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Introduction
Alzheimer disease (AD) is the most common form of neurode-
generative dementia globally.1 The global prevalence of AD is 
rapidly increasing, particularly among people aged 65 years and 
over. A lack of detection ability characterizes the early stages of 
AD disease. Neuronal loss, impaired synaptic plasticity, dys-
trophic neuritis, abnormal protein phosphorylation, ubiquit-
ination, and accumulation of the toxic Aβ peptide as senile 
plaques and tau aggregation hyperphosphorylated as neurofi-
brillary tangles (NFTs), are all pathology hallmark of AD 
pathogenesis.2,3 Alzheimer disease is increasingly being con-
sidered correlated with metabolic dysfunction,4 altered glucose 
metabolism in the brain,5 increased insulin abnormalities, and 
insulin-like growth factor (IGF) resistance.6 Insulin resist-
ance can disrupt the blood-brain barrier (BBB), causing it 
to become less permeable. Cerebrovascular dysfunction 
results from this disruption, resulting in synaptic plasticity and 

cognitive impairments.7 Insulin resistance exacerbates Aβ and 
tau pathologies in type 2 diabetes (T2D) patients, elucidating 
the pathophysiological aspects of synaptic dysfunction, inflam-
mation, and autophagic impairments that are common to both 
disorders and have an indirect influence on Aβ and tau func-
tions in neurons.8

Type 2 diabetes has become more prevalent in different 
regions of the world.9 The growing body of research demon-
strated that T2D has been linked to cognitive impairment and 
dementia in elderly people.10 The number of elderly T2D 
patients with cognitive impairment has been rising worldwide. 
Cognitive impairment, vascular dementia, and AD develop-
ment are considerably exacerbated in patients with metabolic 
disorders.11 Type 2 diabetes is connected to severe deficits in 
numerous aspects of cognitive function, thus resulting from 
obesity and metabolic disorder.12

Obesity is a multifactorial, chronic disease defined by 
excessive body fat deposition. The relationship between being 
overweight or obese and brain health is perhaps less well 
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understood. A higher body mass index (BMI) and mid-life 
obesity have increased the risk of dementia.13 Several studies 
reported that obesity and AD tend to induce similar brain dys-
functions.14,15 However, specific findings are debatable, and 
further research into the underlying mechanisms of obesity-
associated with pathogenic processes that cause AD is needed. 
Obesity and T2D patients are more likely to develop 
AD-related cognitive deterioration.16 Obesity, AD, and T2D 
have common characteristics, such as brain atrophy, decreased 
cerebral glucose, and central nervous system (CNS) insulin 
resistance.17 Given the evidence above, it is not unexpected that 
individuals with T2D and obesity are more likely to develop 
AD. However, the molecular pathways and linking biomarkers 
remain unclear.

Studies on transgenic mice models of AD and T2D may 
throw some lights on inflammatory signaling pathways as a 
possible mechanistic connection between AD and T2D, as 
inflammatory processes play a crucial involvement in the 
pathogenesis of both disorders.18,19 Takeda et  al crossed AD 
transgenic mice (APP23) with diabetes mice (ob/ob) and 
investigated the metabolism and pathology of the brains. They 
observed that up-regulation of receptors for advanced glycation 
end-products and inflammatory changes in the cerebral vascu-
lature had been shown in those double mutant mice even 
before the onset of cerebral amyloid angiopathy, implying that 
T2DM-induced cerebrovascular inflammation is the source of 
enhanced AD pathogenesis.20 Obesity causes the inflamma-
tory signaling pathways c-Jun N-terminal kinase ( JNK) and 
nuclear factor-kappa B (NF-κB). Once triggered, these path-
ways cause adipocytes to produce several pro-inflammatory 
cytokines, leading to insulin resistance and the influx of pro-
inflammatory macrophages.21 Type 2 diabetes and obesity are 
considered risk factors for AD. However, it is unclear whether 
the 2 diseases are connected pathologically.

According to gene transcriptome investigations in the mouse 
brain, astrocytes are extremely immune reactive and up-regu-
late distinct sets of genes that can either promote or impede 
recovery depending on the immunologic trigger in AD.22 When 
the reactive microglia compared with non-reactive microglia, 
the reactive microglial population expressed increasing levels of 
CD11c, CD14, CD86, CD44, programmed death-ligand 1, 
and major histocompatibility complex-II (MHC-II), and lower 
levels of the microglial homeostatic checkpoint markers 
CX3CR1, MerTK (C-MER proto-oncogene tyrosine kinase), 
and Siglec-H.23 This study suggested that major histocompati-
bility complex (MHC) linked with immunologic dysfunction 
has been implicated in susceptibility to more progressive AD 
pathogenesis. Microarray analysis revealed that AD subjects 
with mild/moderate dementia hippocampus showed elevated 
gene expression of the inflammatory molecule MHC-II com-
pared with non-demented high-pathology controls.24 Major 
histocompatibility complex-II protein levels were similarly ele-
vated and were shown to be negatively associated with cognitive 

ability. In addition, compared with controls, the mild/moderate 
AD dementia sufferers had a lower number of T cells in the 
hippocampus and cortex. Major histocompatibility complex-II 
genes and molecules have been linked to several diseases, par-
ticularly autoimmune type 1 diabetes (T1D). Interferon gamma 
(IFN-γ) promotes the expression of MHC-II, which is required 
for antigen presentation.25 In addition, Foss-Freitas et  al26 
found decreased IFN-γ levels in the T2D group compared with 
the normal control group, suggesting that IFN-γ enhances 
granulocyte activation and phagocytic capability, lowering 
infection susceptibility. A microarray study of primary adipo-
cytes reported that numerous genes involved in MHC-II anti-
gen processing and presentation associated with inflammatory 
pathways were increased in obese women.27

The main purpose of this research is to explore the crosstalk 
of similar sharing therapeutic targets and molecular signaling 
pathways of obesity, T2D, and AD using system biology 
approaches. To better understand the pathophysiological 
mechanisms that underlie AD linked with T2D and obesity, 
we identified potential biomarkers, signaling molecules, and 
pathways for early diagnosis. Understanding the mechanisms 
underlying signaling pathways in the development of obesity, 
T2D, and AD may aid in identifying novel targeted therapeu-
tics for pharmacologic treatments.

Methods and Materials
Data acquisition
RNA sequencing (RNA-seq) data (GSE53697, GSE92724, 
and GSE106289) were downloaded from the GEO database. 
The RNA expression levels of 3 data sets were compared 
between healthy control and obesity, T2D, and AD in human, 
respectively. The GSE53697 data were obtained from 9 cases 
of AD patients and 8 controls by the GPL16791 Illumina 
HiSeq 2500. The GSE92724 data were obtained from 4 cases 
of T2D and 6 controls by the GPL20301 Illumina HiSeq 
4000. The GSE126169 data were obtained from 10 cases of 
obesity and 10 healthy volunteers by the GPL10999 Illumina 
Genome Analyzer IIx. Subsequently, we analyzed the 3 data 
sets and collected overlapping genes among AD, T2D, and 
obesity for further analysis.

Identif ication of differentially expressed genes

GREIN28 used a generalized negative binomial linear model in 
edgeR. To determine DEGs between control and AD, T2D, 
and obese patients, we used the GREIN web application for 3 
RNA-seq data sets. Algorithms employed with the Log2 
transformation and the Benjamini-Hochberg approach29 to 
limit the rate of false discovery of numerous correction meth-
ods to find deregulated DEGs using the LIMMA package in 
R. The statistically significant DEGs were then filtered from 3 
RNA-seq data sets using the mathematically used cut-off 
criteria:
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DEGi = Up-regulated if the P-value < .5 and log2FC ⩾1.

Down-regulated if P-value < .5 and log2FC ⩽−1.

We identified the overlap DEGs across the 3 data sets 
(GSE53697, GSE92724, and GSE106289) from both up-
regulated and down-regulated using the above mathematically 
cut-off formula. In addition, commonly shared DEGs among 
obesity, T2D, and AD were recognized from 3 RNA-seq data 
sets using the Bioinformatics & Evolutionary Genomics Venn 
diagram web application tool.

Functional enrichment analysis of commonly shared 
differentially expressed genes

The biological characteristics of common DEGs between obe-
sity, T2D, and AD were determined using gene ontology (GO) 
and pathway enrichment analyses. To evaluate the biological 
insights of the identified DEGs, GO terms were focused on 
their 3 main components: biological process, cellular compo-
nent, and molecular function (MF). Gene ontologies were 
annotated with a P-value < .01 from statistically significant 
results of shared DEGs using EnrichR30 (a web-based com-
plete gene enrichment analysis tool). To investigate pathway 
enrichment analysis of commonly shared DEGs among obe-
sity, T2D, and AD, we employed 3 computational approaches 
databases: Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Reactome 2016, and BioCarta 2019. Choosing the 
top listed pathways depends on the cut-off criteria of a P-value 
of .01.

Integration of protein-protein interaction network 
and hub genes identif ication

Protein-protein interaction (PPI) network analysis approaches 
are a valuable strategy for accelerating our understanding of 
molecular crosstalk and biological processes (BPs) driving the 
complexity of diseases. Using the STRING database, the PPI 
network was retrieved based on the physical interaction of 
DEGs with a high confidence score of >0.7. Then, we opti-
mized the PPI network using Cytoscape for better visualiza-
tion. Furthermore, the top PPI network clusters were identified 
using the Cytoscape MCODE plugin.31 Using the CytoHubba 
plugin of Cytoscape, we employed different topological 
parameters, including maximal clique centrality (MCC), 
maximum neighborhood component (MNC), degree nodes, 
closeness, and betweenness, to identify hub genes from the 
PPI network.

Recognition of transcription factors from mutual 
differentially expressed genes

Transcription regulation is complicated and multidimensional, 
including the direct binding of transcription factor (TF) to a 

target gene’s regulatory element and a complex interplay 
between TFs and TF binding proteins. X2K32 is a web-based 
bioinformatics algorithm (regulatory networks platform) that 
uses the hypergeometric P-value from the ChIP-seq experi-
ments (ChEA) database to find the top transcriptional fac-
tors. Based on commonly shared DEG signatures, the X2K 
online tool generates inferred TF networks associated with 
PPI, resulting in downstream regulatory pathways. The 
Genes2Networks33 (G2N) algorithm was used to find tran-
scriptional factors by looking for proteins that physically con-
nect with them. G2N is a robust command-line and web-based 
tool that analyzes DEGs in genomic and proteomic data based 
on empirically proven PPI networks or protein complexes.

Identif ication of protein kinases associated with 
protein and transcriptional network

One of the most significant aspects of activation is the require-
ment for strict controls that allow appropriate enhancement 
and reduction of function. Protein kinase has been identified 
using the X2K kinase enrichment analysis module. Kinase 
enrichment analysis (KEA) is command-line software that can 
match mammalian protein DEG lists to the protein kinases 
anticipated to phosphorylate them. The HPRD, PhosphoSite, 
phospho.ELM, NetworKIN, and Kinexus databases were used 
to create an extended subnetwork encompassing protein 
kinases, PPIs, and TFs with phosphorylation.

Uncovered the potential biological signaling 
pathways

The FunRich34 interactive bioinformatics tool (http://www.
funrich.org) was used against the human genomic and prot-
eomic data sets, which was merged with the FunRich back-
ground, to identify the potential biological signaling pathways 
associated with commonly shared DEGs.

Potential therapeutic candidates

Using the drug signature database (DSigDB),35 we identified 
therapeutic targets based on DEGs generally shared among 
obesity, T2D, and AD. Drug signature database is a global 
database that helps identify targeted communications. It is a 
unique gene set and valuable resource for analyzing new genes 
and connecting therapeutic compounds to their target genes. 
There are now 22 527 gene sets, 17 389 different compounds, 
and 19 531 genes in DSigDB. Drug signature database gene 
sets ultimately meld with GSEA software, allowing transcrip-
tional activation to be linked to drugs for pharmacologic appli-
cations and research purposes. The pharmacologic signature 
database is linked to differentially expressed genes. These drugs 
might have inhibitory properties against obesity, T2D, and 
AD.

http://www.funrich.org
http://www.funrich.org
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Results
Identif ication of mutual differentially expressed 
genes among Alzheimer disease, type 2 diabetes, and 
obesity

Using GREIN interactive web platform, we acquired using 3 
RNA-seq data sets (GSE53697, GSE92724, and GSE106289). 
Based on significant P-values (P < .05) and log2FC ⩾ 1 or 
⩽−1, we screened a total of 2398, 3522, and 6782 from the data 
sets of GSE53697, GSE92724, and GSE106289, respectively. 
Up-regulated genes were identified at 1028, 1704, and 3025 
among obesity, T2D, and AD, respectively, whereas numbers of 
down-regulated genes were observed at 1370, 1818, and 3757, 
respectively. Figure 1A to C represents the hierarchical heat-
map gene expression patterns among obesity, T2D, and AD 
diseases. Figure 1D to F illustrates all the DEGs with a log2FC 
vs the −log10 (P-value) among those 3 diseases and control 
individuals in an MA plot. Furthermore, we used the Venn dia-
gram tool to identify commonly shared overlapping DEGs 
among 3 diseases. We found 132 up-regulated and 92 down-
regulated common genes among 3 data sets, a total number of 
224 mutual DEGs (Figure 1G). The functional annotation of 
genes, pathways enrichment analysis, identification of predi-
cated TFs and signaling molecules, potential molecular and 
biological pathways, and drug candidates employing those 
commonly deregulated DEGs were then analyzed using bioin-
formatics and system biology approaches.

Gene ontology term and pathway enrichment 
analysis of mutually differentially expressed genes

We employed gene annotation and pathways enrichment anal-
ysis to see how the underlying BPs link complicated diseases to 
each other. We used EnrichR, a bioinformatics resource, to 
perform gene set enrichment analysis to discover pathways. We 
evaluated 4 pathway databases to conduct tests using com-
monly shared DEGs frequent in obesity, T2D, and AD. The 
study of GO terms was used to explore the activities of BPs, 
MFs, and cell components (CCs) of common overlapping 
DEGs. In BP (Figure 2A), the mutual DEGs were enriched 
with an IFN-γ-mediated signaling pathway, cellular response 
to IFN-γ, antigen processing and presentation of endogenous 
peptide antigen, antigen processing and presentation of endog-
enous peptide antigen via MHC class I via ER pathway, anti-
gen processing and presentation of endogenous peptide antigen 
via MHC class I via ER pathway, transporter associated with 
antigen processing (TAP)-independent, regulation of T-cell-
mediated cytotoxicity, regulation of immune response, antigen 
processing and presentation of exogenous peptide antigen via 
MHC class I, TAP-independent, antigen processing and pres-
entation of peptide antigen via MHC class I, and antigen pro-
cessing and presentation of exogenous peptide antigen. For 
the category of MF (Figure 2B), commonly shared DEGs 
were significantly linked with MHC class II receptor activity, 

transporter associated with antigen processing 1 (TAP1) bind-
ing, MHC class II protein complex binding, steroid hydroxy-
lase activity, oxidoreductase activity, acting on paired donors, 
with incorporation or reduction of molecular oxygen, MHC 
class Ib protein binding, MHC class I protein binding, 
icosatetraenoic acid-binding, arachidonic acid-binding, and 
C3HC4-type RING finger domain binding. In the aspect of 
CC (Figure 2C), commonly shared genes expression was 
mainly involved with MHC protein complex, lumenal side of 
endoplasmic reticulum (ER) membrane, integral component of 
lumenal side of ER membrane, MHC class II protein complex, 
ER to Golgi transport vesicle membrane, coated vesicle mem-
brane, transport vesicle membrane, endocytic vesicle mem-
brane, coat protein complex type II (COPII)-coated ER to 
Golgi transport vesicle, and integral component of ER mem-
brane. These findings suggest that immunogenetics dysregula-
tion processes might be involved in the pathomechanisms of 
obesity, T2D, and AD.

Furthermore, we also performed pathways enrichment anal-
ysis from KEGG, Reactome, and BioPlanets of overlapping 
mutual DEGs to find critical signaling pathways that may 
relate to obesity, T2D, and AD pathogenesis. The top signaling 
pathways were chosen for pathway analysis based on the sig-
nificance of an adjusted P-value of less than .1 as criteria. Using 
the KEGG pathway database, critical biological pathways may 
be involved in the activator protein-1 (AP-1) TF network, 
endogenous Toll-like receptor (TLR) signaling pathway, inter-
leukin 12 (IL12)-mediated signaling pathway, epidermal 
growth factor receptor (EGFR)-dependent endothelin signal-
ing pathway, CXCR4-mediated signaling pathway, ErbB 
receptor signaling network, regulation of p38-alpha and p38-
beta, syndecan-4-mediated signaling, IL12 signaling mediated 
by STAT4, IL1-mediated signaling pathway, amb2 integrin 
signaling pathway, FOXM1 TF network, Syndecan-1-
mediated signaling pathway, and T-cell receptor (TCR) signal-
ing pathway (Figure 2D). Reactome 2016 pathway showed that 
commonly DEGs were significantly enriched with an IFN-γ 
signaling pathway, interferon signaling pathway, immune sys-
tem, cytokine signaling in the immune system, MHC class II 
antigen presentation, adaptive immune system, interferon-
alpha/beta signaling pathway, programmed cell death protein 1 
(PD-1) signaling pathway, endosomal/vacuolar pathway, 
ER-phagosome pathway, TCR signaling pathway, receptor-
interacting protein (RIP)-mediated NF-κB activation path-
way, tumor necrosis factor receptor-associated factor 6 
(TRAF6)-mediated NF-κB activation pathway, transforming 
growth factor β activated kinase-1 (TAK1) activates NF-κB 
by phosphorylation, and initial triggering of complement 
(Figure 2E). Results from the BioCarta 2019 pathways data-
base revealed the most important signaling pathways associ-
ated with antigen processing and presentation, activation of 
COOH-terminal Src kinase (Csk) by 3’,5’-cyclic adenosine 
monophosphate (cAMP)-dependent protein kinase inhibits 
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Figure 1. (Continued)
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signaling through the T-cell receptor, Lck and Fyn tyrosine 
kinases in the initiation of TCR activation, interleukin-4 (IL-
4) signaling pathway, the co-stimulatory signal during T-cell 
activation, role of MEF2D in T-cell apoptosis, T-cell receptor 
signaling pathway, inhibition of matrix metalloproteinases, 
regulation of mitogen-activated protein kinase (MAP) path-
ways, alternative complement pathway, G-protein signaling, 
interleukin-4 (IL-10) anti-inflammatory signaling pathway, 
gamma-aminobutyric acid receptor signaling pathway, chaper-
ones modulate interferon signaling pathway, and NF-κB sign-
aling pathway (Figure 2F).

Protein-protein interaction network analysis and 
hub genes identif ication

We built putative PPI networks using our enriched common 
DEGs gene sets using the web-based visualization resources, 
including STRING, BioGrid, OmniPath, InWeb_IM, IntAct, 
and MatrixDB via Metascape. We employed the molecular 
complex detection (MCODE) algorithm to identify signifi-
cant gene clusters from mutual DEGs among obesity, T2D 
and AD (filter criteria: degree cut-off = 2; node score cut-
off = 0.2; k-core = 2; max depth = 100). We identified 7 gene 

clusters that have played a critical in the disease’s progression of 
obesity, T2D, and AD (Figure 3). The top hub genes were 
identified from 5 CytoHubba algorithms, including maximal 
clique centrality (MCC), MNC, degree, closeness, and 
betweenness algorithm of Cytoscape, as shown in Figure 4A 
to E. In addition, the 5 algorithms of CytoHubba results were 
merged to determine hub genes that were commonly found in 
Figure 4F.

Transcription factors analysis of commonly 
differentially expressed genes and identif ication of 
protein kinase with upstream regulatory network

Transcription factors are the proteins that control gene expres-
sion by binding to specific DNA sequences. Differentially 
expressed genes are regulated by TFs, which are essential for 
a range of biological and cellular processes and have been 
connected to the development of neurological disorders and 
other chronic diseases. Using the ChEA database, the X2K 
bioinformatics tool identified transcriptional factors that 
influence common DEGs expression of obesity, T2D, and 
AD. The top 20 TF candidates were chosen using transcrip-
tion factor enrichment analysis (TFEA) based on the 

Figure 1. Hierarchical heatmap clustering of gene expression patterns from 3 RNA-seq data sets (A) GSE53697, (B) GSE92724, and (C) GSE106289. 

Up-regulated gene expressions are colored by yellow, down-regulated gene expressions are illustrated by blue color, and insignificant gene expressions 

are represented by black color in these hierarchical heatmaps. Determination of DEGs from 3 RNA-seq data sets. (D to F) MA plots represented a 

significant up-regulated and down-regulated of DEGs. (G) Identification of mutual DGEs among obesity, T2D, and AD.
AD indicates Alzheimer disease; DEGs, differentially expressed genes; RNA-seq, RNA sequencing; T2D, type 2 diabetes.
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hypergeometric P-value. The name of the top 20 TFs was 
TP63, SUZ12, CREB1, EGR1, EZH2, PPARD, ZEB1, 
E2F1, RFX5, ESR1, SPI1, KLF4, TCF3, FOXA2, YY1, 
NANOG, and FOXM (Figure 5A). To evaluate the links 
between PPIs and TFs, the G2N algorithm uncovered pro-
teins that physically interact with them (Figure 5B). The 
regulatory network of connected TFs and their functionally 
and physically interacting proteins was represented based on 
the degree of nodes. Pink nodes indicated TFs, whereas gray 
nodes expressed proteins.

Protein kinases, comprised of sensors and effectors from 
signal transduction cascades, govern mRNA translation, cell 
proliferation and survival, and nuclear genomic response to 
cellular stresses. Dysregulation of protein kinase activity has 
been related to various diseases, from inflammatory to 

neurodevelopmental. We used the mutual DEGs to investigate 
potential neurotherapeutic protein kinase targets using the 
Kinase Enrichment Analysis module of X2K. We found the 
top 20 potential protein kinases that play a crucial role in 
intracellular signaling pathways related to obesity, T2D, and 
AD. Kinase enrichment analysis revealed that the top 20 pro-
tein kinases were CDK1, MAPK14, CSNK2A1, AKT1, 
GSK3B, CDK4, HIPK2, ABL1, MAPK3, MAPK1, CDK2, 
ATM, GSK3BETA, PKBALPHA, JNK1, ERK2, TGFBR2, 
MAPK8, and CDC2 to regulate the expression of common 
DEGs (Figure 5C). Then, the human protein reference data-
base (HPRD), PhosphoSite, phospho.ELM, NetworKIN, and 
Kinexus were used to construct the regulatory network of 
kinase-substrate phosphorylation interactions based on ranked 
enriched kinases (Figure 5D).

Figure 2. (Continued)
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Figure 2. Gene ontology enrichment analysis of mutual DEGs from AD, T2D, and obesity. (A) GO biological processes, (B) GO molecular function, and 

(C) GO cellular component. Pathway enrichment analysis of commonly shared DEGs crosstalk links with obesity, T2D, and AD. (D) KEGG pathway, (E) 

reactome pathway, and (F) BioCarta pathway.
AD indicates Alzheimer disease; DEGs, differentially expressed genes; GO gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RNA-seq, RNA 
sequencing; T2D, type 2 diabetes.

Prediction of potential biological signaling 
pathways and potential therapeutic drugs

We investigated the potential biological signaling pathways 
linked with obesity, T2D, and AD using the FunRich bioinfor-
matics tool (Figure 6A). Our results revealed that the critical 
biological pathways of obesity, T2D, and AD are involved in 
the immune system (17.9%), complement cascade (4.5), anti-
gen presenting-cross presentation (9%), glypican pathway 
(19.4%), mechanistic target of rapamycin (mTOR) signaling 
pathway (17.9%), IFN-γ pathway (17.9%), vascular endothelial 
growth factor–vascular endothelial growth factor receptor 
(VEGF-VEGFR) signaling network (17.9%), mesenchymal-
to-epithelial transition (14.9%), metabolism (14.9%), IFN-γ 
signaling (9%), ER-phagosome pathway (9%), interferon sign-
aling (9%), endosomal-vacuolar pathway (6%), integrin-linked 

signaling pathway (10.4%), ALK1 pathway (6%), metabolism 
of non-coding RNA (1.5%), ATR (ataxia telangiectasia and 
Rad3-related) signaling pathway (7.5%), direct p53 effectors 
(6%), and IL12-mediated signaling pathway (6%).

It is critical to correlate protein-drug findings to understand 
better the structural properties of small molecules in receptor 
sensitivity. Using the EnrichR web server from the DSigDB 
database, the top 10 potential therapeutic compounds and 
significant DEGs interacting with them were identified 
based on P-value (P < .01). Predicated drug molecules 
were D-penicillamine CTD 00006475, beryllium sulfate 
CTD 00001005, isotretinoin PC3 UP, phencyclidine CTD 
00005881, cyclophosphamide CTD 00005734, 5253409 
MCF7 UP, primaquine CTD 00006613, nicardipine CTD 
00006388, flupirtine CTD 00001630, and tamibarotene CTD 
00002527 (Figure 6B).
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Figure 3. (A) Construction protein-protein interaction (PPI) network of the mutual overlapping DEGs and cluster analysis. (B) Identification of 7 gene 

clusters using MCODE algorithm from mutual DEGs presented with obesity, T2D, and AD.
AD indicates Alzheimer disease; DEGs, differentially expressed genes; T2D, type 2 diabetes.

Discussion
Obesity and T2D are recognized to influence neurological dis-
ease but how they do their crosstalk during disease progression 
remains unclear, although specific vascular-based processes are 
frequently considered. We used bioinformatics methods and 
analytical approaches to examine functional disease overlaps in 
genes and pathways and identify potential therapeutic bio-
markers involved in these comorbidity interactions among 
obesity, T2D, and AD. Using a network-based bioinformatics 
pipeline, we investigated RNA-seq data sets from publicly 
available repositories. We found mutual DEGs common to 
obesity, T2D, and AD and constructed diseasome networks to 
get insight into how these comorbidities interact using these 
DEGs. These DEGs facilitated the identification of connected 
dysregulated molecular pathways and related GO terms. We 

analyzed regulatory patterns, molecular key pathways, PPI 
interactions, TF identification, upstream protein kinases, and 
potential biological pathways to look at differential genes 
expression of these 3 diseases and find these pathways and 
molecular signatures that could serve as possible treatment tar-
gets or biomarkers for obesity, T2D, and AD.

In this study, mutual DEGs from obesity, T2D, and AD 
were enriched in GO terms like IFN-γ-mediated signaling 
pathway, antigen processing, and presentation of endogenous 
peptide antigen via MHC class I via ER pathway, regulation of 
T cell-mediated cytotoxicity, regulation of immune response, 
antigen processing and presentation of exogenous peptide anti-
gen via MHC class I, MHC class II receptor activity and TAP1 
binding consistent with this result; it has been reported that the 
IFN-γ-mediated signaling pathway evokes several potentially 
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Figure 4. Hub genes identification using the CytoHubba plugin algorithm. We employed different topological parameters for identifying hub genes, 

including (A) degree nodes, (B) MCC, (C) MNC, (D) closeness, and (E) betweenness. (F) Venn diagram represents commonly shared similar hub genes 

from MCC, MNC, degree nodes, closeness, and betweenness parameters.
MCC indicates maximal clique centrality; MNC, maximum neighborhood component.
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contradicting effects in the context of a brain undergoing 
AD-related degeneration by apparently driving both disease-
promoting disease-ameliorating functions.36 The study reported 
that the expression levels of INF-γ are significantly reduced due 

to T2D immune response.37 However, it remains unclear how 
the INF-γ signaling pathway regulates immunity of T2D. 
Multiple putative pathways—including effects on adipogene-
sis, cytokine expression, and macrophage phenotype—have 

Figure 5. Transcriptional factors analysis and protein-protein network with transcription factors of mutual DEGs. (A) Identification of top 20 transcription 

factors between obesity, T2D, and AD based on hypergeometric P-value, (B) The G2N algorithm is used to observe the interaction of transcription factors 

with a known protein-protein network. Determination of kinase enrichment analysis of shared overlapping DEGs with transcription factors and protein-

protein interaction network with phosphorylation. (C) Recognition of top 20 transcription factors from shared overlapping DEGs among AD, obesity, and 

T2D. (D) Upstream pathway involvement transcription factors to kinases through known protein-protein interactions of mutual overlapping DEGs.
AD indicates Alzheimer disease; DEGs, differentially expressed genes; T2D, type 2 diabetes.

Figure 6. (A) Identification of potential biological pathways associated with pathological hallmark among AD, obesity, and T2D pathogenesis. (B) The 

potential drug candidates were recognized using the drug signature database (DSigDB).
AD indicates Alzheimer disease; T2D, type 2 diabetes.
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been proposed for INF-γ in regulating inflammation and glu-
cose homeostasis in obesity.38 Based on our findings, we postu-
lated that the INF-γ signaling pathway plays a critical in the 
disease progression of obesity, T2D, and AD. Gate et  al39 
reported that T cells from AD patients were more clonally 
increased in cerebrospinal fluid analyses than T cells from 
healthy individuals, indicating an antigen-specific immune 
response in AD. It has reported that class II molecules are 
expressed on selected cells by pancreatic cells from diabetes 
mellitus donors, along with other critical genes in those path-
ways and inflammation-related genes.40 Class II molecule 
expression in pancreatic cells suggests that they may interact 
directly with islet-infiltrating CD4+ T cells and have an immu-
nopathogenic role. Obesity is characterized by chronic adipose 
tissue inflammation, which leads to obesity-induced insulin 
resistance. T cells pro-inflammatory activity is enhanced in 
human and mouse fat tissue.41 These T cells secrete IFN-γ to 
activate macrophages. However, which key signal causes T-cell 
activation in adipose tissue is unclear. Deng et al42 found that 
the expression of genes involved in MHC class II antigen pres-
entation and processing was enhanced in adipocytes derived 
from biopsies of 44 obese women. Our findings suggested that 
improved MHC class II antigen presentation in adipocytes is 
linked with obesity, which leads to increased pro-inflammatory 
T-cell activity in adipose tissue. The GO results of our investi-
gation suggested that the IFN-γ signaling pathway may be cor-
related with MHC class II antigen presentation and processing 
in the development of complex disease mechanisms of obesity, 
T2D, and AD.

Kyoto Encyclopedia of Genes and Genomes pathway anal-
ysis of commonly shared DEGs revealed that they were highly 
significantly involved in the AP-1 TF network, TLR signaling 
pathway, and IL12-mediated signaling pathway. Our results 
agreed with a previous study, which reported that miR-144 is a 
negative regulator of ADAM10, and AP-1 is involved in regu-
lating miR-144 expression. Activator protein-1 may be acti-
vated by Aβ and is linked to AD pathogenesis.43 Similarly, 
evidence reported that toll-like receptor 4 (TLR4)/AP-1 
siRNA transfection attenuated systemic and hepatic inflam-
mation, obesity, and insulin resistance caused by a high-fat 
diet.44 The intricate crosstalk between the TLR, complement, 
and inflammasome signaling pathways has been demonstrated 
to the function of immunologic response in the brain, leading 
to neuroinflammation and Aβ accumulation in AD.45 Toll-like 
receptor signaling pathway promotes unregulated adipogenesis 
and metaflammation, making it a potential therapeutic target 
for T2D and obesity.46 It is worth noting that the IL-12 path-
way is linked to inflammatory cascades, which are considered 
to play a crucial role in AD.47 The regulation of IL-12 family 
cytokines in white adipose tissue (WAT) is influenced by the 
developmental stage of obesity as well as the inflammatory 
process associated with obesity.48 Disruption of IL-12 stimu-
lates angiogenesis, which protects tissues from prolonged 

ischemia in T2D.49 Both Reactome and BioCarta 2019 analy-
sis revealed that mutual DEGs were enriched with inflamma-
tory signaling pathways associated with MHC class II antigen 
presentation. Our pathway enrichment analyses suggested that 
the complicated interaction between obesity, T2D, and AD has 
shared pathomechanism immune-privileged dysfunction 
related to the inflammatory signaling pathway.

Through network-based analysis, we assessed overlapping 
DEGs from 3 RNA-seq data sets. Protein-protein interaction 
networks have been critical in understanding the shared etiol-
ogy of obesity, T2D, and AD. The PPI network revealed top 
hub genes such as HLA-B (major histocompatibility complex, 
class I, B), HLA-C (major histocompatibility complex, class I, 
C), and HLA-DRB1 identification from merged 5 algorithms 
of CytoHubba results that shared the most interconnecting 
relationships with other DEGs in the network and then were 
associated with several pathways such as inflammation medi-
ated by the immune response, T-cell transendothelial migra-
tion, infection, brain development, and plasticity.50,51 Previously, 
it has been reported that HLA-B gene expression was observed 
in early and late-onset AD.52 A meta-analysis of T2D genome-
wide association studies in African Americans found a connec-
tion between polymorphism in the HLA-B (class I gene) with 
T2D.53 A Mendelian randomization study observed HLA-B 
variation linked with obesity.54 Individual immunoglobulin 
GM (γ marker) alleles, alone or in combination with a known 
HLA risk allele, were related to AD development.55 Evidence 
reported that the development of autoimmune diabetes in 
adulthood and obesity interacts with HLA high-risk geno-
types as well as genes linked to T2D.56 Meta-analysis data 
revealed that a single-nucleotide polymorphism (SNP) 
rs9271192 within HLA-DRB1 has been recognized as a risk 
factor for the development of AD in genome-wide association 
studies (GWAS).57 HLA-DRB1 protects against T2D by 
increasing self-tolerance and protecting against autoimmune-
mediated insulin secretion suppression.58 In the cohort study 
reported HLA-DRB1 significant interaction was observed in 
obesity, thus increasing the risk of developing multiple 
sclerosis.59

Transcription factors are essential regulators of their differ-
ent target genes because their levels can be used to uncover 
possible common biomarkers for obesity, T2D, and AD. We 
identified important top 20 TFs as mutual DEG regulators in 
our work using TF-protein interaction networks connected to 
the pathophysiology of obesity, T2D, and AD. The intercon-
nection of 20 TFs with 224 mutual DEGs has been identified 
as key in understanding pathogenesis, clinical functions, and 
potential therapeutic targets. This system biology research 
identified potential top 5 TFs, including TP63, SUZ12, 
CREB1, EGR1, and EZH2. Cluster analysis of GWAS results 
revealed novel SNPs proximal to the TP63, EPHA4, and 
NXPH1 genes and supporting SNPs in APOE and TOMM40 
as highly related to multiple brain regions in AD.60 Sitai Liang 
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et al61 discovered that TP63 is potentially involved as a novel 
candidate gene implicated in insulin receptor substrate 1 (IRS-
1) regulation, which might be employed as a new therapeutic 
target to prevent diabetic kidney problems. Given a large num-
ber of genes downstream of p63 that might have a wide range 
of biological impacts, our understanding of p63 metabolic 
functions is rather limited. Lineage-dependent chromatin 
modification (SUZ12) observed dedifferentiation and neu-
ronal repression in PSEN1 mutant hiPSC-derived neurons in 
AD.62 The PRC2 (polycomb repressive complex 2) complex—
which includes the subunits SUZ12, EZH2, RBBP4 (RbAp48), 
RBBP7 (RbAp46), and EED—is involved in histone methyl-
transferase activity associated with T2D and obesity transcrip-
tional reprogramming.63 The β-amyloid (Aβ) peptide, which 
plays a critical role in the pathogenesis of AD, alters hippocam-
pal-dependent synaptic plasticity and memory and induces 
synapse loss via the CREB signaling pathway.64 Ling Qi et al65 
reported that adipocyte CREB acts as an early detection indi-
cation in the development of T2D. Early growth response-1 
(EGR1), a TF, may have a role in maintaining cholinergic 
function in the brain throughout the preclinical phases of 
AD.66 In both mice and humans, EGR-1 expression in WAT 
was strongly linked to dietary-induced obesity and insulin 
resistance.67

Targeting-specific protein kinases may potentially help to 
prevent or delay the development of disease progression. Our 
KEA findings indicated the top 20 protein kinases from mutual 
224 DEGs with a similar pathophysiological mechanism 
involved in obesity, T2D, and AD. Identification of protein 
kinases such as CDK1, MAPK14, CSNK2A1, AKT1, and 
GSK3B was enriched with common DEGs to regulate their 
expression. The agreement with previous scientific evidence 
demonstrated that kinases had been shown to have a role in 
AD progression, particularly the cell cycle regulatory kinase 
cyclin-dependent kinase 1 (cdk1).68 Cyclin-dependent kinase 
1 is identified in susceptible neurons in AD brains. It has been 
reported that the activation of mitochondrial respiratory com-
plex I as a critical mediator of obesity-related metabolic remod-
eling in β-cells, and CDK1 as a complex I regulator that 
improves β-cell glucose sensing.69 MAPK14 has primarily 
been considered an anti-inflammatory pathway to target innate 
immune responses in the AD brain,70 notably microglial acti-
vation, and to attenuate inflammation-induced synaptic toxic-
ity as the option for AD treatment target.71 The considerably 
abnormal mitogen-activated protein kinase (MAPK) signaling 
and differential expression of the MAPK14 gene in both insu-
lin-sensitive organs revealed that the p38-MAPK-dependent 
pathway plays a shared role in T2D pathogenesis.72 It has been 
demonstrated that CSNK2A1 is responsible for the direct 
phosphorylation of Ser7 and Ser9 of Presenilin-2 (PS-2), a 
protein involved in APP processing, and therefore is part of the 
γ-secretase complex.73 The expression levels of CSNK2A1 
were up-regulated in T2D and obesity.74 The PI3K-Akt1 

signaling pathway is a crucial modulator of insulin effects and 
is involved in T2D pathogenesis and AD.75 The activation of 
AKT1 is impaired in insulin-resistant states such as obesity 
and T2D.76 GSK3B promotes tau hyperphosphorylation, 
increased Aβ formation from APP (through β and γ secretase-
mediated cleavage), and learning and memory deficits, as well 
as perhaps enhancing microglial-mediated inflammatory 
responses in the region of Aβ plaques.77 GSK3 may have a role 
in obesity-induced inflammation. Also, GSK3 has a unique 
role in the involvement of macrophage polarization and its 
therapeutic potential for obesity-induced inflammation and 
diabetes mellitus.78

We have suggested potential drug molecular substances like 
D-penicillamine, beryllium sulfate, isotretinoin, phencyclidine, 
cyclophosphamide, primaquine, nicardipine, flupirtine, and 
tamibarotene as a possible treatment for AD linked with T2D 
of obesity. Our predicted also supported by existing clinical tri-
als and pharmacologic studies. A clinical trial revealed that 
D-penicillamine reduces oxidative stress in AD patients.79 
D-penicillamine has been linked to various immunologic 
abnormalities, including the production of insulin autoanti-
bodies.80 Isotretinoin therapy is an option for treating T2D.81 
However, the mechanism of action of isotretinoin remains 
unclear for the treatment of T2D pathogenesis. Tamibarotene 
is considered a promising drug candidate for treating AD 
because of its transcriptional regulation of several target genes 
implicated in the genesis and pathophysiology of AD.82 
Nicardipine, which was well tolerated, appears to be a promis-
ing therapy choice for T2D individuals with moderate essential 
hypertension.83 Our anticipated candidate therapeutic mole-
cules are a possible effective pharmacologic target for obesity, 
T2D, and AD. At the same time, further large-scale research 
and head-to-head trials are needed to fully understand their 
mechanism of action and clinical importance.

This study used a bioinformatics technique to investigate 
gene expression transcriptome patterns to find potential bio-
markers that might shed light on crucial pathobiological path-
ways regulating obesity, T2D, and AD. The common responsive 
gene among obesity, T2D, and AD was uncovered using overlap, 
core connection, and gene filtering. We subsequently identified 
signaling pathways and GO processes, ultimately constructing a 
PPI network for common DEGs. Furthermore, we used tran-
scriptional analysis to determine TFs and TF-protein interac-
tions network and suggest prospective therapeutic drugs. As a 
result, our approach will assist in improving the decision-making 
process in the field of personalized health care.
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