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Smart-aggregation imaging for 
single molecule localisation  
with SPAD cameras
Istvan Gyongy1, Amy Davies2, Neale A. W. Dutton3, Rory R. Duncan2, Colin Rickman2, 
Robert K. Henderson1 & Paul A. Dalgarno2

Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution 
toolbox for probing cellular structure and function. The rapid evolution of these techniques has 
outstripped detector development and faster, more sensitive cameras are required to further improve 
localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon 
sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector 
for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind 
that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, 
both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM 
experiments can be improved significantly by aggregating only frames containing signal, and that this 
leads to smaller datasets and competitive performance with that of existing detectors. The simulations 
also indicate that with predicted future advances in SPAD camera technology, SPAD devices will 
outperform existing scientific cameras when capturing fast temporal dynamics.

Single molecule localisation microscopy (SMLM) is becoming increasingly established as a benchmark imaging 
modality to probe sub cellular structure and molecular dynamics within the living cell1–3. Inherently dependent 
on molecular blinking, and a photon starved technique, SMLM is one of the key applications requiring fast, high 
sensitivity cameras and camera development has therefore underpinned practical application of SMLM. Electron 
multiplying CCDs (emCCD) and scientific CMOS (sCMOS) are the leading technologies typically employed, 
with both offering sub-electron read noise and high optical sensitivity. The high gain of emCCDs offers a lead-
ing advantage at extremely low light levels, whilst the sCMOS cameras higher frame rate and smaller pixel sizes 
have advantages in particle tracking and dynamic applications4,5. However, these technologies remain limited in 
terms of sensitivity and frame rate and a technological trend in image sensors has been the push to achieve more 
rapid imaging and true single photon sensitivity through increased signal gain and electronic noise reduction6. 
Three solid-state imaging technologies have attained sub-electron read noise that, combined with high optical 
sensitivity, have an inherent capability of single photon resolution: the emCCD, CMOS Single Photon Avalanche 
Diode (SPAD), and two CMOS image sensors (CIS) devices, namely the Pinned Avalanche Photo Diode (PAPD)7, 
and the pinned photo-diode (PPD)8. However, high noise floors, lack of true single photon statistics and no 
time resolved modalities limit the practical use of emCCDs, CIS and PAPD devices in single photon counting 
applications.

CMOS SPAD array technology offers a viable solution for true widefield single photon imaging. In a rapidly 
developing technological field, we have recently shown how a reduction of in-pixel circuitry employing analogue 
counting and binary memory circuits has led to decreased pixel sizes, increased fill factors and high frame rates 
of over > 10 k frames per second (FPS), all with negligible readout noise contributed from the digital electronics9. 
Combined with quantum efficiencies of above 35% in the visible spectrum, SPAD arrays now provide a plat-
form for ultra-fast imaging for the life sciences. In this paper we explore the application to SMLM, a particularly 
challenging imaging modality in terms of photon budget and imaging speed, and show how SPAD arrays offer 
significant improvements over existing emCCD and sCMOS technology.
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SMLM, which has many variants, uses either photo-activatable or stochastically activated fluorescent markers 
that are activated in sparse subsets at a time. The resulting spatially distinct diffraction-limited point spread func-
tions are individually identified and localised, (using some form of point spread function model, center of mass 
or equivalent) allowing high resolution images of localised emitters to be constructed over time. The technique 
has seen many developments, including multi-colour and 3D imaging10, but the challenge, from an imaging per-
spective, remains the same: to capture the millisecond molecule blinks with suitably high signal-to-noise ratio, so 
that their position may be estimated with the highest accuracy and precision.

In this context, a high frame rate camera, operating faster than the molecules stochastic blinking rate, poten-
tially allows for the precise detection of the onset and duration of a single blink event. Compared to traditional 
emCCD or sCMOS imaging, that aggregate photon acquisitions in fixed time windows of normally several 10’s 
msecs, this provides extra precision in molecule identification, time-windowing and signal intensity thresholding 
so that background noise may be suppressed and the integrated signal maximised. However, if the camera runs 
at sub-millisecond exposures there will typically be very few photons from the molecule, preventing molecules 
from being localised on single frames. Oversampling the temporal behaviour allows for the intelligent summation 
of multiple sequential frames to regain signal intensity whilst maximizing frame rate, but in existing cameras the 
total readout noise increases with the square root of the number of summed frames, degrading the signal-to-noise 
ratio. This paper sets out a frame summing scheme, termed smart aggregation, that exploits the negligible read 
noise of SPAD cameras so that no additional noise is incurred. Furthermore a model is presented to simulate opti-
mal detector performance for localisation microscopy, highlighting the key technological gains that, in addition 
to smart aggregation, are needed to further optimize the application of single photon array detectors.

SMLM with a binary SPAD camera
The Quanta Image Sensor (QIS) concept11 projects the recent image sensor developments of read noise reduc-
tion, decreasing pixel size (and diminishing full well) to an imaging array of single photon photodetectors with 
a binary response. The binary states of either 0 (no photon detected) or 1 (at least one photon detected) provide 
limited information, therefore these are summed in space and/or time to form a spatio-temporally oversampled 
greyscale image frame. A binary SPAD camera is an example of a QIS, its raw output consisting of spatial infor-
mation of binary bits or “bit-planes”, as illustrated in Fig. 1a, with each pixel producing a time-domain sequence 
of 1’s and 0’s.

A characteristic of such a SPAD camera is logarithmic compression in the response to light, akin to photo-
graphic film, due to the “pile-up” distortion of many incident photons recorded with the same logical high signal 
value as a single photon. This behaviour has been predicted by theory12, as well as verified experimentally using a 
SPAD imager9. Yet, in single molecule microscopy applications, the low light intensity and high frame rate, results 
in typically < 0.2 photons/bit plane, and the SPAD camera would operate in the linear region of the response 
curve. Indeed, for low light applications, where one might have a few thousand incident photons/pixel/s, provided 
the frame rate is high enough (> 1 k FPS), binary pixel values, when aggregated together, are sufficient to repro-
duce the variations in light intensity in a scene.

The main noise source in a SPAD device is the pixel dark count rate (DCR), which refers to the spurious firings 
of the SPAD due to thermal events. The level of DCR depends on the pixel size and architecture, and will vary 
across the pixel array (as quantified using the parameter Dark Rate Non Uniformity, or DRNU). In a similar way, 
there will be a Photon Response Non-Uniformity (PRNU) in the photon detection efficiency (PDE) of individual 
pixels that is the ratio between the average rate of photon detections and the rate of incident photons. Antolovic 
et al.13 discusses compensating for DCR, PRNU, and linearizing the response of SPAD QIS. Correcting for the 

Figure 1. (a) Schematic representation of the output of a binary SPAD imager. Each pixel registers a 0  
(no photon count, white) or 1 (photon count, grey) in time. (b) Representation of the operational frame capture 
of an emCCD and bit-plane imager for an example, single blinking molecule. The top graph represents the 
molecule intensity trace in time, the middle graph the collected intensity from a fixed frame rate emCCD. The 
grey regions represent data readout sectors. The bottom graph shows the difference between fixed frame capture 
and smart-aggregated frame capture for a SPAD CMOS camera. (c) Simulated point spread functions from the 
molecule emitter in each time frame as imaged in the emCCD.
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DCR entails measuring the average count rate at each pixel, and subtracting the resulting “background” frame 
from subsequent images. The additional shot noise introduced by the dark count remains. Moreover, as in other 
camera technologies, SPAD imagers have a certain percentage of “hot pixels”, where the DCR is much higher than 
average and masks true photon detections, rendering the pixels unusable.

Crucial to the operation of a SPAD imager in QIS mode is the fact that there is negligible read-out noise, which 
means that an arbitrary number of bit-planes may be summed without incurring a noise penalty. This represents a 
distinct advantage in the imaging of blinking molecules in SMLM. Figure 1b illustrates the typical scenario when 
a stochastically blinking molecule is being imaged. The top graph shows the (simulated) light intensity trace from 
a single molecule (or multiple spatially indistinguishable molecules), comprising a longer and two shorter blinks 
of different durations due to the stochastic nature of the photophysics. If imaging with a conventional emCCD, 
integrating over fixed frames (i–v), produces peak intensity values shown in the middle graph, and the images 
shown in Fig. 1c. The long blink is captured mostly in frame ii, with a smaller proportion in frame iii. Frame iv 
shows a faint image of the short blink, due to the blink only appearing for a fraction of the integration period, and 
therefore being averaged out with the background. Importantly, frame v misses the final short blink entirely, as it 
aligns with the read-out period of that emCCD frame, a dead time in each frame where no data can be acquired. 
Figure 1b and c highlight the main challenges imaging single molecule blinking events with an emCCD. Frame 
ii and iii show a similar image, despite representing different blinking under different conditions, and events and 
information are missed in the read-out dead time of each frame. It is common in SMLM experiments to sum 
consecutive frames showing spatially coincident molecule emission, in an attempt to maximise signal to noise2. 
However, this approach cannot distinguish between one molecule that is on over multiple frames, and separate, 
spatially co-localised molecules which each blink on and off within single frames. A binary SPAD on the other 
hand camera captures bit-planes at a much faster rate than the blinking dynamics, without read-out dead time, 
to provide a temporal distinction between such events at rates orders of magnitudes above that of an emCCD. 
Each bit-planes could of course be summed over fixed periods to produce a similar output to an emCCD, but 
the approach proposed here is to sum only during the blink duration, Fig. 1c lowest panel. Noting that the low-
est achievable localisation uncertainty (see, for example, ref. 14) is largely dependent on the ratio of detected 
molecule photons over background photons, the suggested “smart aggregation” approach will yield optimised 
localisation without loss of information.

The SPAD sensor explored here (labelled SPCImager) is a 320 ×  240 resolution imager featuring an 8 μ m pixel 
pitch at 26.8% fill factor, and a peak photon detection probability of 35% at 450 nm15. When operated in binary 
mode, bit-planes are captured at a rate of 10 kfps. Both rolling and global shutter modes are available, but the 
former is typically used as it allows for back-to-back exposures at the maximum frame rate (so that the exposure 
time per bit-plane is 100 μ s). The imager is paired with an FPGA board (Opal Kelly XEM6310) that controls the 
acquisition of image data, relaying a continuous stream of bit-planes to a PC over a USB 3.0 link.

Smart aggregation
The steps in the bit-plane smart aggregation algorithm are outlined in Fig. 2. The input to the system is the raw 
or unprocessed bit-plane images from the sensor. The first step is to apply a standard spatial Gaussian filtering, to 
enhance any molecule flashes16. The size (or width σ ) of the Gaussian kernel is chosen so as to match the expected 

Figure 2. The smart-aggregation scheme. A sequence of bit-plane images are processed according to (i) 
filtering, (ii) molecule detection and positive photon events registration and (iii) summation of original bit 
planes according to aggregated photon arrival times.
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point spread function (PSF) of the molecule, readily estimated from the system optics. More specifically, σ is 
chosen to be one-third of the Airy disk radius, which is estimated from r =  0.61 λ/NA, where λ  is wavelength and 
NA is the numerical aperture of the objective. The spatial filtering is followed by time averaging, carried out with 
a rolling “window”17, whose size corresponds to the shortest blink that can be reliably detected.

In the second step, thresholding is applied to the filtered frames to detect molecule flashes. Clusters of points 
are thereby identified as (potential) molecules, and in each case the local maximum of the filtered pixel values 
is used as a rough estimate {xi, yi} of the molecule position, which then defines a region of interest (ROI) around 
the candidate molecule. Next, the thresholded time trace at {xi, yi} is used to estimate the on and off time of the 
molecule flash in question.

The third step takes each candidate molecule in turn, selects the raw bit-planes deemed to contain the mole-
cule flash (based on the estimated on and off times), and sums said bit-planes, cropped to the relevant ROI. The 
end result is a series of optimised images, which can then be readily localised using standard methods18. The 
overall scheme is highly parallelizable and thus well suited to implementation on FPGA.

The duration of the time averaging window, and the threshold used for detecting molecules are derived from 
the underlying photon detection statistics and are a function of the photon flux from the molecule, the back-
ground photon level (including the dark count rate), as well as the effective pixel size (or optical magnification).

To quantify the smart aggregation, consider a binary SPAD camera whose pixels have a uniform PDE η. For 
simplicity, each pixel is assumed to detect photons at the same average rate of b times per second when subjected 
to background light only. It is further assumed that a molecule, when on, emits a photon flux of I photons per 
second onto the sensor. The light from the molecule has a PSF centred around pixel {i, j}, and is approximated by 
a Gaussian with standard deviation σ (normalised by the pixel size). It is also assumed that bit-planes are captured 
by the camera with an exposure time of τ and are filtered spatially with a k ×  k Gaussian filter (also of width σ), 
before being summed, in time, in groups of N. It can then be shown, using the Poisson statistics of photon arrivals, 
that the mean value (E) of pixel {m, n} (as seen on the raw bit-planes) is:
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where G is the Gaussian PSF, as sampled (discretized) over the pixel array. Similarly, the variance (Var) of the 
pixels can be expressed as:
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Now provided the pixel values B can be treated as independent random variables, which are uncorrelated in 
time (within an on or an off period), the pixel {i, j} in the filtered F, and aggregated image H will have the follow-
ing mean and variance:
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As N increases, and more and more pixel values, B, are summed to compose H, the distribution of H will tend 
to a Gaussian according to the Central Limit Theorem. The mean and variance of this distribution will depend on 
whether the molecule is on or off. Thus to ensure that the molecule can be reliably detected, the probability distri-
butions in the on and off cases have to be suitably separated. If one is to aim for a ~99% detection accuracy based 
on the value of H at {i, j} (assuming the molecule was either on or off over the whole of the aggregation period), 
then the point where the tails of the two distributions intersect should be three standard deviations away from the 
means of the distributions, so the requirement is:
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Thus, combining Eq. (5) with Eqs (3) and (4) one can show that the minimum number of bit-planes to be 
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=
+

−

( )
( )

N
F F

F F
9

Var( ) Var( )

E( ) E( )
,

(6)

i j
OFF

i j
ON

i j
ON

i j
OFF

, ,

2

, ,
2

and the corresponding detection threshold T, which describes the acceptable lower detection limit of an on event 
above the average noise background, can be expressed as:
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Now in practice H is a rolling sum of the filtered bit-planes F, so that at time step t,

= + + … + .− − +H F F F (8)i j t i j t i j t i j t N, , , , , ,{ 1} , ,{ 1}

The precision with which the start and end times of the molecule flash can be determined will be dependent 
on the length of summation. One approach is to take the time corresponding to the middle of the sequence of 
N bit-planes when T is crossed (leading to an uncertainty in the estimated start and end times {ts, te} of approxi-
mately ± N/2 bit-planes). When composing the optimised molecule image, the sum of bit-planes is instead carried 
out from ts −  N/2 to te +  N/2 to reduce the chances of bit-planes with useful signal being discarded. To avoid a 
single molecule flash being treated as multiple flashes, instances of Hi,j dropping below T for a single frame only 
are ignored when establishing {ts, te}.

A corollary of the above analysis is that the higher the anticipated photon flux from the molecule (or the PDE 
η the camera), the lower N can be, and hence the better one can establish the time history of the molecule flash (as 
well as being able to detect shorter on or off periods).

Application of smart aggregation
To assess the benefit of smart aggregation, experimental studies were carried out in which the localisation uncer-
tainty,  obtained with the SPCImager, was compared with fixed aggregation and a reference emCCD camera. 
This was followed by further simulations involving a projected, future SPAD camera, which was compared with 
current emCCD and sCMOS devices to assess the future potential of smart aggregation bit-plane technology.

The statistical models used here to simulate the image capture process of the cameras are similar to those in 
the comparison study of ref. 19. In particular, photon detections and dark noise (in all three cameras) are assumed 
to be Poisson processes, the electron multiplication stage of the emCCD is modelled as a Gamma process, and 
read noise is Gaussian distributed. An important difference in the simulations here is that the molecule undergoes 
stochastic blinking so that the principle of smart aggregation may be tested.

For the simulations camera properties are defined as shown in Table 1. For the SPAD camera a 32 ×  32 pixel 
region of interest (ROI) is assumed; for the emCCD and sCMOS camera models the ROI is 16 ×  16 and 40 ×  40, 
respectively (to ensure similar fields of view). The simulated molecules switch on, one at a time, at random inter-
vals and locations, and with a given blink duration. As in the analysis described above, the molecule PSF is 
approximated by a Gaussian function.

Experimental results. In the experiments, a sample of GATTA-PAINT 80 G nanorulers20 was captured 
using SPCImager and a Hamamatsu ImageEM emCCD camera. The sample consist of triplets of fluorescent 
markers, based on the ATTO 550 dye, that are 80 ±  5 nm apart, and is intended to be used as a calibration slide 
for super-resolution microscopy. Both cameras were coupled to an Olympus Cell Excellence IX81 microscope 
operated in a TIRF configuration, with a 561 nm excitation laser and a 150× , 1.45 NA, TIRF objective. A 50/50 
non-polarizing beam splitter unit (TwinCam by Cairn Research) was used to direct the image onto each camera 
for simultaneous imaging.

In the first test, SPCImager and the emCCD device were used sequentially to image different fields of the 
GATTA-PAINT nanorulers. In the case of SPCImager, frames were generated by two different means: by sum-
ming non-overlapping groups of 640 bit-planes (to match, approximately, the emCCD’s frame time of 64 ms) 
and by using the smart aggregation scheme described previously to produce “optimised” molecule images, 
32 ×  32 pixels in size (the algorithm, implemented in Matlab, was applied to blocks of 10000 bit-planes at a time 
to limit RAM usage). For the smart aggregation the number of bit-planes summed, N, was 100 and the detection 
threshold, T, was 2. Background subtraction was carried out and hot pixels, defined as those giving a value of ‘1’ 
on more than 20% of background bit-planes, were interpolated over using the method of D’Errico21. The back-
ground and molecule intensity levels inferred from the camera outputs were fed into the simulation models and 
used to generate corresponding sets of simulated images. Both the experimental and simulated image frames 
were then localised using Maximum Likelihood fitting, via the widely-used ThunderSTORM ImageJ plugin21. 
The localisation errors obtained from the simulated data (for which the ground truth molecule positions are 
known) were compared with the localisation uncertainties reported by ThunderSTORM for the true emCCD and 
SPCIMAGER frames, as a means of validating the simulations models. ThunderSTORM employs the Thompson 

Type Binary SPAD emCCD sCMOS

Model SPCImager Andor iXon Ultra 987 Hamamatsu ORCA-Flash4.0 V2

Pixel size 8 μ m 16 μ m 6.5 μ m

Quantum Efficiency 35% PDE 90% 80%

Fill factor 26% (78%) N/A N/A

Read noise Negligible 0.2 e- (input referred) 1.4 e-

Dark Noise 100 Hz (25 Hz) median DCR 0.001 Hz DCR 0.05 Hz mean DCR

Other Noise N/A 0.0018 Hz CIC N/A

Non-uniformity 2% DRNU, 1% PRNU N/A 1% DRNU, 0.5% PRNU

Frame time 100 μ s per bit-plane 50 ms 50 ms

Table 1.  Details of the camera specification as used in the model.
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formula to estimate localisation uncertainty14. This assumes the dominant noise source is shot noise, directly 
applicable to SPAD arrays where background is a combination of DCR and background photons.

Figure 3a plots the simulated and experimental data for SPCImager (fixed and smart aggregation) and in 
Fig. 3b those from the emCCD. The vertical axes represent the root mean square (RMS) error in the localisation, 
or, in the case of the experimental data, the combined uncertainty (also a RMS quantity). The uncertainty and 
error values are plotted against a range of blink durations, as prescribed in the simulations, and determined 
approximately from the experiment data (based on SPCImager’s aggregation algorithm or the number of consec-
utive emCCD frames that the molecule is present such that the localisations are within 40 nm from one another 
on subsequent frames). The measured blink durations, in the case of SPCImager, are rounded to the nearest 
10 ms so that experimental data points with similar blink durations may be combined and overall uncertainty 
figures calculated. Similarly, for the emCCD data, combined uncertainty values are computed, with data points 
being grouped according to the number of frames that the molecule is emitting. In addition, a separate set of 
uncertainty values are obtained, based on merging localisations deemed to result from the same molecule blink 
(to produce a comparable data set to SPCImager smart aggregation). Our emCCD read-out time is 30 ms and, as 
discussed above, therefore a proportion of the shorter blinks will invariably be missed.

The results in Fig. 3 show that for the SPCImager, smart aggregation of the bit-planes offers a clear improve-
ment in localisation compared with fixed aggregation, with the uncertainty reducing by a factor of two for longer 
blink durations. For the emCCD, merging localisations also result in a reduction in uncertainty, though to a much 
lesser extent of around 20%. At short blink durations the improvement is reduced, largely due to the reduced pho-
ton numbers globally limiting localisation certainty. The simulated data matches well to the experimental data, 
providing confidence in the simulation. The small discrepancy between the simulations and experiment is largely 
due to the variability in the blink intensity being unmodelled in the simulations. Furthermore, ThunderSTORM’s 
uncertainty estimates (for the experimental data) do not take into account the non-uniformity in photon response 
and dark count across the SPAD array (and in the case of emCCD, the software does not account for read noise).

It is interesting to note in the data presented in Fig. 3, that SPCImager matches the performance of emCCD 
camera for long blink durations, despite the higher sensitivity of the latter device. The reason for this is that long 
blinks, spreading over multiple emCCD frames, result in several localisations, some of which can be imprecise 
due to reduced photon counts (when the molecule blink just spills into an extra frame) and may not be recog-
nized as coming from the same molecule. The additional “poor” localisations lower the overall precision, though 
they can be avoided, to some extent, by increasing the detection threshold (or filtering localisations based on 
the estimated uncertainty). This problem does not arise for smart-aggregated bit-plane imaging. Figure 3c and d 
compare histograms of the blink duration, as estimated from the experimental data from the two cameras (via the 
smart aggregation scheme, and counting the number of consecutive emCCD frames showing the same apparent 
blink). The two histograms are similar in shape, though SPCImager provides higher time resolution, allowing the 
decay in the apparent distribution of blink durations to be observed in more detail.

Figure 3. Single molecule localisation uncertainty for varying molecule blink durations as determined for 
(a) the SPAD SPCImager with and without smart-aggregation and (b) the emCCD with and without merged 
frames. Shown are both experimental data from GATTA-Paint 80 G nanorulers and simulated data. The solid 
lines are visual guides for the eye. (c) and (d) Shows histograms of estimated experimental blink duration of 
single molecules, as obtained from (c) SPCImager and (d) emCCD with 50 msec frame rate.
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To verify the localisation accuracy and precision, SPCImager and the emCCD device captured the same field 
of view of a GATTA-PAINT nanoruler sample simultaneously for 20 minutes using the TwinCam 50/50 unit. To 
accommodate the lower signal to noise ratio resulting from splitting the light into two, the Thunderstorm mole-
cule detection thresholds were raised from the default value (as detailed in Table 2). Moreover, the thresholding 
of SPCImager images was modified on account of the non-uniform noise affecting the sensor array. Beyond these 
two factors, the fitting parameters are identical between the two cameras. For smart aggregation, the number of 
summed images, N, was 400, and the threshold, T, 6, higher values from Fig. 3 due to the lower absolute photon 
flux the 50/50 splitter introduces.

Figure 4a–c shows an example of the same nanoruler, as localised from emCCD, SPCImager fixed frame 
(matching emCDD frame time of 120 ms), and SPCImager smart frames. The localisations are visualised using 
the normalised Gaussian option of ThunderSTORM (left plots), whereby each localisation contributes to the 
rendered image in the form of a Gaussian function with standard deviation equal to the estimated uncertainty. 
ThunderSTORM’s density filter has been applied to filter out localisations with fewer than three neighbours 
within a 30 nm radius, so as to remove isolated localisations resulting from noise or autofluorescence. Note that 
as each constituent marker within the nanoruler blinked multiple times during the imaging period, every marker 
is reproduced as a scatter of localisations, with the scatter relating to the density of localisations. The right plots 
show the cross-section of the Gaussian-rendered localisation map of the triplet Gatta system and Fig. 4d shows the 
statistics of the mean localisations for the markers of five nanorulers. Peak-to-peak distances map well with the 
calibrated 80 nm GATTA nanoruler sample, within the ± 5 nm error, for both cameras and all analysis techniques,

Figure 4e plots the standard deviation of the localisations for the markers in Fig. 4d. The emCCD and SPC 
Imager with smart aggregation show similar results, with both returning significantly better localisations than the 
SPCImager without smart aggregation. This is consistent with the results of Fig. 3b, where we compare the data 
from Fig. 4 with an overall average of all blink durations from Fig. 3. This shows that, by taking advantage of the 
faster frame rate and dark count noise floor, smart aggregation returns competitive results from the SPCImager 
when compared to a commercial emCCD, despite the 4x less fill factor and 2.5x less quantum efficiency. This 
provides confidence that a new generations of SPAD array cameras will outperform existing emCCD’s for SMLM.

Projections for future SPAD device. To explore and assess the future potential of a SPAD imager, simula-
tions have been performed assuming an ideal, experimentally realistic, SPAD array (F-SPAD). It was assumed that 
the effective fill factor will, in time, increase three-fold, with the DCR reducing by a factor of four. It is believed 
that these are realistic assumptions; there are a number of avenues in which such a fill factor improvement may be 
realized, including microlensing22, back-side illumination23 or stacking24. Moreover, experimental studies suggest 
that SPADs with a similar structure to the sensor studied here exhibit a halving of DCR for every 8 °C of cooling 
until around − 10 °C25. Thus it is anticipated that a four times reduction in DCR is achievable with a moderate 
level of cooling.

As before, the simulations considered a range of molecule blink durations, and for each duration 500 images 
were generated, localised, and the individual localisation errors (distances to ground truth) combined to form 
an overall mean square error. Localisation was again performed using ThunderSTORM on the simulated images. 
Localisations further than 53.3 nm from the ground truth (corresponding to the effective pixel size with a 150×  
objective) were considered to be false detections. The photon flux from the molecule was taken to be 50000 pho-
tons/sec, with a background level of 70000 photons/sec for every μ m2 area in the sample (under the assumption 
of TIRF conditions). Furthermore, the microscope was assumed to feature a 150×  (in the default case) or a 60x 
objective. An overview of camera characteristics and details of the cameras being modelled in the simulations, is 
given in Table 1.

Figure 5a compares the localisation error resulting from the current SPCImager, with the projected, F-SPAD. 
Both fixed and smart frame aggregation are considered. The error is seen to (approximately) half with the future 
SPAD device. Figure 5b shows the F-SPAD (with smart aggregation) as compared with existing commercial 
emCCD and sCMOS cameras. As previously, we consider the effect of merging consecutive emCCD/sCMOS 
localisations if within 40 nm of each other. The solid lines are guides to the eye, with the dashed section showing 
blink duration events with < 90% detection sensitivity. The results show the future SPAD camera outperforming 
the emCCD for almost all blink durations. The F-SPAD matches the sCMOS in all but below the 20–30 ms times, 
in which case sCMOS gives better localisation results, but lower detection sensitivity, dropping below the 90% 
threshold. The SPAD camera remains above 90% for all blink durations. Figure 5c shows the effects of switching 
to the 60x objective, for the cases of the current and future SPAD camera and smart aggregation is assumed 
throughout. It is noted that the 60x objective reduces the localisation error of the current SPAD by a moderate 
extent (by around 20% for longer blink durations), but has negligible effect on the F-SPAD. The reason is that 
with the future camera, the DCR is no longer significant; the error is mainly caused by the background photon 
count, which simply gets re-distributed across the pixel array as the magnification is changed (in a similar way, 
the simulated error curve for the sCMOS was found to be largely unaffected by the change in assumed objective).

Process emCCD SPCImager

Image filtering (default: Wavelet filter) Wavelet filter Gaussian filter (sigma =  2 pixels)

Peak intensity threshold (default: std(Wave.F1)) 4*std (Wave.F1) mean (Med.F) +  std (Wave.F1)

Table 2.  ThunderSTORM molecule detection settings for simultaneous emCCD/SPCImager imaging. 
Wave.F1 is the first wavelet level of the input image, and Med.F is the median filtered input image.
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Figure 4. Single Molecule STORM localisations of a single GATTA-PAINT 80 G nanoruler as captured by 
emCCD and SPCImager, analysed as both standard and smart aggregation. (a–c) Shows, from left to right, 
the image of the single nanoruler pre-localisation, the localised nanorulers and the cross section through the 
localisations. For the smart aggregation analysis, N =  400 and T =  6. (d) and (e) Show the localisation distances 
and localisation STD of the nanoruler localisation for 5 different nanorulers (15 markers).

Figure 5. Projections from model simulations. (a) Localisation performance of current SPAD versus a 
modelled future SPAD (b) Future SPAD as compared with sCMOS and emCCD. (c) The effect of 60x objective 
on the localisation of current and future SPADs and (d) the effect of hot pixels on the localisation error of 
current SPAD. All solid lines are guides to the eye. Dashed lines represent blink durations with < 90% detection 
sensitivity.
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Figure 5d considers the effect of an increasing number of hot pixels in a SPAD camera. Hot pixels have thus far 
not been modelled here, but their percentage can be considerable in an uncooled SPAD (in the region of 10%). For 
this simulation, the model for the current SPAD was used with 50 ms total exposure and the molecule being on 
throughout. The simulated images were localised using the Maximum Likelihood Estimator code of Smith et al.26,  
which was modified to allow for undefined pixel values. The graph plots the results of two different strategies for 
handling hot pixels: interpolating over them (using the method of ref. 20, as applied to the experimental data in 
Section 4.1) and ignoring hot pixels altogether. Both 60x and 150x objectives are considered. In both cases, ignor-
ing hot pixels appears to be the preferable option, but the significant result is that even with 20% hot pixels, there 
is only a small increase in localisation error, and hardly any change with fewer than around 10% hot pixels. This 
result is significant as it suggests that hot pixel removal is not a priority for applications to SMLM.

Conclusion
Binary SPAD cameras, operating at a high frame rate, offer flexibility in the imaging of blinking molecules. A 
technique, termed “smart aggregation” has been presented here, which, for every detected molecule, sums only 
those binary fields when the molecule is on, for optimised images. The advantage of the approach has been 
demonstrated in both simulations and experiments involving nanorulers, with localisation errors reducing con-
siderably. The simulations suggest that with the anticipated improvement in fill factor and reduction in dark 
noise, a future SPAD imager featuring smart aggregation will match or outperform existing sCMOS and emCCD 
cameras in molecule localisation.

Whilst the present work uses standard localisation algorithms, a camera-specific scheme (as in ref. 27 for 
sCMOS cameras), which takes into account the non-uniformity in the pixel array, would likely perform better. It 
is expected that such as scheme, when applied to SPAD data, would result in higher accuracy, and a more sym-
metric distribution of localisations around the ground truth.
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