfian et al., 2019), endothelial
cells (Zhu et al., 2019), and podocytes (Yoshibayashi et al., 2020),
which leads to a decrease in the expression of syndecan and a
glycocalyx disorder. Experiments showed that vitamin D (Garsen
et al., 2015), atlasacetam (Boels et al., 2016), and hypericin (An
et al., 2017) can reduce damage to the endothelial glycocalyx by
inhibiting heparanases. Diabetes can cause increased expression
of TNF-α, IL-1β, and NF-LB p65 phosphorylation (Niu et al.,
2019). When inflammation occurs, proinflammatory factors
(TNF-α) activate vascular endothelial cells, P- and E-selectin
expression increases, leukocytes begin to roll and attach to
endothelial cells, and chemokines on endothelial cells start to
activate leukocytes (Singh et al., 2011; Pahwa et al., 2016).
Leukocytes would be activated through adhesion molecules on
endothelial cells, such as vascular cell-adhesion molecule 1 and
intercellular-adhesion molecule 1, which stably adhere to the
vascular endothelium (Wang T.-T. et al., 2019; El Masri et al.,
2020). Once white blood cells stay on the surface of the
endothelial cells, they begin to penetrate the endothelial cell
layer and enter the interstitial tissue, causing inflammatory
damage to the organs. Therefore, vascular endothelial cells
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play an important role in the occurrence of inflammatory damage
to the kidneys (Zhang et al., 2018). Zengbo (2014) pointed out
that heparanase expression in the kidneys of sepsis mice increased
significantly earlier than it did in the adhesion molecules.
Heparanase is an important factor in the pathogenesis of acute
kidney injury in sepsis (Kinsey and Okusa, 2012). The
mechanism may be that, after sepsis, TNF-α increases the
activation of heparanase in renal interstitial microvascular
endothelial cells, and glycocalyx degradation causes interstitial
leukocyte infiltration, and glomerular filtration barrier disruption
can then cause proteinuria. Heparan sulfate analogs can also
improve renal-function injury in patients with sepsis, and
improve the survival rate of patients with sepsis by inhibiting
heparanase activity (Zengbo, 2014). Therefore, heparinase
inhibitors and heparin analogs can reduce glycocalyx loss.

The abnormal expression of heparanase can cause
atherosclerosis. In endothelial cells and foam macrophages of
atherosclerotic lesions, inflammatory stimulation leads to the
upregulation of angiopoietin 2, which leads to increased
expression of heparanases, leading to the degradation of
heparan sulfate on the arterial wall (Rao et al., 2011; Sieve
et al., 2018a). Then, the released HS can lead to the activation
of leukocytes and platelets, and increase the expression of
intercellular-adhesion molecule 1 and vascular cell-adhesion
molecule 1, which leads to the adhesion of white blood cells to
endothelial cells, causing low-molecular-weight infiltration,
eventually causing high blood pressure (Chappell et al., 2010;
McDonald et al., 2016; Sieve et al., 2018a). In addition, glycocalyx
shedding produces low-molecular-weight hyaluronic acid and
heparan sulfate fragments that act as ligands for CD44, toll-like
receptors 2 and 4 (Goldberg et al., 2014; Pahwa et al., 2016;
Rabelink et al., 2017), and advanced glycation end-
productreceptors. These lead to the expression of cytokines in
monocytes and macrophages, which promotes the upregulation
of NF-LB expression, leading to an increase in TNF-α and IL-6
expression (Yamawaki et al., 2009; Docampo et al., 2017). This
causes the upregulation of heparanases again, causing the whole
glycocalyx to fall off (Uchimido et al., 2019). However, the
increase in TNF-α and IL-6 causes the expression of MMP
and the production of reactive oxygen species (Ramnath et al.,
2014), activates mast cells, promotes the degranulation of mast
cells, and further releases cytokines, histamine, protease,
heparanases, and other components of glycocalyx degradation
to destroy glycocalyx endothelial cells (Gil et al., 2012). This is a
vicious cycle that further causes endothelial surface-layer layer
degradation (Sieve et al., 2018a). Some researchers also pointed
out that heparin and heparin analogs could reduce plasma
syndecan 1 and heparan sulfate levels in sepsis, and reduce
glycocalyx damage (Gil et al., 2012).

There are some other pathways related to heparanases. One
case involves sirtuin 1, which is related to transcription. Sirtuin 1
deacetylates p65, which reduces the transcriptional activity of NF-
LB to heparanases. Sirtuin 1 deficiency activates NF-LB, which
in turn promotes the transcriptional expression of heparanases
(Zhang et al., 2018). In addition, Manchanda et al. (2018)
discovered that myeloperoxidase can cause neutrophil-
dependent syndecan 1 shedding and endothelial-glycocalyx

structural collapse through ionic interactions with heparan
sulfate side chains. Gil et al. (2012) pointed out that, in a
diabetic nephropathy model, the early-growth response of
transcription factor 1 activates the heparanase promoter.
However, specific heparanase inhibitor SST0001 can
significantly reduce the degree of proteinuria and kidney
damage in diabetic-nephropathy mice. Furthermore,
extracellular heparanases are involved in the inflammatory
response of acute kidney injury, but may also be involved in
the long-term adverse consequences of acute kidney injury, such
as fibrosis and the final development of chronic kidney disease,
suggesting that heparanases as a potential therapeutic target for
acute kidney injury deserve further exploration (Rabelink et al.,
2017).

Diabetes is a chronic vascular inflammation, and blood vessels
that are infiltrated in a hyperglycemic environment for a long
time become diseased. High glucose induces inflammatory
stimuli (El Masri et al., 2020), leading to increased expression
of inflammatory factors IL-6 and TNF-α. The increase in these
factors is related to AMPK, NF-LB, and STAT3 (reactive oxygen
species) signaling pathways, and TNF-α modifies the related
mitochondrial respiratory chain redox response role (Szot
et al., 2019). Intracellular heparanases have many important
biological functions, including regulating autophagy, and cell
communication and survival. In contrast, extracellular
heparanases are directly related to inflammation, vascular
instability, and fibrosis, and are a key factor in the occurrence
of proteinuria and renal damage in patients with diabetic
nephropathy and inflammatory glomerulonephritis (Rabelink
et al., 2017). Upregulation of the expression of heparanases
induced by inflammatory factors causes glycocalyx
degradation. While triggering a series of vascular
complications, the hyaluronic acid fragment produced by
glycocalyx degradation and heparanase production form a
vicious cycle. Therefore, it is of great significance to study the
mechanism of glycocalyx degradation and heparanase expression
changes caused by hyperglycemia.

MATRIX METALLOPROTEINASES

Matrix metalloproteinases are a class of zinc-dependent
endopeptidases that degrade collagen, gelatin, and elastin in
the extracellular matrix, thereby promoting vascular
remodeling (Castro et al., 2008). Matrix metalloproteinases not
only degrade extracellular-matrix components leading to
vascular-wall instability, but also damage the monolayer
glycocalyx integrity of endothelial cells (Chen et al., 2017;
Sieve et al., 2018a). Matrix metalloproteinases are generally
expressed in inflammatory cells, but can also be expressed in
endothelial cells and vascular smooth muscle cells after being
stimulated by factors secreted by macrophages. Matrix
metalloproteinases can cleave proteoglycan core proteins (such
as syndecan). Usually, MMP-9 causes the degradation of
syndecan-1, while MMP-2 causes the cleavage of syndecan-4
(Yuelong et al., 2014). This allows for syndecan and heparan
sulfate to be released into the bloodstream, causing a decrease in

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5906144

Li et al. Enzymes Regulate Glycocalyx Degradation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


heparan sulfate and syndecan in the glycocalyx (Ramnath et al.,
2014). On the one hand, the reduction of negatively charged
heparan sulfate in the glycocalyx results in the loss of heparan
sulfate-bound extracellular SOD (Mulivor and Lipowsky, 2009;
Ramnath et al., 2014); on the other hand, heparan sulfate
fragments and syndecan can cause thrombosis and endothelial
inflammation (Hsia et al., 2017; Sieve et al., 2018a).

Diabetes and some inflammation can cause reactive oxygen
species. Reactive oxygen species can activate matrix
metalloproteinases and inactivate the tissue inhibitors of
metalloproteinases (TIMPs). In addition, reactive oxygen
species can change the phenotype of mesangial cells and
impair podocyte integrity which related to diabetes
nephropathy (Nagasu et al., 2016). Reactive oxygen species
activate MMP precursors such as pro-MMP-2 to activate
MMPs, which in turn causes vascular remodeling and
inflammation (Cai et al., 2019). This can cause macrovascular
disease in diabetic patients. Furthermore, studies found that, in
vascular smooth muscle cells, reactive oxygen species can induce
MMP-2 mRNA expression (Grote et al., 2003), which highlights
the mechanism that reactive oxygen species could regulate matrix
metalloproteinase activity on the transcriptional level (Sieve et al.,
2018a). Diabetes-induced reactive oxygen species could also
cause nitrosation and oxidative stress, leading to endothelial
cell dysfunction (Zeng, 2017). These are closely related to
diabetic vascular complications.

The abnormal expression of matrix metalloproteinases
triggers cardiovascular disease, which is a diabetic
macrovascular disease. In diabetic macrovascular disease, low
shear stress induces the initial damage, and high shear stress
promotes the formation of vulnerable plaques. At the site of
vascular disease, continuous exposure of endothelial cells to high
shear stress causes the abnormal production of NO, whichmay be
related to the degradation of the glycocalyx and extracellular
matrix by matrix metalloproteinases, and may also be related to
inflammation (Zeng, 2017). This process is also related to reactive
oxygen. On the one hand, mitochondrial reactive oxygen species
can lead to eNOS uncoupling, which in turn reduces NO
bioavailability, increases the formation of peroxynitrite, causes
vascular relaxation and cause cardiovascular disease (Cheang
et al., 2014). Hyperglycemia can also cause eNOS uncoupling
(Yang et al., 2019). NO can activate plasminogen activators and
matrix metalloproteinases, inhibit interstitial collagen synthesis,
and downregulate TGF-β and plasminogen activator inhibitor 1
(Goligorsky, 2017). On the other hand, reactive oxygen species
cause the angiotensin type 2 receptor pathway, resulting in the
degradation of heparan sulfate, leading to the loss of extracellular
SOD bound by heparan sulfate, further causing increased
oxidative stress (Ali et al., 2019). This forms a vicious circle.

Retinopathy in diabetic patients involves two pathways:
Sirtuin1/FOXO3 and AMPK phosphorylation. On the one
hand, hyperglycemia causes defects in sirtuin 1 activity and
reduced p65 activation in the retina, which leads to
upregulation of the MMPs pathway, causing mitochondrial
damage and apoptosis, thereby promoting apoptosis.
Resveratrol can inhibit p65 acetylation, activate sirtuin 1,
inhibit the MMP-9 signaling pathway, and reduce retinopathy

(Petrovic, 2014). On the other hand, diabetes causes AMPK
dephosphorylation, which downregulates the AMPK signaling
pathway. This then leads to retinal inflammation (Chen et al.,
2019). In addition, studies showed that metformin can upregulate
the AMPK pathway in diabetic mice, increase NO utilization, and
reduce oxidative stress in the endoplasmic reticulum (Cheang
et al., 2014). Therefore, looking for factors from the upstream and
downstream ofMMP to indirectly inhibit MMP expression is also
a good direction.

Degradation of the glycocalyx involved in the matrix
metalloproteinase pathway is related to the NF-LB-induced
inflammation pathway. Diabetes triggers the release of
inflammatory factors. Previous research indicated that, on the
surface of the glomerular vascular endothelium (Yuelong et al.,
2014), proinflammatory factors such as TNF-α activate mast cells
and cause them to release enzymes (hyaluronidase, heparinase,
MMP-9/2) (Ramnath et al., 2019; Reine et al., 2019). Then, MMP-
9 can destroy the glycocalyx, and release heparan sulfate and
syndecan into the blood (Ramnath et al., 2014). This causes
endothelial inflammation, vascular endothelial damage, diabetic
nephropathy, and proteinuria in the kidney. The administration
of matrix metalloproteinase inhibitors can attenuate proteinuria.
MMP inhibitor treatment also significantly increased the
glycocalyx depth of podocytes, but had no significant effect on
glomerular-basement-membrane thickness, podocyte foot
processes, and slit-diaphragm width (Ramnath et al., 2019).
On the one hand, heparan sulfate fragments bind to CD44,
and toll-like receptors 2 and 4 (Pahwa et al., 2016). Toll-like
receptors activate the NF-LB pathway, which triggers a vicious
cycle of increased TNF and IL-6, and glycocalyx degradation. On
the other hand, heparan sulfate fragments bind to the surface of
macrophage CD44 and toll-like receptors 2 and 4, activate
monocytes and macrophages, promote cell adhesion, and
cause hypotonicity (Sieve et al., 2018a).

In a word, MMPs are closely related to the degradation of the
glycocalyx induced by inflammatory factors, while diabetes is a
chronic inflammatory disease that easily leads to the expression of
inflammatory factors. Heparan sulfate and syndecan fragments
produced by glycocalyx degradation on the one hand induce a
vicious cycle of the NF-LB signaling pathway, and on the other
hand cause cell adhesion and hypotonicity. In addition, MMPs
are involved in mitochondrial damage caused by reactive oxygen
species (ROS), and the AMPK and sirtuin 1 signaling pathways in
retinopathy. Therefore, the study of MMPs is of great significance
for the study of vascular complications of diabetes.

NEURAMINIDASE

Sialidases, also known as neuraminidases (NEUs), are a family of
enzymes responsible for the regulation of sialic acid expression on
the cell surface by removing sialic acid from endogenous
glycoconjugates (Xiao et al., 2016). In addition, terminal sialic
acid promotes the integrity of the endothelial barrier (Cioffi et al.,
2012). The most famous enzyme in this family is influenza
neuraminidase, which was first discovered in the 1950s
(Parker and Kohler, 2010). Neuraminidases are a large family
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found in many organisms, including viruses, bacteria, fungi,
protozoa, birds, and mammals (Pshezhetsky and Ashmarina,
2013). Neuraminidase is found in many mammalian organs
(Pshezhetsky and Ashmarina, 2013; Sieve et al., 2018a). NEU1
is highest expressed in the kidneys, pancreas, skeletal muscle,
liver, lungs, placenta, and brain; NEU2 is mainly found in muscle
tissue; NEU3 is highest expressed in adrenal glands, skeletal
muscle, heart, testes, and thymus; NEU4 is highest expressed
in the brain, skeletal muscle, heart, placenta, and liver
(Pshezhetsky and Ashmarina, 2013). In cells, NEU1 is
localized in lysosomes and plasma membranes to participate
in exocytosis, immune response, phagocytosis, and elastic fiber
assembly; NEU2 is a soluble protein present in the cytoplasm and
plasma membrane, and is involved in the differentiation of
myoblasts and neurons; NEU3 is a complete membrane
protein localized in the small concave microregions of the
plasma membrane, and endolysosomal and lysosomal
membranes; NEU4 is localized in lysosomes, mitochondria, or
the endoplasmic reticulum. NEU3 and NEU4 are involved in
neuronal differentiation, apoptosis, and adhesion (Murayama
et al., 1988; Pshezhetsky and Ashmarina, 2013).

The enzymatic hydrolysis of specific substrates in endothelial
cells by neuraminidase, heparinase, or hyaluronidase reduces
flow-induced nitric oxide (NO) production, which is related to
the important role of sialic acid, hyaluronic acid, and heparan
sulfate-containing glycosaminoglycans chains in signal
transmission (Dogne et al., 2018). Sialidases play a vital role in
the interaction and communication between cells (Glanz et al.,
2019b). Sialic acid and sulfate are key features of many known
glycan recognition motifs (Pshezhetsky and Ashmarina, 2013).
The extracellular endothelial glycocalyx can be modified by
sulfate, and sulfate is attached to it. The sulfated mode direct
receptors bind many key growth factors, including WNT,
vascular endothelial, fibroblast, hepatocyte, and heparin-
binding epidermal growth factors (Parker and Kohler, 2010).
The surface of endothelial cells is highly sialylated, and changes in
the state of sialylation, affecting angiogenesis. Human NEU1 is
the most abundant sialidase, found in the matrix gel system to
inhibit angiogenesis (Lee et al., 2014). It is also the first sialidase to
be described as an angiogenesis regulator (Glanz et al., 2019a).
Nonstructural protein 1 (Puerta-Guardo et al., 2019) induces
sialidase expression, causing sialic acid shedding and endothelial-
glycocalyx degradation. Non-structural protein 1 also activates
cathepsin L in endothelial cells, a lysosomal cysteine protease that
activates heparinase through digestion (Puerta-Guardo et al.,
2016). Enzymes that remove or modify these groups can have
significant impact on recognition and subsequent signaling
events (Parker and Kohler, 2010). Sialic acid prevents the
recognition of sugars (such as galactose) and binding proteins
(Schauer, 2009). Betteridge et al. (2017) indicated that sialic acid
may directly regulate the permeability of the endothelial surface
layer, mainly through steric hindrance and/or by inducing
secondary changes in this layer, such as the interruption of
albumin and glycocalyx binding after dissolution. Therefore,
the protective effect of protein-bound sphingosine-1-phosphate
on glycogen shedding may be weakened (Betteridge et al., 2017;
Sieve et al., 2018a). They also form ligands for selectin, sialic acid-

binding immunoglobulin-type lectin (Siglecs), and factor H. Sialic
acid is involved in the regulation of complement activation,
leukocyte trafficking, and immune cell activation. In addition,
the release of sialic acid on the cell surface to regulate glycocalyx,
or the release of sialic acid by lysosomes after endocytosis to
recover monosaccharides, is mediated by sialidase (Sieve et al.,
2018a).

Reconstruction of the extracellular matrix in atherosclerosis
is a key step in disease progression. The elastin-receptor
complex contains elastin-binding proteins, cathepsin A, and
sialidase 1, which mediate endogenous elastin-derived peptides
to participate in the chemotactic response of immune cells.
Elastin-induced atherosclerosis depends on sialidase activity
and the Cath a–neu1 complex. Therefore, elastin can be used
as an enhancer of atherosclerosis (Glanz et al., 2019a). The
elastin-receptor complex is also essential for the ability of
fibroblasts to respond to elastin degradation. The
combination of elastin peptides and the elastin-receptor
complex activates the intracellular signaling cascade,
including the activation of extracellular regulated protein
kinases (ERK) 1/2 and the production of pro-MMP-1 (Parker
and Kohler, 2010). Sialic acid content in the endothelial
glycocalyx plays an important role in the development of
atherosclerosis, and the regulation of leukocyte and platelet
adhesion, mechanical transduction, and endothelial cell
absorption of low-density lipoprotein (Orekhov et al., 2014).
Modified low-density lipoprotein also has proinflammatory
properties, and is prone to aggregate and form complexes
that promote atherosclerosis. Desialylated low-density
lipoprotein stays longer in the subendothelial space than
unmodified low-density lipoprotein does, which helps in the
formation of atherosclerotic plaques (Ivanova et al., 2017). In
addition, obesity and Type 2 diabetes are associated with
increased serum neuraminidase, an enzyme that increases the
output of TGF-β cells (Foote et al., 2016). In addition, NEU1 is a
positive enhancer of inflammation, and IL-1 and
lipopolysaccharides can induce the expression of NEU1 in
monocytes (Sieve et al., 2018b).

Sialic acid is an important signal molecule located on the
surface of the cell glycocalyx, which is of great significance for
signal recognition and the combination of sugar and protein,
while sialidase can cause sialic acid molecules on the glycocalyx
surface to fall off. On the one hand, the surface structure of
glycocalyx changes, causing obstacles to sialic acid-related signal
recognition and glycoprotein binding; on the other hand, the
glycocalyx layer is destroyed, causing osmotic disorders.
Therefore, the study of sialidase is of great significance for the
research of glycocalyx-related diseases.

HYALURONIC ACID SYNTHASE

Unlike other glycosaminoglycans synthesized in the Golgi
apparatus, hyaluronic acid is synthesized on the plasma
membrane by one or more of the three hyaluronic acid
synthetases (HAS 1–3) using UDP-glucuronic acid and UDP-
n-acetylglucosamine as substrates (Itano et al., 1999;
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Mambetsariev et al., 2010; Torronen et al., 2014). Hyaluronic acid
synthases 1 and 2 are responsible for the synthesis of high-
molecular-weight hyaluronic acid. The properties of high- and
low-molecular-weight morphology are very different: the former
enhances the barrier function of endothelial cells; the latter
destroys endothelial cells and induces toll-like receptors 2 and
4 (Zhang et al., 2018). In mammals, the deletion of the HAS 2
gene is fatal to mouse embryos (Moretto et al., 2015); however,
mice lacking the HAS1 and/or HAS3 genes are normal and viable
(Shakya et al., 2015). HAS2 can be modified by O-linked
n-acetylglucosamine, thereby improving the stability and
activity of HAS2. HAS2 and 3 synthesize hyaluronic acid from
the hyaluronic acid shell; these two enzymes are isozymes (Itano
et al., 1999).

Atherosclerosis and thrombosis, as large-vessel diseases of
diabetes, are closely related to HAS, promoting the production
of interstitial hyaluronic acid. Interstitial hyaluronic acid is
synthesized under conditions that promote endoplasmic-
reticulum stress. Endoplasmic-reticulum-stress-induced
hyaluronic acid response leads to the formation of
hyaluronic acid coats, thereby forming monocyte/
macrophage adhesion (Sakr et al., 2008). PDGF-BB
stimulates HAS2 expression, thereby enhancing PDGF-BB-
induced migration through the formation of extracellular
hyaluronic acid coats (Evanko et al., 1999). Thrombin
stimulates HAS2 expression by activating the protease
activation receptor (PAR) 1. When thrombi are incorporated
into advanced complex lesions, thrombin is released, which
may promote further plaque growth by stimulating hyaluronic
acid synthesis (Evanko et al., 1999). In addition to indirect
proinflammatory effects through the formation of foam cells,
oxidized lipopolysaccharides are also a regulator of HAS2 and
HAS3 expression in vascular smooth muscle cells, which may
be a feed-forward mechanism to accelerate the formation of
lesions (Viola et al., 2013). Unlike HAS3-mediated interstitial
hyaluronic acid synthesis, the glycocalyx is also rich in
hyaluronic acid, and can protect white blood cells and
platelets from adhesion. The atherosclerotic effects of CD44
and toll-like receptors were demonstrated (Mullick et al., 2005;
Bollyky et al., 2010). In multiple sclerosis, hyaluronic acid was
shown to be important for T helper 1 cell polarization (Nagy
et al., 2010). Hyaluronic acid is presented to dendritic cells as
part of T-cell immune synapses. The absence of HAS3 reduces
the polarization of T helper 1 cells. Has3/Apoe-deficient mice
had reduced macrophage-driven inflammation and
development of atherosclerotic lesions. Therefore, inhibition
of hyaluronic acid synthesis can reduce atherosclerosis (Gupta
et al., 1997; Buono et al., 2005; Fischer, 2019). In addition, a
previous paper indicated that HAS3 knockout does not affect
synovial-cell proliferation, but rather reduces synovial-cell
migration (Nagy et al., 2010). In smooth muscle cells and
T cells, HAS3 is induced by leukocyte-driven cytokines like
IL-β and TNF-α. Inflammatory factors (TNF-α) first promote
the mRNA expression of HAS2 and CD44, and then their
protein expression (Vigetti et al., 2010). HAS3 gene
knockdown inhibits the smooth muscle cell regulation of
neointimal hyperplasia, atherosclerosis, T helper 1 cell

polarization, and macrophage-driven inflammation. In turn,
HAS3 promotes smooth muscle cell proliferation and
migration, and provides a rich hyaluronic acid matrix, which
is reshaped by immune cells through the CD44 signaling
pathway and triggers deeper inflammation (Cuff et al.,
2001). On the other hand, the synthesis of interstitial
hyaluronic acid promotes the development of lesions by
stimulating the migration and proliferation of smooth
muscle cells, and locally and systemically produces
important proinflammatory stimuli by promoting T helper 1
cell polarization (Bollyky et al., 2010). HAS3 also systemically
stimulates T helper 1 cell polarization through interferon-γ,
TNF-α, and interleukin 2 (IL2), thereby driving monocyte-/
macrophage-mediated inflammation (Bollyky et al., 2009).
These local and systemic proinflammatory effects are
contrary to the protective effect of hyaluronic acid on
endothelial glycogen against atherosclerosis (Buono et al.,
2005).

Elevated vascular endothelial growth factor (VEGF) A levels
are thought to cause glomerular endothelial-cell (GEnC)
dysfunction and proteinuria in diabetic nephropathy (Onions
et al., 2019) by regulating the synthesis of hyaluronic acid (Foster
et al., 2013). Oltean et al. (2015) indicated that the induction of
VEGF-A165b upregulation in mouse podocytes prevents
functional and histological abnormalities in diabetic
nephropathy. VEGF-A165b normalizes glomerular permeability
through the phosphorylation of vascular endothelial growth
factor receptor 2 in glomerular endothelial cells, and reverses
the damage of glomerular endothelial glycogenases by diabetes.
These results indicate that VEGF-A165b protects blood vessels
and improves diabetic nephropathy through endothelial cells
(Oltean et al., 2015). In addition, Onions et al. (2019)
speculated that VEGF-C can offset these effects of VEGF-A,
protect the glomerular filtration barrier, and reduce
proteinuria. VEGF-C reduces the development of diabetic
nephropathy, prevents the change of vascular endothelial
growth factor receptors in diabetic glomeruli, and promotes
glomerular protection and endothelial barrier function
(Onions et al., 2019).

Another way in which hyaluronic acid synthesis responds to
glucose metabolism is by the phosphorylation of AMP-activated
protein kinase (AMPK), which inactivates HAS2. The
concentration of hexosamine in cells determines HAS2
expression of controlling HAS2 transcription factors, such as
the O-GlcNAcylation of YY1 and SP1. In addition, research
found that inflammatory factors can promote the expression
of NF-LB. Then, the mRNA of HAS2 and CD44 is
upregulated, thereby promoting the expression of related
proteins (Vigetti et al., 2010). Previous studies also found that,
if hyaluronic acid synthesis is inhibited, Type 2 insulin resistance
caused by adipose-tissue inflammation improves. Hyaluronic
acid is related to autoimmunity. Hyaluronic acid fragments in
body tissue can cause hyaluronidase degradation and
nonenzymatic degradation in response to oxidative stress
(Combadiere et al., 2008).

In short, when cells are in inflammation or other conditions,
the glycocalyx degrades and produces hyaluronic acid
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fragments. These hyaluronic acid fragments, on the one hand,
trigger the expression of inflammatory factors and form a
vicious cycle of glycocalyx degradation. On the other hand,
hyaluronic acid fragments promote HAS expression and form a
hyaluronic acid coat on the glycocalyx surface. These
interstitial hyaluronic acids are different from the hyaluronic
acid present in the glycocalyx itself. They cause the adhesion of
macrophages and monocytes, and then diseases such as
atherosclerosis and thrombosis. Therefore, studying the
relationship between hyaluronic acid synthase and

glycocalyx degradation is of great significance for
macrovascular-disease research.

CONCLUSION AND PROSPECTION

The glycocalyx can regulate the interactions between vascular
endothelial cells and cytokines, platelets, and leukocytes (Vink
et al., 2000; Mulivor and Lipowsky, 2002; Constantinescu et al.,
2003; Florian et al., 2003). When the glycocalyx is damaged, it

FIGURE 1 | Related mechanisms of enzymes regulating glycocalyx. (A) State of glycocalyx under normal conditions. (B) Glycocalyxglycocalyx state under
hyperglycemia. Elevated blood sugar triggers expression of inflammatory factors such as TNF and IL-6, which can trigger upregulation of NF-LB expression; in turn, this
triggers upregulation of HPSE, MMPs, NEU, HYAL, and HAS. These enzymes degrade glycocalyx to produce fragments of hyaluronic acid, heparan sulfate, and
syndecan. These fragments activate receptors such as toll-like receptors and CD44, so that T cells are presented and activated into T helper 1 cells. Furthermore,
they induces monocyte adhesion such as macrophages and platelets. On the one hand, monocyte adhesion promotes expression of vascular cell adhesion molecule 1
and intercellular adhesion molecule 1, and it triggers the upregulation of P-/E-selectin expression; on the other hand, it can trigger the phosphorylation of NF-LB at
position 65 and activate NF-LB. This forms a vicious circle of glycocalyx degradation. In addition, high glucose can inhibit the expression of sirtuin, which can upregulate
the expression of NF-LB. (C) Relating other pathways for glycocalyx degradation, reactive oxygen species and elastin peptides can trigger upregulation of MMP
expression; shear stress and hyperglycemia can upregulate Na+-H+ exchanger 1 through AMP-activated protein kinase (AMPK) pathway to upregulate HYAL
expression; foam cells and oxidized low-density lipoprotein can promote HAS expression. Note: HPSE, heparanase; MMP, matrix metalloproteinase; NEU,
neuraminidase; HYAL, hyaluronidase; HAS, hyaluronic acid synthase; HG: high glucose; HA: hyaluronic acid; HS: heparan sulfate; Th1 cell, T helper 1 cell; TLR-2/4, toll-
like receptors 2 and 4; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1; ROS, reactive oxygen species; NHE1, Na+-H+ exchanger
1; LDL, low-density lipoprotein.
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causes endothelial-cell inflammation, leukocyte rolling, platelet
adhesion, thrombus and atherosclerosis in the aorta, and
permeability changes in the microbes (Nieuwdorp et al., 2005).
As early as 2004, Brownlee (2005) summarized three pathways of
diabetes-induced complications: the polyol pathway, the
advanced glycation end-product product glycosylation process,
and the PKC pathway. Superoxide production by the
mitochondrial electron transport chain was found to be a
common pathway of the three pathways of glucose elevation
and hyperglycemia damage (Nishikawa et al., 2000; Brownlee,
2005). After these pathways trigger the initial glycocalyx damage,
the heparan sulfate, hyaluronic acid, and syndecan fragments
produced by glycocalyx degradation promote further
inflammation. We summarize the relevant mechanism in
Figure 1. We speculate that the inflammation caused by high
glucose is the main cause of glycocalyx destruction. The
expression of inflammatory factors such as NF-LB, TNF-α,
and IL-6 promotes the upregulation of related enzymes at the
RNA and/or protein levels. The upregulation of the enzyme
triggers glycocalyx degradation, producing heparan sulfate and
syndecan fragments. First, fragments produced by glycocalyx
degradation induce the polarization of T helper 1 cells, and
subsequently induce the upregulation of CD44 and toll-like
receptor 2 and 4 expression (Zeng, 2017). On the one hand, this
causes the adhesion and rolling of macrophages and
monocytes; on the other hand, it activates the NF-LB
pathway and upregulates the expression of HPSE, MMPs,
HYAL, HAS, and NEU (Sieve et al., 2018a). Then, the
hyperglycemic inflammatory environment and the
degradation of the glycocalyx form a vicious circle (Lemkes
et al., 2010; Dogne et al., 2016; Szot et al., 2019). In this cycle,
glycocalyx-degradation-related enzymes play important roles.
In addition, oxidative stress, the abnormal expression of NO,
and shear stress affect the expression of glycocalyx-degrading
enzymes, which in turn trigger changes in the glycocalyx. In
many related diseases, the expression of these enzymes is
upregulated. Therefore, inhibiting the expression of enzymes
at the protein or RNA level is a new way to treat vascular

complications. However, hyaluronidase deletion can reduce the
production of HA fragments and glycocalyx damage (Dogne
et al., 2016). In humans and mice, the complete absence of
hyaluronidase 1 can cause mucopolysaccharidosis IX
(Natowicz et al., 1996; Martin et al., 2008). In mammals, the
deletion of the HAS 2 gene is fatal to mouse embryos (Moretto
et al., 2015). Therefore, although enzyme inhibitors are a good
direction for drug development, it is still necessary to pay
attention to the side effects of excessive enzyme inhibition.
Nevertheless, it is of practical significance to use these enzymes
as therapeutic targets to seek treatment for diabetic vascular
complications. Furthermore, the current research on glycocalyx
degradation related enzymes is focused on hyaluronidase,
hyaluronic acid synthase, and heparan sulfate. While
neuraminic acid and chondroitin sulfate are part of the
glycocalyx, we speculate that these fragments produced by
glycocalyx degradation will also have a huge impact. Therefore,
exploring the role of chondroitin sulfate and neuraminidase in
glycocalyx degradation is a direction worth exploring.
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