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The composition of microbial communities has been known to be location-specific.
Investigating the microbial composition across different cities enables us to unravel
city-specific microbial signatures and further predict the origin of unknown samples. As
part of the CAMDA 2020 Metagenomic Geolocation Challenge, MetaSUB provided the
whole genome shotgun (WGS) metagenomics data from samples across 28 cities along
with non-microbial city data for 23 of these cities. In our solution to this challenge, we
implemented feature selection, normalization, clustering and three methods of machine
learning to classify the cities based on their microbial compositions. Of the three
methods, multilayer perceptron obtained the best performance with an error rate of
19.60% based on whether the correct city received the highest or second highest
number of votes for the test data contained in the main dataset. We then trained the
model to predict the origins of samples from the mystery dataset by including these
samples with the additional group label of “mystery.” The mystery dataset compromised
of samples collected from a subset of the cities in the main dataset as well as samples
collected from new cities. For samples from cities that belonged to the main dataset,
error rates ranged from 18.18 to 72.7%. For samples from new cities that did not belong
to the main dataset, 57.7% of the test samples could be correctly labeled as “mystery”
samples. Furthermore, we also predicted some of the non-microbial features for the
mystery samples from the cities that did not belong to main dataset to draw inferences
and narrow the range of the possible sample origins using a multi-output multilayer
perceptron algorithm.

Keywords: microbiome, OTU, feature selection, random forest, support vector machine, multilayer perceptron

INTRODUCTION

The development of next-generation sequencing (NGS) platforms (Simon and Daniel, 2011)
has enabled the generation of high-throughput metagenomics data, which allows researchers to
uncover the microbial composition and function of diverse ecosystems (Ley et al., 2006; Hårdeman
and Sjöling, 2007; Wu and Sun, 2009). In recent years, microbiome research, especially within
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the context of human health and disease, has become
of increasing interest to the researchers. For instance, the
intestinal microbiome has been proven to be associated with
obesity, diabetes mellitus type 2, and a broad range of other
diseases (Hartstra et al., 2015; Lynch and Pedersen, 2016).
However, many of the microbial communities outside the
human body remain poorly studied. As the composition of
environmental microbial communities is known to be location-
specific (Delgado-Baquerizo et al., 2018), investigating the
differences in composition of taxa across locations could help
unravel city-specific microbial signatures and further identify
the origin of unknown samples. Extending this kind of research
to a global scale would help identifying the source of possible
pathogens responsible for global pandemics such as in the current
COVID-19 crisis. In addition, it could enable forensic scientists to
verify location information about objects based on analyzing the
microbial data of swabs taken from these objects to establish or
provide evidence against alibis. Metagenomic data based on soil
samples have already been used to discriminate between different
locations (Khodakova et al., 2014).

The objective of the CAMDA 2020 metagenomic geolocation
challenge was to predict the geographic origins of mystery
samples by using city-specific microbial and non-microbial
data. All raw data in this work was provided by the
MetaSUB Consortium1. MetaSUB aims to create a global genetic
cartography of urban spaces that is based on extensive sampling
of mass-transit systems and other public areas across the globe.
They partnered with CAMDA to provide data for one of the
three annual CAMDA challenges for 2020. These data include
over a thousand novel samples from 28 cities and comprise over
a terabase of whole genome shotgun (WGS) metagenomic data.
The main dataset included nearly 1000 samples from 23 cities in
17 countries. An additional microbial dataset with 10 cities (5 of
which were represented in the main dataset and 5 new cities) was
provided as a mystery dataset. In addition to the microbial data,
CAMDA also provided some city-specific data related to climate,
location, and neighboring biomes for the main dataset.

Classification methods are typically used to construct models
for predicting the origin of a novel sample. For the mystery
samples that originated from cities included in the main
dataset, we were able to use only 16S ribosomal RNA mapped
compositional data to perform classification. One limitation of
classification models is that they can never predict a novel origin
that does not exist within the trained model. To address this
problem, we can use city-specific microbial data to predict non-
microbial city-specific features such as temperature and humidity
(Figure 1). We can then in turn use these results to map
the known city-specific non-microbial patterns, which enables
us to narrow the range of possible cities and draw inferences
about each pattern.

The selection of the non-microbial features was driven by
our knowledge of factors that may possibly affect microbial
composition. Microbial community composition and function
are altered when microbes are exposed to different climate
conditions (Classen et al., 2015). In addition, microbial

1http://camda2020.camda.info/

compositions can vary between coastal and inland locations
(Lin et al., 2012) and form distinct groups when populations
of microbes are compared across human population densities
(Wang et al., 2017). We incorporated various city-specific
weather data, a coastal indicator, and neighboring biomes data
(a proxy for population density) as output variables for a
multi-output multi-layer perceptron (MLP) algorithm (Allaire
and Chollet, 2019) based on the main dataset and performed
predictions of these for each mystery sample. From these
predictions, we could in turn narrow the range of possible origins
for samples from cities that were not included in the main dataset.
Using climate information as the classification output would
enable us to obtain a location-based fingerprint for cities that
are not included in the training dataset so long as the climate of
the new cities resembled the climate of the cities included in the
training dataset.

After bioinformatics and data preprocessing, the operational
taxonomic units (OTUs) were aggregated as counts. The selected
taxonomic ranks “order,” “family,” and “species” were used
independently for the analysis. Table 1 presents a tabulated
insight of the data for all the cities from the main dataset.
For some of the cities in the main dataset, their samples were
collected in multiple years. However, longitudinal analysis was
not ideal for this dataset since most of the cities were sampled
only once. Being aware of the fact that the microbial compositions
of these samples may not be independent and could be similar,
we still treated samples collected in different years as being from
different cities to account for technical variability such as batch
effects. For the multi-output MLP model, since climate does not
change significantly from year to year, we did not differentiate
between years and only labeled the data based on their climate
information; samples from the same city within different years
would be trained with the same output labels for the multi-
output MLP.

MATERIALS AND METHODS

The design of the analysis was motivated by our previous
CAMDA experiences (Walker et al., 2018; Walker and Datta,
2019; Zhang et al., 2021). In our previous work, the common
features that existed in all cities proved to provide an effective
microbial fingerprint for predicting sample origins, and the use
of a combination of common features from different taxonomic
ranks rather than only using a single taxonomic rank resulted
in the lowest error rate for predictions. Compared to the 2019
MetaSUB challenge with 302 samples from 16 cities, the main
dataset for 2020 comprised more than 1,000 samples from 23
cities with samples from some cities collected over multiple
years. Since more cities were included, the features that were
common to all the cities were more limited. To address this
problem and obtain an appropriate number of common features
to use for the prediction, we first conducted a less conservative
common features selection to serve as a preliminary filter. Then
we implemented a variable selection method to further select
relevant features for prediction and obtained different feature sets
by setting different cutoffs. We then used supervised techniques
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FIGURE 1 | The flowchart for the non-microbial feature prediction for the mystery samples.

to select the feature set with the lowest classification error rate.
We also used this selected feature set to predict the non-microbial
city-specific features. All analyses in this study were conducted
in R. The R codes for the analyses will be available on https:
//susmdatta.github.io/software.html. We provide a more detailed
description of the implementations in the following sections.

Bioinformatics and Data Processing
Samples from MetaSUB were Illumina-sequenced at different
depths and delivered in FASTQ format. The bioinformatics and
data processing were conducted in the “HiPerGator 2.0” high-
performance computing cluster, which includes 50,000 cores with
4GB of RAM in average for each core, at the University of Florida.
The run time for each job was highly associated with the size of
the raw FASTQ file.

The pipeline utilized in the generation of the OTUs was
originally designed and improved in our previous papers (Walker
et al., 2018; Walker and Datta, 2019). Using FASTQC (Andrews,
2010) to perform preliminary quality control, we found that the
sequencing data were mostly of good quality, with most Phred
scores greater than or equal to 38. Based on this result, the Phred
score filtering was implemented with FASTX-Toolkit (version
0.0.14 released January 05, 2014) (Patel and Jain, 2012). The
parameters used in the filtering were q = 38 as the minimum
Phred score to keep and p = 50 as the minimum percentage of
bases with Phred score ≥ 38. We then transformed the quality
filtered FASTQ files into FASTA format for performing open
reference OTU picking with QIIME (Caporaso et al., 2010). For
large samples, we split the FASTA file and parallelized the job
into 10 independent sub-threads. After OTU picking in open

reference mode, we removed all counts that had a Ribosomal
Database Project (RDP) classifier taxonomy assignment score
(Wang et al., 2007) of less than 0.5. All subsequent data processing
and analyses were then conducted in R (R Core Team, 2018).

Feature Selection
We used “order,” “family,” and “species” as independent features
for all OTUs, “genus” was not used since information about
“genus” was included in the “species.” For OTU reaching “genus”
resolution but not “species” level, the “species” name would
be showed as “genus.spp,” for example, Enhydrobacter.spp. For
each city, there were several samples with extremely low counts
when compared to other samples within the same city. These
samples contained little information and could hinder the ability
of models to predict sample origin. To remove these outliers, we
calculated the sum of the count of all orders for each sample and
then defined the cutoff for inclusion as 20% of the median of
the calculated count within each city. For each city, we removed
samples with a calculated count that was less than the cutoff. After
this, we conducted preliminary feature selection to obtain the
potential features by calculating the ubiquity of features across
all the filtered samples, ordering the features by ubiquity, and
retaining features with ubiquity >0.6.

Including too many features in the classifier is
computationally expensive and runs the risk of overfitting
for some of the classifiers we used. To further select the
features that were most relevant to city prediction, we used the
implementation of elastic net (Zou and Hastie, 2005) logistic
regression from the R package glmnet (Friedman et al., 2009)
to perform variable selection. For each city, e.g., city A, we
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TABLE 1 | Details of the cities included in the main dataset.

City Country Year Species Family Order

Stockholm (ARN) Sweden 2017 308 122 65

Barcelona (BCN) Spain 2016 389 123 61

Berlin (BER) Germany 2016 526 178 98

Denver (DEN) United States 2016 65 30 21

2017 143 81 41

Doha (DOH) Qatar 2016 284 114 58

2017 249 99 47

Fairbanks (FAI) United States 2016 457 137 78

Hong Kong (HKG) China 2017 489 151 82

Seoul (ICN) South Korea 2017 327 122 64

Kiev (IEV) Ukraine 2017 426 130 66

Ilorin (ILR) Nigeria 2016 305 69 34

2017 628 192 111

Kuala Lumpur (KUL) Malaysia 2017 191 87 51

London (LCY) United Kingdom 2017 381 131 63

Lisbon (LIS) Portugal 2016 196 47 23

New York (NYC) United States 2016 558 149 75

2017 649 173 86

Offa (OFF) Nigeria 2016 387 91 47

Sao Paulo (SAO) Brazil 2017 245 102 56

Santiago (SCL) Chile 2016 639 188 107

Sendai (SDJ) Japan 2017 307 113 69

San Francisco (SFO) United States 2017 168 86 46

Singapore (SGP) Singapore 2017 581 171 98

Taipei (TPE) China 2017 549 181 114

Tokyo (TYO) Japan 2016 589 177 100

2017 461 143 78

Zurich (ZRH) Switzerland 2017 353 124 64

All cities – – 1,394 288 193

replaced the labels of all other cities with “not city A.” Since we
transformed the city labels of all samples into a binary outcome,
we could therefore conduct logistic regression on our dataset. By
solving the equation in (1), where xi is the feature data for sample
i, yi is the city indicator mentioned above for sample i, β0 and β

are the coefficients for intercept and all the features, and λ, α are
the two parameters controlling the elastic net penalty, we could
obtain the regression coefficient for each feature:

min
β0,β∈Rp+1

−
1
N

N∑
i = 1

[
yi

(
β0 + xT

i β
)
− log

(
1+ e

(
β0+xT

i β
))]

+λ
[
(1− α) ||β||22/2+ α||β||1

]
(1)

To achieve a balance between feature retention and removal,
we manually set the α parameter for the elastic net to 0.4. We
calculated the best λ via the cross-validation procedure included
in the glmnet package and conducted this same procedure for
each city within the main dataset. Next, we ordered the features
by the number of times the feature was retained by all the models.
There were 28 models (23 cities) for the main dataset since some
of the cities were with multiple collection years. We used this
ordering to determine the cutoff values in downstream analyses.

The more times a feature was retained by the models, the more
likely the feature was to differentiate the samples of one city from
the other cities. By setting different cutoffs, we obtained multiple
feature sets that we in turn used for machine learning analysis
to obtain the feature set with the best prediction performance.
We then used the “voom” function (Law et al., 2014) in the R
package limma (Ritchie et al., 2015) to normalize the data via
log2 counts per million reads to make the data more interpretable
while ensuring that counts were bounded away from zero.

Clustering for the Non-microbial City
Data
The non-microbial feature selection was driven by our knowledge
of the factors that may possibly affect the microbial composition.
As the city-specific data were a combination of continuous
and categorical data, to identify patterns in cities’ climate,
location, and urbanization, we transformed the continuous
data into categorical variables. For the city climate, data were
provided in the form of “month-climate-stat,” for example,
“July-temperature-minimum.” As cities in the main dataset
were from different hemispheres, climate data from the same
months corresponded to different meteorological seasons for the
southern hemisphere cities and northern hemisphere cities. Since
we wanted to categorize the data based on summer and winter
temperature and humidity, we needed to transform the original
monthly data into the corresponding meteorological season
(National Oceanic and Atmospheric Administration, 2016) to
make the data comparable across hemispheres. We selected
summer/winter temperature and humidity data and present
details of these climate features in Supplementary Table 1.
For these selected features, we implemented k-means clustering
(Likas et al., 2003) to transform the data from continuous to
categorical with the optimal number of clusters determined by
using the R package NbClust (Charrad et al., 2014) as well as
visual inspection. We also created a novel urbanization score
for each city based on its neighboring biomes by generating
a numerical score corresponding to definitions of levels of
urbanization from the Anthromes Project (Ellis and Ramankutty,
2008). Anthromes are classifications of human-created ecological
patterns and, in Anthromes version 1, these include dense
settlements, villages, croplands, rangelands, forested areas, and
wildlands. For our model, we gave a wildlands a score of 0,
forested a score of 1, rangelands a score of 2, croplands a score of
3, villages a score of 4, and dense settlements a score of 5. We then
added the three scores of the surrounding areas together to create
an urbanization score; however, to increase predictive power in
the fitted multi-output MLP model, we binarized the data and
used the median urbanization score as the cutoff.

Machine Learning
We implemented three classification algorithms, i.e., random
forest (RF) (Breiman, 2001), support vector machine (SVM)
(Cortes and Vapnik, 1995), and MLP (Gardner and Dorling,
1998), for the main dataset to compare the performances of
different feature sets in terms of accurate city predictions. For
the main dataset, we randomly selected 20% of the samples
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from each city and fixed these as the test set. Of the remaining
samples from each city not belonging to the test set, we randomly
selected 80% to serve as the training set and specified the
final 20% of these remaining samples as the validation set. We
repeated this procedure 100 times and recorded the error rates
of the test set for each run. For each sample in the test set, we
recorded the prediction results based on 100 different models. We
performed RF, SVM and MLP using the R packages randomForest
(Liaw and Wiener, 2002), e1071 (Dimitriadou et al., 2008), and
keras (Allaire and Chollet, 2019), respectively. For RF, we used
1,000 trees, and the count of variables chosen at each split
was equivalent to the square root of the number of features in
the dataset. The SVM classifier was implemented using the R
function “best.svm.” The parameters in the SVM, i.e., gamma
and the c-value, which affect model fitting, were obtained by
testing the performance of models with different combinations of
parameters. For MLP, a mixture of the rectified linear unit (ReLU)
and softmax activations along with dropout (Hinton et al., 2012)
were implemented.

For predicting the mystery samples, we randomly selected 20%
of the mystery samples to serve as a test set for each run and then
included the remaining mystery samples (labeled as “mystery”)
along with the main dataset to serve as the training set. We
repeated this procedure 100 times.

Since CAMDA provided non-microbial data only for cities
within the main dataset, for the non-microbial city-specific data,
we used the multi-output MLP to build the model, which enabled
us to model the relationship between microbial features and
the non-microbial city-specific features from the main dataset,
where microbial features were used as the predictors and non-
microbial data were used as the response. We used the model
based on the main dataset to predict the non-microbial city-
specific features for the mystery samples, which allowed us to
draw inferences about the sample origins. In this way, we could
identify information about the samples in the mystery dataset
without having trained the model with labels for cities within the
mystery dataset.

RESULTS

Feature Selection
As discussed in the Feature Selection section in the Materials
and Methods section, even after quality control and OTU
picking, there were still some samples with extremely low counts
compared to other samples within the same city. We removed
samples with a sum of counts lower than the cutoff for the
further analyses for each city in the main dataset and present
the number of features before and after the filtering for each city
in Supplementary Table 2. There were 1,060 and 992 samples
before and after the filtering for the main dataset, respectively,
with the number of filtered samples for each city ranging from 15
(Doha 2017) to 50 (New York 2017).

We performed feature selection in two steps as discussed
in detail in the Feature Selection subsection in the “Materials
and Methods” section and ordered the selected features by the
number of times the model retained each feature; we used this

ordering as cutoffs for downstream analyses. By setting different
cutoffs, we obtained different feature sets.

After the first step of initial feature selection, we retained 223
features, including 35 orders, 68 families, and 120 species. For
the second step of feature selection with dimension reduction
with Elastic Net, we present the results with different cutoffs
ranging from 6 to 14 (Supplementary Table 3). The number of
features for each taxon decreases with the increase of the cutoff,
particularly for the number of species.

Clustering for the Non-microbial City
Data
We performed clustering on the non-microbial city features to
transform the continuous data into categorical data. Please refer
to the Clustering for the non-microbial city data section of section
“Materials and Methods” for further details. We present details of
group assignment for each city in Table 2. Summer temperature,
winter temperature, summer humidity, winter humidity, coastal
indicator and neighbor biomes were categorized into 3, 4, 3,
2, 2, 2 levels, respectively, which allowed the maximum of
288 combinations of non-microbial features. For the categorical
climate features, groups with higher number indicate higher
values (i.e., a higher temperature will have a higher temperature
score). The generated non-microbial city features were used as
the response variables for the multi-output MLP.

Machine Learning
Classification Results of the Main Dataset
To find the feature set with the best classification performance,
we fit the machine learning models, i.e., RF, SVM, and MLP
using feature sets that were generated by using different cutoffs
during feature selection. Table 3 presents the details of the
classification error rate.

Among the three methods, MLP showed the best performance
regardless of the feature set used. Therefore, we only used
MLP for the mystery samples’ prediction. For the MLP, the
lowest error rate was obtained when the feature set with
cutoff = 7 was used. A cutoff of 7 indicates that the feature
was retained by the fitted elastic net in at least 7 of the
28 fitted elastic net models. However, we noticed that a
comparable error rate was obtained without including too
many features when we used a cutoff of 12 for the feature
set. The feature set with cutoff = 12 was therefore preferred
for further analysis since it better balanced error rate and
number of included features. The OTU count data with
selected features (cutoff = 12) for the samples that passed
quality control in the main and mystery datasets can also be
found in the Supplementary Material for this paper. This
feature set consisted of 44 features including 14 orders, 16
families and 14 species. The counts of features retained by the
elastic net models are presented in Figure 2. Among the 44
features, the top 5 features that were retained by the models the
highest number of times were the families Bradyrhizobiaceae
and Enterobacteriaceae and the orders Enterobacteriales,
Burkholderiales, and Rhizobiales. Bradyrhizobiaceae and
Enterobacteriaceae are families with the corresponding
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TABLE 2 | Details of the group assignment for each city in the main dataset.

City Summer temperature Winter temperature Summer humidity Winter humidity Coastal indicator Degree of
urbanization

of the neighboring
biomes

Stockholm (ARN) 0 0 1 1 1 0

Barcelona (BCN) 1 1 1 0 1 1

Berlin (BER) 1 0 1 1 0 1

Denver (DEN) 1 0 0 0 0 0

Doha (DOH) 2 2 0 0 1 0

Fairbanks (FAI) 0 0 1 1 0 0

Hong Kong (HKG) 2 2 2 1 1 0

Seoul (ICN) 1 0 1 0 0 1

Kiev (IEV) 1 0 1 1 0 1

Ilorin (ILR) 2 3 2 0 0 0

Kuala Lumpur (KUL) 2 3 2 1 0 1

London (LCY) 0 1 1 1 0 1

Lisbon (LIS) 1 1 1 1 1 0

New York (NYC) 1 0 1 1 1 1

Offa (OFF) 2 3 2 0 0 1

Sao Paulo (SAO) 1 2 1 1 0 1

Santiago (SCL) 0 1 0 0 0 1

Sendai (SDJ) 1 0 2 1 1 1

San Francisco (SFO) 0 1 1 1 1 1

Singapore (SGP) 2 3 2 1 1 1

Taipei (TPE) 2 2 1 1 1 1

Tokyo (TYO) 2 1 1 0 1 1

Zurich (ZRH) 0 0 1 1 1 1

orders Rhizobiales and Enterobacteriales, respectively, and
Enterobacteriales contains only the Enterobacteriaceae family
(Jenkins et al., 2017). The Bradyrhizobiaceae family consists of
11 diverse genera; the organisms belonging to this family include
nitrogen fixing bacteria, photosynthesizing bacteria, bacteria
which use anaerobic and/or aerobic respiration, organisms
involved in the sulfur cycle, and human pathogens (the pathogen
which causes cat-scratch fever belongs to this family) (De Souza
et al., 2014). Many of the members of the Enterobacteriaceae
family, including the genera Escherichia, Salmonella, Shigella,
Klebsiella, and Serratia, live in the intestinal tracts of humans
and animals; some of these are regular species in normal
microbiota while others can cause disease in humans (Rock and
Donnenberg, 2014). The order Burkholderiales includes many
genera that cause disease in humans and many bacteria that
occur naturally in the environment (Wang et al., 2018). Finally,
the order Rhizobiales interact symbiotically with plants and can
provide various nutrients, phytohormones, and precursors for
plant metabolites; it contains many genera of nitrogen-fixing,
methanotrophic, legume-nodulating, microsymbiotic bacteria
(Erlacher et al., 2015). From this, one can see that the most
valuable features are associated with bacteria that commonly
live in or on humans or bacteria that correspond to the
surrounding environment.

When using the feature set with cutoff = 12 for MLP (the
classifier with the highest vote of the prediction results from the

TABLE 3 | Details of the classification error rates with different cutoffs.

Feature selection Methods

Cutoff RF SVM MLP

6 (166) 0.4121 0.3618 0.3216

7 (139) 0.4271 0.3719 0.3116

8 (113) 0.4070 0.3417 0.3166

9 (86) 0.4322 0.3518 0.3367

10 (64) 0.4422 0.3618 0.3417

11 (64) 0.4372 0.3970 0.3317

12 (44) 0.4322 0.3869 0.3266

13 (35) 0.4070 0.4171 0.3417

14 (22) 0.4874 0.4824 0.4573

The cutoff is defined as the number of times the features retained by the elastic net
logistic regression.

100 runs), we found that the error rate was 32.66%. However,
for some samples, the highest vote and the second-highest vote
tied. Furthermore, some of the second-highest votes were the
true label for the samples. When the highest and second-highest
votes were used at the same time, the error rate fell to 19.60%,
indicating that nearly 13% of the second-highest vote of the
samples were the true labels. The details of the error rate for each
city are presented in Figure 3. As seen from Figure 3A, there
are three cities with error rates = 0; these are New York (2016),
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FIGURE 2 | The number of times the features retained by the elastic net logistic regression.

Taipei and Tokyo (2016). When the second-highest vote was used
also, the number of the cities with error rates = 0 increased to
11 (Figure 3B). Additionally, as samples collected from the same
city but in different years were regarded as samples from different
cities in this work, e.g., NYC_16 and NYC_17 in Figure 3, it
was worth investigating whether the year of prediction for these
samples was ever reversed. By looking into the details of the
results of 100 runs for the test set, we found that among the
samples from the cities with multiple collecting years, only 2 out
of 68 samples were predicted to be the same city with a different
collection year, indicating the possibility of technical variability
within the samples due to batch effects even though the samples
were collected from the same city. This corresponds to the results
in Figure 3, which shows that the error rates for samples from the
same city but collected in different years could be vastly different,
e.g., TYO_16 and TYO_17, DOH_16 and DOH_17. In addition,
the difference in the error rates for the samples from the same
city with different years could be due to unavoidable, dynamic
changes within the city’s microbial community. However, due to
unavailability of data across multiple years for all cities, it was not
possible to estimate the confounding factor.

Prediction Results for the Mystery Dataset
Next, we implemented the same procedure to predict the non-
microbial data of the test set by using a multi-output MLP
with the selected feature set. The only difference was that we
combined samples from the same city collected in different

years to predict the non-microbial data, which we then used
separately for predicting the sample origins. The error rates
were 20.1, 28.6, 24.6, 21.1, 15.6, and 14.1%, respectively, for
summer temperature, winter temperature, summer humidity,
winter humidity, coastal indicator, and degree of urbanization of
the neighboring biomes.

Finally, we used the selected feature set to predict the sample
origins and the non-microbial features for the mystery samples.
There were samples from 10 cities in the mystery dataset,
consisting of five cities that have been sampled before and
five new cities. These were Bogota, Hong Kong, Kiev, Krakow,
Marseille, Naples, Taipei, Tokyo, Vienna, and Zurich. For the
samples from the cities that have been sampled before, the
prediction was straightforward; we could predict the sample
origins directly. The error rates for these five cities, i.e.,
Hong Kong, Kiev, Taipei, Tokyo, and Zurich, based on the
highest and second highest votes were 46.7, 72.7, 18.18, 38.5,
and 50%, respectively. The lowest error rate was obtained from
Taipei, which showed the best performance when using only
data from the main dataset as well. Similarly, the samples from
Kiev had the highest prediction error rate for both the main
dataset and the mystery dataset among these five cities. For the
samples from the cities that do not appear in the main dataset,
we used the classifier to see if we could determine whether
the test samples were accurately labeled “mystery” (for more
details, please refer to the subsection Machine Learning in the
“Materials and Methods” section). 57.7% of the samples were
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FIGURE 3 | The error rates for the cities in the main dataset. (A) The results are based on the highest vote. (B) The results are based on the highest and the
second-highest votes.

TABLE 4 | The average predicted level for non-microbial features for new cities in the mystery dataset.

City Summer temperature Winter temperature Summer humidity Winter humidity Coastal indicator Degree of
urbanization

of the
neighboring

biomes

Bogota 1.417 0.25 1 0.917 0.833 0.917

Krakow 1 0 0.909 0.909 0.091 0.909

Marseille 0.9 0.2 1.1 0.9 0.4 0.9

Naples 1 0 1 1 0.889 0.889

Vienna 0.6 0 1 1 0.4 0.8

predicted not to belong to a city in the main dataset (“mystery”).
The knowledge of whether the samples have been sampled
before provided limited information, so we then predicted a
selection of non-microbial features for the samples from the
new cities. The average predicted non-microbial features for
each city are presented in Table 4. Based on the results, we
found that the pattern of Krakow was similar to the pattern
of Berlin in the main dataset, and the pattern of Naples was
similar to the pattern of New York in the main dataset. According
to the geographic location, Krakow, Poland is close to Berlin,
Germany; Naples, Italy and New York City, United States are
nearly at the same latitude. This additional information could
help us to narrow the range of possible cities for predicting
the mystery sample origins. However, for the other three cities,
we found the average of some features were not close to
the preset level, and some were even not in accordance with
reality. For example, the average summer temperature score
of the samples from Bogota was 1.417, indicating that the
prediction for this feature was different for diverse samples
as some of the samples were predicted to level 1 while other
samples were predicted to level 2. Marseille’s coastal indicator,
Vienna’s summer temperature, and Vienna’s coastal indicator
also exhibited similar behavior. Additionally, according to the
results in Table 4, the winter temperature of Bogota was
predicted as being close to level 0; however, the true winter
temperature of Bogota should correspond to the higher level.

The misclassification of the samples could be caused by the
variability of the samples within the same city. This happened
in the 2019 CAMDA challenge as well; some samples cannot
be classified correctly by any of the machine learning methods
we used, which meant that the microbial composition of these
outlier samples could be different from the other samples in
the same city, making them difficult to identify accurately.
Furthermore, the samples from the novel origins may not
be fully represented by the features selected based on the
main dataset, resulting in the failure of accurately predicting
some of the samples.

DISCUSSION AND CONCLUSION

In this work, we have used a more relaxed preliminary
filtration to obtain the common features and followed with
an elastic net logistic regression for further selection. Of the
three different classification methods we tested, we found
that MLP performed the best of the three regardless of the
feature sets. For MLP, we obtained a low error rate without
including too many features by using the feature set with
cutoff = 12. The top five features were common orders and
families, which corresponded with our results from the CAMDA
2019 MetaSUB challenge. The error rate was 19.60% based on
the highest and the second-highest votes. Compared to last
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year’s challenge, there were many more samples, with over 1,000
samples included. However, higher error rates were obtained
since we included more cities this year, which made the accurate
prediction of cities harder. In addition, we found that samples
collected from the same city but collected over different years
sometimes displayed notably different error rates, including
NYC_16 and NYC_17, TYO_16 and TYO_17, and DOH_16
and DOH_17. This could be caused by technical variability such
as batch effects. The prediction accuracy could be improved
by a better normalization method to avoid the potential batch
effects. Furthermore, this difference between samples collected
in different years could also be considered as the result of
dynamic change in microbial communities within a given city
from year to year.

According to the results for predicting the mystery samples,
Taipei has the best accuracy while samples from Kiev were
poorly classified. For the samples of cities that do not exist
in the main dataset, we found that the pattern of the samples
from Krakow was similar to the pattern of Berlin, and the
pattern of the samples from Naples was similar to the pattern
of New York. These results made sense to us since Krakow
and Berlin are geographically close, and Naples and New York
are at nearly the same latitude. This additional information
would help us to draw inferences and narrow the possible
candidates for the sample origins. Since we did not have the
non-microbial city-specific data for the mystery cities, we were
unable to validate the error. The predictions for some novel cities
including Bogota, Marseille, and Vienna were not ideal; some
of the non-microbial city features predictions were not close
enough to the preset level (Table 4), indicating the variability
of the microbial composition of samples within the same cities.
One of the drawbacks of the multi-output MLP is that it cannot
provide labels for combinations it has not seen. For this challenge,
the non-microbial city features were only provided for cities in
the main dataset; therefore, the pattern of the samples predicted
by the model could be only mapped to the cities we already
had in our dataset. Compared to the microbial data, the non-
microbial data of different cities are easy to collect and are
easily accessible; many of these were also readily available online.
The prediction could be improved with the inclusion of data
from more cities.

The average of the error rates of the six non-microbial
city-specific features was about 20%; it was necessary to
select meaningful and appropriate features to decrease the
error rate and thus allow us to build a more reliable model.
Currently, the selection of the non-microbial features was
based on our knowledge of the factors. We have found
that some features such as climate may affect the microbial
composition, which motivated us to use the microbial features
to inversely predict these non-microbial features and further
obtain the city’s pattern. In addition to the literature support,
other analyses to determining the main drivers of variance
in microbial features would also be worth investigating in
future analyses.

To date, our work has been based on generating taxonomic
information from alignments of the reads to the 16S ribosomal
gene in bacterial species (Walker et al., 2018; Walker and Datta,

2019; Zhang et al., 2021). This is a limitation considering that
the DNA samples also contained DNA from microorganisms
that are not bacteria. By mapping the reads not only to a
limited bacterial genome region but to a much wider range
of full genomes from many other types of microorganisms
including fungal, viral, and eukaryotic species, new information
will be added to the machine learning algorithms and will
likely enable them to model geographic regions more accurately.
We are working on approaches to achieve this goal, and our
preliminary work has yielded interesting results with counts
from a variety of microbial species that are not captured
by 16S sequencing.

In summary, the results presented in this work show an
effective method to process and classify microbial samples by
origin. Even when samples were from cities that have never
been sampled before, we could map these samples to a specific
pattern of climate information and draw inferences from these
predictions. By doing this, it would be possible for us to
obtain the trace of the object based on the swabs taken from
the object. However, there is still much to be improved in
our future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://camda2020.bioinf.jku.at/doku.
php/contest_dataset.

AUTHOR CONTRIBUTIONS

SD reviewed the manuscript and provided the theoretical support
when required. RZ, DE, and AW designed and ran the analyses.
RZ wrote the manuscript. All authors have read and approved the
final manuscript.

FUNDING

SD was partially supported by the NIH grant 1UL1TR000064
from the National Center for Advancing Translational Sciences.

ACKNOWLEDGMENTS

We thank the editor and the reviewers for providing critical
comments on an earlier version of the manuscript. The
samples were provided to the CAMDA 2020 challenge by the
MetaSUB Consortium.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.
659650/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 659650

http://camda2020.bioinf.jku.at/doku.php/contest_dataset
http://camda2020.bioinf.jku.at/doku.php/contest_dataset
https://www.frontiersin.org/articles/10.3389/fgene.2021.659650/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.659650/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-659650 July 31, 2021 Time: 12:46 # 10

Zhang et al. Unraveling Signatures and Identifying Origins

REFERENCES
Allaire, J., and Chollet, F. (2019). keras: R Interface to’Keras’. R package version 2.
Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence

Data. Cambridge: Babraham Bioinformatics, Babraham Institute.
Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,

Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336.

Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., and Charrad, M. M. (2014).
Package ‘nbclust’. J. Stat. Softw. 61, 1–36.

Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A.,
Cregger, M. A., et al. (2015). Direct and indirect effects of climate change on
soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere
6, 1–21.

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297.

De Souza, J.a.M, Carrareto Alves, L., De Mello Varani, A., and De Macedo Lemos,
E. G. (2014). The family bradyrhizobiaceae. Prokaryotes 135–154. doi: 10.1007/
978-3-642-30197-1_253

Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A.,
Eldridge, D. J., Bardgett, R. D., et al. (2018). A global atlas of the dominant
bacteria found in soil. Science 359, 320–325. doi: 10.1126/science.aap9
516

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., and Weingessel, A. (2008). Misc
Functions of the Department Of Statistics (e1071). TU Wien. R Package 1.5–24.

Ellis, E. C., and Ramankutty, N. (2008). Putting people in the map: anthropogenic
biomes of the world. Front. Ecol. Environ. 6:439–447. doi: 10.1890/070062

Erlacher, A., Cernava, T., Cardinale, M., Soh, J., Sensen, C. W., Grube, M., et al.
(2015). Rhizobiales as functional and endosymbiontic members in the lichen
symbiosis of Lobaria pulmonaria L. Front. Microbiol. 6:53. doi: 10.3389/fmicb.
2015.00053

Friedman, J., Hastie, T., and Tibshirani, R. (2009). Glmnet: Lasso and Elastic-Net
Regularized Generalized Linear Models. R package version 1.

Gardner, M. W., and Dorling, S. (1998). Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmos.
Environ. 32, 2627–2636. doi: 10.1016/s1352-2310(97)00447-0

Hårdeman, F., and Sjöling, S. (2007). Metagenomic approach for the isolation
of a novel low-temperature-active lipase from uncultured bacteria of marine
sediment. FEMS Microbiol. Ecol. 59, 524–534. doi: 10.1111/j.1574-6941.2006.
00206.x

Hartstra, A. V., Bouter, K. E., Bäckhed, F., and Nieuwdorp, M. (2015). Insights into
the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38,
159–165. doi: 10.2337/dc14-0769

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv. [Preprint]. arXiv: 1207.0580

Jenkins, C., Rentenaar, R. J., Landraud, L., and Brisse, S. (2017). “180–
Enterobacteriaceae,” in Infectious Diseases, 4th Edn, eds J. Cohen, W. G.
Powderly, and S. M. Opal (London: Elsevier), 1565.e–1578.e.

Khodakova, A. S., Smith, R. J., Burgoyne, L., Abarno, D., and Linacre, A. (2014).
Random whole metagenomic sequencing for forensic discrimination of soils.
PloS One 9:e104996. doi: 10.1371/journal.pone.0104996

Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014). Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome Biol.
15:R29.

Ley, R. E., Peterson, D. A., and Gordon, J. I. (2006). Ecological and evolutionary
forces shaping microbial diversity in the human intestine. Cell 124, 837–848.
doi: 10.1016/j.cell.2006.02.017

Liaw, A., and Wiener, M. (2002). Classification and Regression by Randomforest. R
News 2, 18–22.

Likas, A., Vlassis, N., and Verbeek, J. J. (2003). The global k-means clustering
algorithm. Pattern Recognit. 36, 451–461.

Lin, Y.-T., Whitman, W. B., Coleman, D. C., and Chiu, C.-Y. (2012). Comparison
of soil bacterial communities between coastal and inland forests in a subtropical
area. Appl. Soil Ecol. 60, 49–55. doi: 10.1016/j.apsoil.2012.03.001

Lynch, S. V., and Pedersen, O. (2016). The human intestinal microbiome in health
and disease. N. Engl. J. Med. 375, 2369–2379. doi: 10.1056/nejmra1600266

National Oceanic and Atmospheric Administration (2016). Meteorological
Versus Astronomical Seasons. Washington, WA: National Oceanic and
Atmospheric Administration. Available online at: https://www.ncei.noaa.gov/
news/meteorological-versus-astronomical-seasons [accessed June 29, 2020].

Patel, R. K., and Jain, M. (2012). NGS QC toolkit: a toolkit for quality control of
next generation sequencing data. PloS One 7:e30619. doi: 10.1371/journal.pone.
0030619

R Core Team (2018). R: A Language and T.Environment for Statistical Computing.
(Vienna: R foundation for Statistical Computing)

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rock, C., and Donnenberg, M. S. (2014). “Human pathogenic Enterobacteriaceae,”
in Reference Module in Biomedical Sciences (London: Elsevier).

Simon, C., and Daniel, R. (2011). Metagenomic analyses: past and future trends.
Appl. Environ. Microbiol. 77, 1153–1161. doi: 10.1128/aem.02345-10

Walker, A. R., and Datta, S. (2019). Identification of city specific important bacterial
signature for the MetaSUB CAMDA challenge microbiome data. Biol. Direct
14:11.

Walker, A. R., Grimes, T. L., Datta, S., and Datta, S. (2018). Unraveling bacterial
fingerprints of city subways from microbiome 16S gene profiles. Biol. Direct
13:10.

Wang, H., Marshall, C. W., Cheng, M., Xu, H., Li, H., Yang, X., et al. (2017).
Changes in land use driven by urbanization impact nitrogen cycling and the
microbial community composition in soils. Sci. Rep. 7:44049.

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/aem.00062-
07

Wang, X., Zhou, H., Chen, H., Jing, X., Zheng, W., Li, R., et al. (2018). Discovery
of recombinases enables genome mining of cryptic biosynthetic gene clusters in
Burkholderiales species. Proc. Natl. Acad. Sci.U.S.A 115, E4255–E4263.

Wu, C., and Sun, B. (2009). Identification of novel esterase from metagenomic
library of Yangtze river. J. Microbiol. Biotechnol. 19, 187–193. doi: 10.4014/jmb.
0804.292

Zhang, R., Walker, A. R., and Datta, S. (2021). Unraveling city-specific signature
and identifying sample origin locations for the data from CAMDA MetaSUB
challenge. Biol. Direct 16:1.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic
net. J. R. Stat. Soc. Series B Stat. Methodol. 67, 301–320. doi: 10.1111/j.1467-
9868.2005.00503.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Ellis, Walker and Datta. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 659650

https://doi.org/10.1007/978-3-642-30197-1_253
https://doi.org/10.1007/978-3-642-30197-1_253
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1890/070062
https://doi.org/10.3389/fmicb.2015.00053
https://doi.org/10.3389/fmicb.2015.00053
https://doi.org/10.1016/s1352-2310(97)00447-0
https://doi.org/10.1111/j.1574-6941.2006.00206.x
https://doi.org/10.1111/j.1574-6941.2006.00206.x
https://doi.org/10.2337/dc14-0769
https://doi.org/10.1371/journal.pone.0104996
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/10.1016/j.apsoil.2012.03.001
https://doi.org/10.1056/nejmra1600266
https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons
https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1128/aem.02345-10
https://doi.org/10.1128/aem.00062-07
https://doi.org/10.1128/aem.00062-07
https://doi.org/10.4014/jmb.0804.292
https://doi.org/10.4014/jmb.0804.292
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Unraveling City-Specific Microbial Signatures and Identifying Sample Origins for the Data From CAMDA 2020 Metagenomic Geolocation Challenge
	Introduction
	Materials and Methods
	Bioinformatics and Data Processing
	Feature Selection
	Clustering for the Non-microbial City Data
	Machine Learning

	Results
	Feature Selection
	Clustering for the Non-microbial City Data
	Machine Learning
	Classification Results of the Main Dataset
	Prediction Results for the Mystery Dataset


	Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


