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Abstract: Dopaminergic signaling is a prerequisite for motor learning. Delayed degeneration of
dopaminergic neurons after stroke is linked to motor learning deficits impairing motor rehabilitation.
This study investigates safety and efficacy of substance P (SP) treatment on post-stroke rehabilitation,
as this neuropeptide combines neuroprotective and plasticity-promoting properties. Male Sprague
Dawley rats received a photothrombotic stroke within the primary motor cortex (M1) after which a
previously acquired skilled reaching task was rehabilitated. Rats were treated with intraperitoneal
saline (control group, n = 7) or SP-injections (250 µg/kg) 30 min before (SP-pre; n = 7) or 16 h (SP-post;
n = 6) after rehabilitation training. Dopaminergic neurodegeneration, microglial activation and
substance P-immunoreactivity (IR) were analyzed immunohistochemically. Systemic SP significantly
facilitated motor rehabilitation. This effect was more pronounced in SP-pre compared to SP-post
animals. SP prevented dopaminergic cell loss after stroke, particularly in the SP-pre condition. Despite
its proinflammatory propensity, SP administration did not increase stroke volumes, post-stroke
deficits or activation of microglia in the midbrain. Finally, SP administration prevented ipsilesional
hypertrophy of striatal SPergic innervation, particularly in the SP-post condition. Mechanistically,
SP-pre likely involved plasticity-promoting effects in the early phase of rehabilitation, whereas
preservation of dopaminergic signaling may have ameliorated rehabilitative success in both SP groups
during later stages of training. Our results demonstrate the facilitating effect of SP treatment on motor
rehabilitation after stroke, especially if administered prior to training. SP furthermore prevented
delayed dopaminergic degeneration and preserved physiological endogenous SPergic innervation.

Keywords: photothrombotic stroke; exo-focal neurodegeneration; motor rehabilitation; substance P

1. Introduction

Ischemic stroke is characterized by a necrosis of brain tissue directly caused by an
occlusion or hypo-perfusion of a supplying arterial vessel [1]. In addition, selective loss of
neuronal populations may occur far away from the ischemic lesion with a delay of several
days to a few weeks [2,3]. This delayed and exo-focal neurodegeneration after stroke is
particularly well investigated in ipsilesional dopaminergic midbrain nuclei: here, neurode-
generation has been described in rats [2,4], mice [5,6] and even humans [7,8]. Although
secondary neurodegeneration is commonly investigated in the model of middle cerebral
artery occlusion (MCAO) [2,4–6], we have recently reported an unexpected widespread
secondary loss of dopaminergic midbrain neurons in a model of photothrombotic stroke
(PTS) within the primary motor cortex (M1) of rats [9].

Secondary dopaminergic degeneration after stroke has been linked with unfavorable
outcomes such as post-stroke depression [5] or parkinsonism [10]. A dopaminergic defi-
ciency in stroke survivors furthermore impairs elementary motor encoding [11] and motor
skill acquisition [12]. These observations are not surprising, as dopaminergic signaling
is crucially involved in motor-learning dependent plasticity in M1 (for review see [13]):
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dopamine induces learning-related transcription factors, mediates synaptic long-term plas-
ticity, increases cortical excitability and improves sensory-motor feedback. Consequently,
key molecules of dopaminergic signaling (e.g., dopamine receptors) become up-regulated
within M1 in response to motor training [14]. Dopaminergic neurons projecting to M1
are located within the ipsilateral ventral tegmental area (VTA), whereas the integrity of
this projection is a prerequisite for successful motor learning [15]. Interestingly, loss of
dopaminergic neurons within the VTA has been also observed after a photothrombotic
stroke within M1 [9].

As motor learning is considered to be an essential mechanism for recovery of motor
deficits post stroke [16], the treatment of dopaminergic deficiency has been identified
as a therapeutic approach to support motor rehabilitation [17]. In Humans, levodopa-
substitution yielded mixed results [18–20] as it is complicated by the necessity of strict
administration intervals [20] and the problem of proper dosing due to genetic polymor-
phisms of molecules involved in dopamine signaling [21]. To overcome the necessity of
levodopa substitution, the concept of preventing post-stroke dopaminergic degeneration
using neuroprotective agents such as the anti-excitotoxic drug MK-801 [6] or the antidepres-
sant citalopram [5] has been successfully applied in mice. In this context, the application of
substance P (SP), an eleven amino acid peptide of the tachykinin family [22] would be a fur-
ther promising approach, as it may treat dopaminergic deficiency after stroke via multiple
mechanisms: SP exerts a protective effect against excitotoxic damage [23] and deprivation
of trophic factors [24]. This protective effect is particularly well documented for dopamin-
ergic neurons [25,26]. Furthermore, SP is considered a “mnemonic” molecule [27] as its
application supported hippocampus [28]- and amygdala-based learning paradigms [27].
Within M1, injecting SP facilitated the acquisition of a skilled reaching task in rats [29].
Thus, besides neuroprotection, SP could also support neurorehabilitation by promoting
neuroplasticity. In addition, there is evidence for an involvement of the SPergic system
within the post-stroke degeneration of dopaminergic neurons: SP synthesizing striatal
neurons densely innervate dopaminergic midbrain nuclei [30]. After experimental strokes
involving the striatum, a loss in nigral SP has been observed as a function of striato-nigral
differentiation [31,32]. However, after a pure cortical stroke with spared striato-nigral
connections, an opposite nigral expression pattern with increased SPergic innervation of
midbrain nuclei emerged [9], potentially indicating a compensatory mechanism.

Here, we tested the effect of systemic SP administration on motor rehabilitation after
a photothrombotic stroke (PTS) targeting M1 in rats. The protective propensity of SP
on dopaminergic neurodegeneration was assessed histologically. To further segregate
a pure protective from additional pro-neuroplastic effects, SP was administered at two
timepoints: 30 min before and 16 h after rehabilitation training. As SP is known to be a
pro-inflammatory agent [33], we furthermore histologically assessed microglial activation
to determine the inflammatory response within the tegmental midbrain.

2. Results
2.1. Intraperitoneal Substance P Application Facilitates Motor Rehabilitation after Stroke

There was no significant difference in stroke volumes between groups (CG:
0.696 ± 0.36 mm3, n = 6; SP-pre: 0.57 ± 0.38 mm3, n = 6; SP-post: 1.48 ± 1.3 mm3, n = 6;
1-way ANOVA t(df) = 2.91(2, 15); p = 0.15). Body weight was not different between groups
throughout the experiment (mixed-effects analysis F(2, 16) = 0.12, p = 0.89). As indicated by
the mNSS, a stroke-related neurological deficit which recovered with time was present in
all animals (Figure 1C; RM-ANOVA mean effect of time: F(2.24, 35.80) = 138.9, p < 0.0001).
However, there was no significant difference between groups (F(2, 16) = 1.19, p = 0.33) or
with respect to group x time interaction (F(6, 48) = 1.56, p = 0.18). There was no difference
in plateau performance in the reaching task (days 4 and 5 of pre-stroke training) between
groups (success rate CG: 60.72 ± 20.48%, n = 7, SP-pre: 61.91 ± 18.44%, n = 7, SP-post:
58.16 ± 16.98%, n = 6; 1-way ANOVA F(2, 17) = 0.066 p = 0.94). All groups showed a similar
drop in reaching performance post stroke, indicating comparable stroke-induced motor
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deficits (Figure 2A; CG: 38.99 ± 18.81%, SP-pre: 47.38 ± 8.83%, SP-post: 31.77 ± 22.72%,
F(2, 17) = 1.30, p = 0.30).
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mals showed the best recovery, followed by animals of the SP-post group (control group 
18.06 ± 18.26%, SP-pre 45.20 ± 17.25%, SP-post 27.66 ± 15.89%). Regarding trial durations 
that were assessed as a measure of motivation (Figure 2B), a non-significant trend was 
present for an acceleration over time (RM-ANOVA effect of time: F(1.711, 28.58) = 3.11, p 
= 0.067), whereas group had no effect (F(2, 17) = 0.39, p = 0.68).  

Figure 1. (A) Schematic depiction of the experimental timeline. (B) Series of microscopy images
(10× magnification) displaying a representative photothrombotic ischemic stroke affecting the pri-
mary motor cortex (M1), identified by Fluorojade-C staining. (C) A similar stroke-related neurological
deficit measured by the modified neurological severity score (mNSS) that recovered with time was
present in all groups. Scale bar: 500 µm. Data are presented as mean ± SEM.

Regarding rehabilitation training (Figure 2A), the factors time (RM-ANOVA mean
effect of time: F(3.66, 58.96) = 12.63, p < 0.01) and group (F(2, 16) = 4.19, p = 0.034) signif-
icantly influenced recovery of function, the interaction effect time x group was different
at trend-level (F(7.37, 58.96) = 1.89, p = 0.084). Regarding rehabilitation plateaus, SP-pre
animals showed the best recovery, followed by animals of the SP-post group (control group
18.06 ± 18.26%, SP-pre 45.20 ± 17.25%, SP-post 27.66 ± 15.89%). Regarding trial durations
that were assessed as a measure of motivation (Figure 2B), a non-significant trend was
present for an acceleration over time (RM-ANOVA effect of time: F(1.711, 28.58) = 3.11,
p = 0.067), whereas group had no effect (F(2, 17) = 0.39, p = 0.68).
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Figure 2. Intraperitoneal Substance P application facilitates motor rehabilitation after stroke. (A) After
stroke, all groups showed a similar drop in performance. Administration of SP (SP-pre: 250 µL i.p.
30 min before training sessions RT1-10; SP-post 250 µL i.p. 16 h after training sessions RT1-10)
significantly improved rehabilitation success compared to saline-treated controls. (B) Trial durations
as a measure of motivation did not differ between groups. Data are presented as mean ± SEM.

2.2. Dopaminergic Neurodegeneration after Stroke Is Attenuated by Substance P

After stroke, TH-positive neurons were reduced by 33% in the ipsilesional compared
to the contralesional midbrain in the control group (Figure 3A, ipsi: 1002 ± 315.7 cells,
contra: 1496 ± 526.4 cells, n = 6, paired t-test p = 0.0079). Considering mesencephalic
subfields, TH-positive neurons were reduced significantly in the ventral tegmental area
(ipsi: 484.8 ± 135 cells, contra: 632.2 ± 200.8 cells, paired t-test p = 0.028), the substan-
tia nigra pars compacta (ipsi: 409.5 ± 149.0 cells, contra: 681.5 ± 256.6 cells, paired
t-test p = 0.0046, Figure 3E) and the retro rubral field (ipsi: 81.0 ± 71.84 cells, contra:
148.2 ± 99.01 cells, paired t-test p = 0.029). In the SP-pre group, no significant reduction
in TH-positive midbrain neurons could be observed (Figure 3B, ipsi: 1459 ± 845.4 cells,
contra: 1597 ± 1034 cells, n = 7, Wilcoxon matched pairs signed-rank test p = 0.297). Mes-
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encephalic subfields showed no difference in TH-positive neuron counts either (VTA ipsi:
654.1 ± 445.7 cells, contra: 697.9± 502.6 cells, paired t-test p = 0.279; SNC ipsi: 663.4 ± 349.5 cells,
contra: 729.0 ± 426.6 cells, paired t-test p = 0.258; RRF ipsi: 80.67 ± 37.34 cells, contra:
90.50 ± 30.02 cells, paired t-test p = 0.513). Likewise, total TH-positive cell count as well
as analysis of mesencephalic subfields did not differ significantly between the ipsilesional
and the contralesional side in SP-post animals (Figure 3C, ipsi: 1489 ± 479.1 cells, con-
tra: 1760 ± 429.4 cells, n = 6, paired t-test p = 0.052; VTA: ipsi: 664.3 ± 219.5 cells, contra:
738.2 ± 189.4 cells, paired t-test p = 0.068; SNC ipsi: 637.2± 225.5 cells, contra: 796.0 ± 202.3 cells,
paired t-test p = 0.074; RRF ipsi: 73.67 ± 37.59 cells, contra: 86.50 ± 36.54 cells, paired t-test
p = 0.143). Between-group comparisons were performed by normalizing ipsi- to contrale-
sional counts of TH-positive cells for each animal and mesencephalic subregion. The
resulting ratio ipsilesional/contralesional (I/C ratio) indicated the extent of dopaminer-
gic neurodegeneration. Here, a significant between-group difference emerged when all
mesencephalic subregions were considered (I/C ratio control group: 0.69 ± 0.11, SP-pre:
0.93 ± 0.12, SP-post: 0.84 ± 0.17, 1-way ANOVA F(2, 16) = 0.22, p = 0.02). Post hoc analysis
revealed a significant difference between the control and SP-pre group, whereas the SP-post
group did not differ significantly from the other two (Figure 3D; Tukey’s multiple compar-
isons test control group vs. SP-pre: adjusted p = 0.016, control group vs. SP-post: adjusted
p = 0.16, SP-pre vs. SP-post: adjusted p = 0.51). Analysis of mesencephalic subregions
revealed a significant loss of TH-positive SNC neurons between SP-pre and the control
group (I/C ratio control group: 0.61 ± 0.09, SP-pre: 0.92 ± 0.14, SP-post: 0.80 ± 0.22, 2-way
ANOVA F(2, 16) = 1.68, p = 0.009; post hoc analyses between each of the groups with
Tukey’s multiple comparisons test: control group vs. SP-pre: adjusted p = 0.007; control
group vs. SP-post: adjusted p = 0.10, SP-pre vs. SP-post adjusted p = 0.41). Differences
in I/C ratios in the other mesencephalic subregions failed to reach significance across
groups (VTA: I/C ratio control group: 0.79 ± 0.15, SP-pre: 0.94 ± 0.13, SP-post: 0.89 ± 0.15,
1-way ANOVA F(2, 16) = 0.11, p = 0.19; RRF: I/C ratio control group: 0.70 ± 0.51, SP-pre:
0.94 ± 0.34, SP-post: 0.85 ± 0.20, 2-way ANOVA F(2, 14) = 0.62, p = 0.20).
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Figure 3. Dopaminergic neurodegeneration after stroke is attenuated by Substance P. (A) Intrain-
dividual comparison of TH-positive neuron counts between contra- and ipsilesional hemisphere
revealed ipsilesional neuron loss in control animals. (B,C) In SP-pre and SP-post animals, no ip-
silesional dopaminergic degeneration was observed. (D) Between-group comparisons of ipsile-
sional/contralesional TH-positive cell count ratios revealed significant differences between groups
for the whole hemisphere and SNC. (E) Representative light-microscopy images (10× magnification)
indicate bilateral midbrain TH-immunoreactivity 15 days after stroke induction. Please note the
obvious loss of TH-positive neurons within the ipsilesional SNC of a control rat. Scale bar: 100 µm.
RRF: retrorubral field, SNC: substantia nigra pars compacta, VTA: ventral tegmental area. * p < 0.05,
** p < 0.01. Data are presented as mean ± SEM.

2.3. Microglial Activation in Midbrain Was Not Increased by Substance P

Microglial activation was assessed based on morphology using the microglia reactivity
score (RS, ranging from 0 to 4) for Iba1-positive midbrain cells (Figure 4B). Regarding
the overall-RS (i.e., ipsi- and contralesional side), there was a significant effect of group
(1-way ANOVA: F(2, 33) = 5.76, p = 0.0072; Figure 4A). Post hoc analysis revealed that
reactivity scores were lowest in the SP-post group (Tukey’s multiple comparisons test
control vs. SP-pre: adjusted p = 0.74, control group vs. SP-post: adjusted p = 0.045, SP-pre
vs. SP-post: adjusted p = 0.0075), although microglia activation across all groups was not
pronounced (RS CG: 1.13 ± 0.27, SP-pre: 1.19 ± 0.10, SP-post: 0.94 ± 0.16). For controls and
SP-pre animals, there were no significant RS-differences between ipsi- and contralesional
hemispheres (paired t-tests; CG: VTA: ipsi 0.63 ± 0.27, contra 0.61 ± 0.29, p = 0.36; SNC: ipsi:
1.1 ± 0.17, contra: 1.05 ± 0.15, p = 0.46, whole: ipsi 1.16 ± 0.25, contra 1.11 ± 0.30, p = 0.21;
SP-pre: VTA: ipsi- and contra: 0.63 ± 0.21, SNC: ipsi 1.22 ± 0.24, contra 1.10 ± 0.20, p = 0.19,
whole: ipsi 1.22 ±0.09, contra 1.16 ± 0.11, p = 0.22). For the SP-post group, a significantly
higher microglial activation in the ipsilesional hemisphere was present across all subfields
(paired t-tests; VTA: ipsi 0.82 ± 0.15, contra 0.70 ± 0.17, p = 0.009, SNC: ipsi 1.11 ± 0.10,
contra 0.81 ± 0.15, p = 0.002, whole: ipsi 1.02 ± 0.12, contra 0.86 ± 0.17, p = 0.003). Between-
group comparisons were made using the ∆RS (RS ipsilesional − RS contralesional) for
each region. Here, significant differences were only present in the VTA (Figure 4C; ∆RS
CG: 0.02 ± 0.06, SP-pre: 0.0 ± 0.0, SP-post: 0.12 ± 0.07, Kruskal–Wallis test p = 0.008).
However, there were non-significant trends towards ipsilesional microglial activation in the
SP-treated groups also for SNC and the whole dataset (SNC: ∆RS CG: 0.05 ± 0.15, SP-pre:
0.13 ± 0.21, SP-post: 0.30 ± 0.13, Kruskal–Wallis test p = 0.059; whole: ∆RS CG: 0.05 ± 0.08,
SP-pre: 0.06 ± 0.1, SP-post: 0.16 ± 0.07, Kruskal–Wallis test p = 0.068).
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Figure 4. Microglial activation in the midbrain was not increased by Substance P. (A) Quantitative
between-group comparison of overall ventral midbrain microglial reactivity scores (RS) after stroke
(ipsilesional + contralesional hemisphere) indicates lowest values for SP-animals. (B) Representative
microscopy image (10× magnification) illustrating different states of activation (RS 0 and RS 1)
in Iba1-immunoreactive microglia. (C) Between-group assessments of ∆RS (RS ipsilesional – RS
contralesional) indicate that a relevant ipsilesional increase in microglial activation was only present
in SP-post animals. SNC: substantia nigra pars compacta, VTA: ventral tegmental area, whole:
VTA + SNC, * p < 0.05, ** p < 0.01, data presented as mean ± SEM. Scale bar 10 µm.

2.4. Substance P Prevents Hypertrophy of Endogenous SPergic Innervation after Stroke

Compared to the contralesional side, the control group exhibited significantly larger
areas and higher mean fluorescence intensity values of SPergic innervation on the lesioned
side (Figure 5A–C, area of innervation: ipsi 0.36 ± 0.33 mm2, contra 0.33 ± 0.34 mm2,
Wilcoxon matched-pairs signed rank test p = 0.03; MFI: ipsi 40.95 ± 10.85, contra 36.92 ± 11.31,
paired t-test p = 0.02, n = 6). For SP-pre animals, the ipsilesional area of SP-immunoreactivity
was larger at trend level without differences for fluorescence intensities (area of innervation:
ipsi 0.37 ± 0.32 mm2, contra 0.32 ± 0.35 mm2, Wilcoxon matched pairs signed-rank test
p = 0.06; MFI: ipsi: 49.88 ± 23.29, contra: 35.95 ± 10.75, paired t-test p = 0.11, n = 6). No
differences were present for the SP-post group (area of innervation: ipsi 0.35 ± 0.06 mm2,
contra 0.35 ± 0.05 mm2, paired t-test p = 0.59, MFI: ipsi 21.03 ± 3.22, contra 21.17 ± 3.4,
paired t-test p = 0.86, n = 6).
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Figure 5. Substance P prevents ipsilesional hypertrophy of endogenous SPergic midbrain innervation
after stroke. Comparisons of the area (A) and mean fluorescence intensity (B) of SP-immunoreactivity
between hemispheres indicate an ipsilesional hypertrophy only in control animals. (C) Representative
microscopy image (10× magnification) of SP-immunoreactivity in the ventral midbrain 15 days after
stroke. Scale bar: 100 µm. Data presented with mean ± SEM, * p < 0.05. Scale bar: 100 µm.

3. Discussion

Intraperitoneal administration of SP facilitated motor rehabilitation in a rat model
of motor cortical photothrombotic stroke. Here, injection immediately before training
sessions (SP-pre) was more effective compared to the delayed administration (SP-post).
SP furthermore prevented delayed dopaminergic cell loss after stroke, particularly in the
SP-pre condition. Despite its proinflammatory propensity, SP administration did not cause
an enlargement of stroke volumes or an activation of microglia within the midbrain. Finally,
SP administration prevented an ipsilesional hypertrophy of striatal SPergic innervation,
particularly within the SP-post condition.
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On first glance, preservation of dopaminergic neurons is the most likely explanation
for the facilitatory effect of SP on motor rehabilitation as the outcome was best for the SP-pre
group which also showed the least dopaminergic loss. In response to a photothrombotic
stroke, ipsilesional dopaminergic cell death indicated by FJC-immunoreactivity occurred
not later than seven days after ischemic lesion [9]. As loss of TH-positivity within the
VTA was already present at this time point, dopaminergic degeneration in this compart-
ment proceeded even faster. As a functional impairment can be expected to precede cell
death and rehabilitation training started at day 3 after stroke, it is plausible that impaired
dopaminergic signaling may have also affected the earlier phase of the rehabilitation train-
ing. However, with respect to learning curves (Figure 2), a substantial drug effect in SP-pre
animals was already present between baseline training and the first rehabilitation training
session (RT1), indicating an effect that occurred too early to be explained by protection of
dopaminergic neurons. Interestingly, a similar early effect on motor learning was present
in healthy rats that received intracortical SP injections within M1 30 min prior to a similar
reaching training [29]. Thus, SP may facilitate motor learning as well as rehabilitation by
promoting neuroplastic changes that are required for the storage of motor engrams: SP
may facilitate the formation of novel circuits by increasing dendritic arborization and spine
formation, as demonstrated in Purkinje cells of rats after intraventricular injections [34]. SP
may further promote the formation of long-term plasticity as demonstrated in the visual
cortex of rats [35] and the hippocampus of guinea pigs [36]. Finally, SP may increase the
induction of c-Fos [37,38], an immediate early gene involved in motor learning [39] and
motor rehabilitation [40]. In contrast to SP-pre, SP-post animals received the first injection
16 h after the first training session, a timing that should exclude the presence of relevant SP
concentrations within the CNS during training [41]. Here, a rise in reaching performance
can be merely observed within the second half of training (i.e., starting with RT 6), probably
explained by the preservation of dopaminergic neurons that went into effect a week after
ischemic stroke.

Interestingly, protective effects in the SP-pre paradigm were more pronounced com-
pared to SP-post group. For motor learning in healthy rats, dopaminergic neurons project-
ing to M1 are specifically activated during motor skill acquisition as indicated by c-Fos
expression [42]. In cultured dopaminergic neurons, SP-mediated neuroprotection depends
on activation of neurons, i.e., the sodium and calcium influx generated by excitatory synap-
tic inputs [25]. Thus, activation of dopaminergic neurons during rehabilitative training may
create ideal conditions to exploit the protective propensity of SP in the SP-pre condition. In
addition to its protective effect in cell culture, pretreatment with SP improved recovery and
prevented dopamine loss in a model of subtotal nigrostriatal 6-hydroxydopamine lesion in
rats [43]. The biological actions of SP are mainly mediated by the tachykinin NK1-receptor
(NK1-R) that is highly expressed in the VTA and SN, but also in the cerebral cortex [44,45].
The NK1 receptor is a 7-transmembrane G-protein (Gq/G11) coupled receptor that mainly
regulates the phosphoinositide pathway [22]. Via NK1-R activation and consecutive PKC
and MAPK/ERK activation, SP protected cultured spinal ganglion neurons from trophic
factor deprivation induced cell death by inhibiting caspase activation [24]. Moreover, SP
prevented excitotoxic cell death in cultured cholinergic neurons evoked by the NMDA-
agonist quinpirole [23]. Interestingly, blocking NMDA-receptors using MK-801 prevented
dopaminergic degeneration after MCAO in mice [6]. Similarly, administration of the AMPA-
antagonist YM872 after stroke prevented the atrophy of substantia nigra [46]. Thus, SP may
exert protective effects due to anti-excitotoxic and anti-apoptotic mechanisms, whereas a
certain degree of synaptic activation seems to support its neuroprotective propensity.

Apart from neuroprotection, SP is a potent mediator of neurogenic inflammation
within the periphery [47] and central nervous system [33]. Post stroke, SP promotes vasodi-
lation, microvascular permeability and edema formation and NK-1 receptor antagonism
has been proposed as a neuroprotective approach to minimize post-ischemic injury [48–50].
Moreover, reduced SP levels in the area of secondary exo-focal degeneration after MCAO
have been discussed to play a role in the inflammatory response within the ventral mid-
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brain [31]. As the deteriorating inflammatory effects of SP are particularly relevant within
the first 12 to 24 h after stroke [33,49], no significant differences in stroke volumes, mNSS
values and motor deficits were observed across groups in this study. Furthermore, reactivity
scores of microglia were overall low, arguing against a functionally relevant proinflam-
matory effect of SP in our model. In fact, overall reactivity scores were lowest in SP-post
animals, although ipsilesional SP values were significantly increased compared to the
contralesional side in this group. Thus, systemic administration of SP at day 3 post stroke
is considerably safe.

As reported previously [9], ipsilesional endogenous SP-immunoreactivity was in-
creased with respect to area and intensity in controls. With respect to the neuroprotective
propensity of SP for dopaminergic neurons, it is tempting to speculate that this hypertrophy
constitutes a compensatory mechanism in response to dopaminergic neurodegeneration.
In line with this hypothesis, prevention of dopaminergic cell loss by systemic SP applica-
tion also prevented the ipsilesional increment in SPergic innervation and preserved the
physiological distribution of striato-nigral SP-containing synaptic terminals within the
midbrain.

4. Materials and Methods
4.1. Animals and Experiments

Adult 8–12-week-old male Sprague Dawley rats (n = 24; 280–320 g; Charles River,
Sulzfeld, Germany) were used for this study. The skilled reaching task performed in this
study is specifically validated for application in male rats, as female rats show steeper
learning curves [51]. Biometric sample size assessments and power calculations were
performed a priori in a biostatistical survey. Animals were housed in cages in groups
of three with a 12/12 h light/dark cycle. Behavioral assessments were performed at the
beginning of the light phase. Animals were food-deprived for 24 h prior to the first training
session. Daily food intake was limited to ca. 50 g/kg body weight of standard chow,
provided after each training session. Water was available ad libitum. Animal experiments
were carried out in accordance with the ARRIVE guidelines, the EU Directive 2010/63/EU
for animal experiments and were approved by the state of Baden-Württemberg under
license number G-18/14. Chemicals were purchased from Sigma-Aldrich (Taufkirchen,
Germany), unless noted otherwise. Experiments were conducted in line with the RIGOR
criteria [52]: animals were randomly assigned to groups. Four animals had to be euthanized
due to perioperative complications. Two animals completed behavioral assessments, but
cardiac perfusion was unsuccessful. No further animal had to be excluded and all data
is reported in the manuscript. With respect to surgery, behavioral assessments, tissue
processing, staining procedures and histological analyses, researchers were blinded and
not aware of group identities.

4.2. Induction of Photothrombotic Motor Cortical Stroke

Induction of photothrombotic strokes was performed similar to a previous study [9]. In
brief, rats were anesthetized with ketamine (75 mg/kg, i.p. Medistar, Ascheberg, Germany)
and xylazine anesthesia (10 mg/kg, i.p. Bayer, Leverkusen, Germany). The head was fixed
in a stereotaxic frame (Stoelting Co., Wood Dale, IL, USA). After a median skin incision,
preparation and cleaning of the skull, a photothrombotic stroke was induced through the
intact bone. In brief, Rose Bengal dye (10 mg/kg body weight; 7.5 mg/mL in sterile saline)
was injected into the tail vein using a 24G venous line (Abbocath, Hospira, Maidenhead,
UK) during the first 2 min of a 20 min illumination period using a cold light source (KL 1500,
Schott AG, Mainz, Germany). To avoid calefaction damage, air-cooling was performed
using a custom made ventilation system. To standardize lesion size, a 4 mm diameter
stencil was placed above the forelimb area of the primary motor cortex (2 mm anterior
and 2 mm lateral, relative to bregma). Blood oxygenation and heart rate were constantly
monitored (MouseSTAT Pulse Oximeter for mice and rats, Kent Scientific Corporation,
Torrington, CT, USA), body temperature was controlled using a heating pad (Temperature
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Controller TC-1000, CWE Inc., Ardmore, PA, USA). Carprofen (5 mg/kg, s.c.; Norbrook,
Newry, Northern Ireland) was given after surgery for pain relief.

4.3. Behavioral Paradigm, Drug Application and Assessment of Post-Stroke Deficits

The experimental protocol is summarized in Figure 1A. Reaching training was per-
formed similar to Whishaw and Pellis, 1990 [53]. Rats were trained to reach and grasp
for a food pellet (45 mg, Bio-serve, Frenchtown, NJ, USA)., placed on a ledge outside of
a training cage (15 × 25 × 25 cm) with a vertical window (1 cm wide, 5 cm high). As
pre-training, food pellets were placed on the ledge at a distance of 15 mm in front of the
window. In this position, pellets were only retrievable by forelimb reaching. The paw that
was used most frequently was defined as the preferred side. Reaching training started after
animals performed 50 reaching attempts (trials) in less than 20 min on two consecutive
pre-training days. Reaching training was initiated by shifting the pellet to align with the
edge of the window, allowing the use of the preferred limb only. Furthermore, a metal bar
(2 mm diameter) was placed as a sill in front of the window so that animals had to reach
over this fence to grasp the pellet. Each reaching trial was scored as “successful” (reach,
grasp and retrieve) or “unsuccessful”. Each training session consisted of 48 trials or 30 min,
whichever came first. Reaching performance was defined as the number of successful trials
out of 48 possible trials (success rate) in percent. The duration of training sessions was
assessed as a measure of attention and motivation. Rats completed five training sessions
ensuring that they had reached a performance plateau before the stroke (T1-5, Figure 1A).
The average success rate of the last two sessions (T4-5) was used as a measure of plateau
performance. Starting 2 days after stroke, animals were re-trained for 24 trials (i.e., “base”
or B; Figure 1A) to assess the post-stroke deficit. Then, animals underwent re-training for
ten sessions on consecutive days (RT1-10; Figure 1A). The “base” was subtracted from the
average success rate of the last 3 re-training sessions (RT8-10) to compute rehabilitation
plateaus. Before the “base” assessment, animals were randomly assigned to three groups
by drawing lots: a control group receiving 3 mL/kg [54] saline i.p. 30 min prior to training
(CG, n = 7); a group receiving substance P 250 µg/kg i.p. in a volume of 3 mL/kg saline
30 min prior to training (SP-pre; n = 7); a group receiving substance P 250 µg/kg i.p. in a
volume of 3 mL/kg saline 16 h after training (SP-post; n = 6). In the SP-pre group, systemic
administration of SP should exert its effects during training [26] similar to a previous
study [29]. As CNS-effects of systemically administered SP decay after a few hours [41],
timing of injection for SP-post animals (i.e., 16 h post- and 8 h pre-training) allow the
assessment of SP-effects independently from training. General post-stroke deficits were
assessed using the Modified neurological severity score (mNSS) one day before and after
stroke induction and immediately before rats were perfused (P; Figure 1A). The mNSS is
a widely used and valid tool to evaluate neurological functional deficits in rodents after
unilateral brain injury [55]. Neurological function is based on motor, sensory, reflex, and
balance tests and graded on a scale of 0 to 18 (normal score 0; maximal deficit score 18).
As the absence of a neurological deficit (mNSS = 0) would question the presence of a
relevant ischemic lesion, a mNSS of 0 was an exclusion criterion for our study. However, no
animal had to be excluded due to this reason. Training, re-training and mNSS-assessment
were documented by video-footage (HERO3+, GoPro, San Mateo, CA, USA) and analyzed
off-line. The researcher performing training and video-analysis was blinded with respect
to group identities (i.e., substance P vs. saline; injection pre- vs. post-training).

4.4. Euthanasia and Tissue Processing

Animals were deeply sedated (ketamine 80 mg/kg i.p., Medistar, Ascheberg, Germany;
xylazin 12 mg/kg i.p., Bayer, Leverkusen, Germany) and perfused transcardially with 4%
paraformaldehyde (PFA). Brains were quickly removed and kept in 4% PFA for 24 h before
being transferred to 30% sucrose solution. Coronal sections were prepared using a sliding
microtome with freezing stage (Leica Microsystems GmbH, Wetzlar, Germany). For analysis
of the stroke placement, brain slices of 30 µm thickness were prepared +4.0 to −2.5 mm
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with respect to bregma and alternately collected in seven sampling wells. Thus, a sample
contains every 7th section with a fixed distance of 210 µm between subsequent sections.
For the analysis of dopaminergic midbrain nuclei, brain slices of 40 µm thickness were
prepared −5 to −7 mm with respect to bregma and alternately collected in five sampling
wells. Thus, a sample contains every 5th section with a fixed distance of 200 µm between
subsequent sections. All coordinates are based on Paxinos and Watson, 2014 [56].

4.5. Histochemistry and Immunohistochemistry

FluoroJade-C (FJ-C) staining: brain sections were washed in 0.05 M tris-buffered saline
(TBS) for 5 min, mounted on glass slides coated with 0.3% gelatine and then were dried
for 2 h in an incubator at 50 ◦C. Slides were rinsed in 1% sodium hydroxide diluted in
80% ethanol for 5 min. They were then dehydrated in a graded series (ethanol 70% for
2 min, 0.45 M natrium chloride solution for 2 min) and subsequently incubated in 0.006%
potassium permanganate for 10 min. The slides were washed with distilled water for
1 min and then placed in 0.0001% FluoroJade C solution (Chemicon, Etobicoke, Canada)
for 10 min. Lastly, the slides were washed three times in distilled water for 1 min, dried
in an incubator at 40 ◦C for 1 h and cleared in xylol for 1 min. Then, slides became cover
slipped with Depex mounting medium (Electron Microscopy Sciences, Hatfield, PA, USA).

Immunohistochemistry: free floating sections were rinsed three times in 0.05 M TBS,
treated with 3% H2O2 for 30 min, washed three times in 0.05 M TBS, then rinsed in
0.1% Triton for 10 min, and blocked for 30 min in 10% fetal cow serum. Sections were
incubated with primary antibody diluted in 0.05 M TBS and 5% fetal cow serum for 24 h
at 4 ◦C under agitation. The following primary antibodies were used: 1:400 monoclonal
mouse anti-tyrosine hydroxylase antibody (anti-TH, Chemicon International, Temecula,
CA, USA, cat. MAB 318); 1:1000 polyclonal rabbit anti-ionized calcium-binding adapter
molecule 1 antibody (anti-Iba1, Wako, Neuss, Germany, cat. 019-19741); 1:500 monoclonal
mouse anti-Substance P antibody (anti-SP, R&D Systems, Abingdon, UK, cat. MAB 4375).
Sections were then washed three times in 0.05 M TBS and subsequently incubated with
corresponding secondary antibodies: goat anti-rabbit fluorescein isothiocyanate (FITC)-
coupled (Thermo Fisher Scientific, Darmstadt, Germany, cat. F2765) or goat anti-mouse
Cyanine3 (Cy3)-coupled (Thermo Fisher Scientific, Darmstadt, Germany, cat. A10521)
diluted 1:200 in 0.05 M TBS and 2.5% fetal cow serum at 4 ◦C for 90 min. Sections were
mounted with Vectashield (Vector Laboratories Inc., Burlingame, CA, USA).

4.6. Histological Analysis

Images of brain sections were digitized using a fluorescent microscope (Axioplan II,
Zeiss AG, Jena, Germany; equipped with a motorized x–y stage; 10×/0.5 EC Plan-Neofluar
objective) and analyzed using Fiji software [57]. Every 7th section was used for assessment
of lesion placement and volume. Lesioned tissue was identified by FJ-C fluorescence
signal indicating degenerating cells (Figure 1B). Lesion volume was computed using the
frustum-formula V = h × π3·((r1)2 + r1·r2 + (r2)2) based on the measured lesion area
and the distance between subsequent sections (210 µm). Extensions of ischemic lesions
were compared to the Paxinos and Watson [56] atlas to ensure congruence with motor
cortical topography. Even though the largest part of the lesion was confined to M1, tails
invading the secondary motor cortex (M2) existed at the rostral pole of the stroke. Every
photothrombotic lesion was restricted to the cortex and there was no violation of the
corpus callosum or striatum. No animal had to be excluded due to misplacement of
photothrombotic stroke. Dopaminergic midbrain nuclei were identified based on TH
positivity, as TH was confirmed to be the most reliable marker for dopaminergic neurons
in the rodents’ midbrain [58]. The nomenclature of dopaminergic structures was adopted
from Dahlström and Fuxe [59]: nucleus A8 contains the retrorubral field (RRF), nucleus
A9 contains the substantia nigra pars compacta (SNC). Nucleus A10 contains the ventral
tegmental area (VTA: including nucleus paranigralis, parabrachial pigmented nucleus and
rostral linear nucleus raphe), the central linear nucleus (CLi) and the interfascicular nucleus
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(IF). For quantification of anti-TH and anti-Iba1 positive cells, every 5th section was taken
into account. A total of six to eight midbrain slices were analyzed per animal. Positive cells
were counted in the entire section using the cell counter plugin of Fiji. For the quantification
of anti-SP signal in midbrain sections, every 5th section was processed. The mean area of
innervation and mean signal intensities were assessed applying the measure routine of Fiji.
Activation of microglia (anti-Iba1 positive) was qualitatively assessed by cell morphology
and graded from 0 (no reactivity) to 4 (severe reactivity) [9,60]. This reactivity score (RS)
was assessed independently for mesencephalic subfields and in each section assigned to
quantification to obtain average values for each region.

4.7. Statistical Analyses

Statistical analyses and graph presentations were performed using Prism version 8
(GraphPad Software, La Jolla, CA, USA) and SPSS version 25 (IBM, Ehningen, Germany).
For all tests, normal distribution was checked using the Shapiro–Wilk test for normality.
For ANOVAs, equality of variances was confirmed using the Brown–Forsythe test. Animals
were designated as subjects for the analysis. Paired t-tests were used for within-group
comparisons (e.g., lesioned vs. non-lesioned hemisphere). For between group comparisons,
1-way ANOVAs or the nonparametric Kruskal–Wallis-test were used. Post hoc analyses to
assess individual differences between two of the three examined groups were performed
with Tukey’s multiple comparisons test. For analysis of anti-TH and anti-SP signals, an
ipsi/contra ratio was calculated. For analysis of reactivity scores (RS), the difference
∆ between ipsi- and contralesional hemispheres was calculated. Learning curves and
evolution of mNSS values were compared using an RM-ANOVA, with factors group
and time. The sphericity assumption was tested using the Mauchly criterion and the
Greenhouse–Geisser correction was used, where appropriate. For training and retraining
curves, performance during the first training session (training) or the “base” (re-training)
was added as a covariate to avoid false-positive results caused by baseline differences.
Numerical results were expressed as mean and standard deviation (SD).
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