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Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals.
Factors associated with cattle RFI include physiology, dietary factors, and the
environment. However, a precise genetic mechanism underlying cattle RFI variations in
duodenal tissue is currently unavailable. The present study aimed to identify the key genes
and functional pathways contributing to variance in cattle RFI phenotypes using RNA
sequencing (RNA-seq). Six bulls with extremely high or low RFIs were selected for
detecting differentially expressed genes (DEGs) by RNA-seq, followed by conducting
GO, KEGG enrichment, protein-protein interaction (PPI), and co-expression network
(WGCNA, n � 10) analysis. A total of 380 differentially expressed genes was obtained
from high and low RFI groups, including genes related to energy metabolism (ALDOA,
HADHB, INPPL1), mitochondrial function (NDUFS1, RFN4, CUL1), and feed intake
behavior (CCK). Two key sub-networks and 26 key genes were detected using GO
analysis of DEGs and PPI analysis, such as TPM1 and TPM2, which are involved in
mitochondrial pathways and protein synthesis. Through WGCNA, a gene network was
built, and genes were sorted into 27 modules, among which the blue (r � 0.72, p � 0.03)
and salmon modules (r � −0.87, p � 0.002) were most closely related with RFI. DEGs and
genes from the main sub-networks and closely related modules were largely involved in
metabolism; oxidative phosphorylation; glucagon, ribosome, and N-glycan biosynthesis,
and the MAPK and PI3K-Akt signaling pathways. Through WGCNA, five key genes,
including FN1 and TPM2, associated with the biological regulation of oxidative processes
and skeletal muscle development were identified. Taken together, our data suggest that
the duodenum has specific biological functions in regulating feed intake. Our findings
provide broad-scale perspectives for identifying potential pathways and key genes
involved in the regulation of feed efficiency in beef cattle.
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INTRODUCTION

In the beef industry, feed provision accounts for more than 70%
of total input costs (Patience et al., 2015). Reducing feed
expenditure has gradually become a significant focus on farm
animal research. Residual feed intake (RFI) — defined as the
difference between the average daily feed intake (ADFI) and the
expected daily feed intake (EDFI) required for maintenance and
food production (meat, eggs, milk, etc.) (Koch et al., 1963)— is an
indicator of feed efficiency in an animal. A low or negative RFI
value indicates greater-than-average utilization efficiency (Yan
et al., 2017). In contrast, a high or positive RFI value indicates that
the feed efficiency is low and that the animal has faster
metabolism and requires frequent feeding and activity (Zhang
et al., 2017). As an indicator, RFI is independent of growth traits
such as average daily gain (ADG) and body weight (BW) (Baker
et al., 2006) and is mainly related to economic traits such as dry
matter intake (DMI) and feed conversion efficiency (FCR)
(Gomes et al., 2012). Recently, pathways such as adenosine 5′-
monophosphate (AMP)-activated protein kinase (AMPK)
signaling (Karisa et al., 2014), metabolic pathways and
oxidative stress (Tizioto et al., 2017), lipid metabolism (Tizioto
et al., 2015), and the immune response (Gondret et al., 2017) were
reported to be involved in RFI variance. Moreover, genes such as
COL14A1 (de Lima et al., 2020), OGN (Vigors et al., 2019), ACE
(Yi et al., 2015), and SMCT (de Lima et al., 2020) and quantitative
trait loci such as EFEMP1 (de Lima et al., 2020) and SHC3
(Weber et al., 2016) were also identified to be potentially related
with RFI.

RNA sequencing (RNA-seq) has previously been used to
detect gene expression associated with divergent RFI in cattle.
Researchers have identified several RFI-related genes and
pathways from cattle liver (Tizioto et al., 2017), skeletal
muscle (Khansefid et al., 2017), blood (Xi et al., 2015), adipose
tissue (Weber et al., 2016), and rumen epithelium (Kong et al.,
2016). However, the reported differentially expressed genes
(DEGs) differed significantly among studies, likely due to
differences in breeds, age, sex, and tissue. For example,
McKenna et al. (McKenna et al., 2021) found 11 DEGs, M. S.
Salleh et al. (Salleh et al., 2017) found 70 (in Holsteins) and 19 (in
Jerseys) DEGs, and Robert Mukiibi et al. (Mukiibi et al., 2018a)
identified 72 (in Angus), 41 (in Charolais), 175 DEGs (in KC
breed). Although some DEGs were obtained from these studies,
none of the overlapped genes were commonly present in the
above studies at the same time.

Nutrient digestion and absorption typically account for more
than 10% of RFI variation (Herd and Bishop, 2000). The
intestinal tract is the primary organ controlling these
processes. The duodenum—the first digestive and absorptive
organ of the intestinal tract—is vital for the absorption of
glucose (Zhong et al., 2020), fat (Everard et al., 2019), vitamin
B (Wang et al., 2019), calcium (Moine, 2018), zinc (Zhong et al.,
2020), and iron (Andrews, 2008). Therefore, to better understand
how the duodenum and its functions are associated with RFI
phenotypes. The present study used RNA-seq technology and
bioinformatics to identify the genes and functional pathways
related to RFI in Chinese Qinchuan cattle. This study aimed to

provide a broad perspective for understanding not only feed
intake in farm animals.

MATERIALS AND METHODS

Animals and RFI Calculation
Thirty healthy Qinchuan bulls of similar age (14–16 months)
were selected from a bred population in Ningxia, China. Their
initial body weight (BW0) was 280.6 ± 30.9 kg, and they were
offspring of a sire bull. The animals were provided with the same
diet for the duration of the experiment. During the trial period,
cattle were fed in an independent room measuring 3 × 4 m. All
animals had ad libitum access to water and feed and were weighed
once per month.

The feed intake (FI) was measured daily from day 1 to day 81
using an automatic feeding system, and the ADFI was then
calculated accordingly. The BW0 and final body weight (BW81)
were recorded to calculate the average midpoint metabolic weight
(MMBW0.75) and ADG. RFI was defined as the difference between
the ADFI and EDFI using the following formula:

RFI � ADFI − (b0 + b1 × ADG + b2 ×MMBW0.75)

Here, the ADG and MMBW0.75 are the slope of the linear
regression between BW and days of feeding and the midpoint
metabolic BW0.75, respectively. The b0, b1 and b2 are the
regression intercept, the partial regression coefficient of ADFI
on ADG, and the partial regression coefficient of ADFI on
MMBW0.75, respectively. Then, the cattle with positive and
negative RFI values were categorized into the high- and low-
RFI (HRFI and LRFI) groups, respectively. R language (version
3.6.1, https://www.r-project.org/) was used to perform relevant
calculations, and p < 0.05 was set as the significance threshold. All
results were expressed as mean ± standard deviation.

RNA Isolation and Transcriptome
Sequencing
After RFI calculation, the ten animals from the five highest HRFI
and the five lowest LRFI groups were slaughtered after a 16-h fast
following the guidelines of the Animal Ethics Committee of
Ningxia University. The descending portion tissue of the
duodenum (including the mucosa, submucosa, and muscularis
externa layer) was collected within minutes after slaughter,
washed with PBS solution, cut into pieces, and placed in
sterile RNase- and DNase-free cryopreservation tubes, and
then stored in liquid nitrogen. According to the
manufacturer’s instructions from the TRIzol RNA extraction
kit (Invitrogen, Carlsbad, CA, United States), approximately
500 mg of duodenal tissue sample was used for RNA
extraction. The RNA quality of 10 samples was satisfied with
RNA quality higher than 1.8 and RIN values higher than 7. The
RNA sequencing libraries were constructed and sequenced by
NovelBrain Biotechnology Co., Ltd. (Shanghai, China) using the
Illumina HiSeq 4000 platform (Illumina, San Diego, California,
United States), which sequencing length of the read was 150 bp
with pair-end.
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Quality Control and Alignment
Base call data from the original binary base call files were
converted to raw sequence data in FASTQ format.
Subsequently, FastQC software (version 0.11.7, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
evaluate sequencing quality. Briefly, reads containing standard
adapters or poly-N sequences and low-quality reads were
trimmed via Trim-galore software (version 0.6.6, https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). The clean
reads with average base quality greater than 20 were selected for
subsequent analyses. The HISAT2 software (version 2.2.1, http://
daehwankimlab.github.io/hisat2/) was used to build the bovine
genome index (including information on splicing sites,
haplotypes, exons, and SNPs) and were aligned with the clean
reads to the reference genome (BosTau9, https://hgdownload.soe.
ucsc.edu/goldenPath/bosTau9/). The bovine reference genome
and annotation files, downloaded from the UCSC database, were
used for guiding transcript quantitative using the StringTie
software (version 2.1.2, http://ccb.jhu.edu/software/stringtie/).
Following this, gene expression was quantified using the
transcript per million (TPM) value.

Identification of Differentially Expressed
Genes and Functional Annotation
After getting the TPM value, we perform a principal component
analysis (PCA) to check the sample repeatability. As a result, six
bulls - three of each group - were used for differential expressed
analysis (Supplementary Figure.S1), where the LRFI group
included SRR15183075, SRR15183066, SRR15183067, and
HRFI group included SRR15183071, SRR15183073,
SRR15183074. DEGs were detected using R package DESeq2
(version 1.24.0, http://www.bioconductor.org/packages/release/
bioc/html/DESeq2.html). The fold change (FC) thresholds for
identifying DEGs were Log2FC > 1 or Log2FC < −1, and a quality
score greater than Q20, i.e., false discovery rate (FDR) less
than 0.05.

To detect the biological functions of the DEGs, gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were conducted online using DAVID (version
6.8, https://david.ncifcrf.gov/). In GO analysis, genes were
grouped into the following domains: cellular composition,
molecular function, and biological process. The Fisher test was
used to calculate the significance level for each GO term and
KEGG pathway, and the threshold for p-values was less than 0.05.

Protein-Protein Interaction Network
Construction and Selection of Crucial
Modules
After obtaining the DEGs, they were mapped to the STRING
database (version 11.0, https://string-db.org/) to acquire
interaction information, with a confidence score over 0.9 used
as the threshold. The Cytoscape application (version 3.6.1,
https://cytoscape.org/) was utilized to construct complex
interaction networks. The CytoHubba plugin in Cytoscape was
used to detect hub genes through four centrality methods which
were network topology analysis—Degree, edge percolated
component (EPC), maximal clique centrality (MCC), and
maximum neighborhood component (MNC), which are useful
methods for identifying hub gene from PPI networks (Chin et al.,
2014)— and the genes selected by all four methods were identified
as the core gene set. The MCODE plugin was applied to identify
key sub-networks and the seeds of nodes; these together formed
the hub gene set (degree cutoff � 2, node score cutoff � 0.2,
k-core � 2, and maximum depth � 100). Subsequently, genes
from each module were subjected to GO and KEGG enrichment
analyses.

Weighted Gene Co-expression Network
Analysis
WGCNA was applied to explore the relationship between gene
expression and RFI, which was used to detect key genes, such as
cancer (Andrews, 2008; Moine, 2018) and feed efficiency (Hou
et al., 2018; Xu et al., 2020). WGCNA considers gene expression
information and the related phenotype information and is thus
more suitable for the data analysis of complex traits (Langfelder
and Horvath, 2008; Mukiibi et al., 2018b; Higgins et al., 2019)-
32]. In this work, the WGCNA study was conducted on ten bull’s
transcriptome libraries. The co-expression networks of 10,161
genes, in which the average TPM of the LRFI group was greater
than 6.96, were constructed using the R package
WGCNA(version 1.69, https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/). When the
correlation coefficient was 0.8, the soft-thresholding power was
12 and the minimum number of genes in a module was set as 100.
To combine potential parallel modules, 0.2 was selected as the
threshold for cut height. To further understand the role of the
expressed genes in the modules most closely related to RFI
phenotypes, the DAVID Website was used for GO and KEGG
analysis. p < 0.05 was set as the significance threshold. The R
package ggplot2 tool (version 3.3.2, https://ggplot2.tidyverse.org/)
was used to present the results. After interested modules, the

TABLE 1 | Analysis of differences for growth traits between the HRFI and LRFI
groups (Mean ± Sd)

Traits LRFI groupa HRFI groupb p-valuec

BW0d, kg 285.75 ± 22.32 273.50 ± 20.28 0.448
BW81e, kg 419.25 ± 28.72 412.50 ± 35.10 0.776
MMBW0.75f, kg 80.51 ± 10.91 80.72 ± 26.69 0.076
ADFIg, kg 10.44 ± 0.23 11.86 ± 0.08 0.004
ADGh, kg/d 1.21 ± 0.047 1.187 ± 0.06 0.450
RFIi, kg −0.84 ± 0.13 0.55 ± 0.044 0.006

aLRFI group: Containing the five lowest RFI values of five cattle.
bHRFI group: Containing the five highest RFI values of five cattle.
cp-value: level of a significance test, and its threshold were set at 0.05 and three decimal
places retained.
dBW0: Initial body weight.
eBW81: Final body weight.
fMMBW0.75: Midpoint metabolic body weight.
gADFI: Actual daily feed intake.
hADG: Average daily gain.
iRFI: Residual feed intake.
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function “exportNetworkToCytoscape” in R package WGCNA
was used to calculate the interaction relationship among genes
in interesting modules and selected the top 200 weighted edges for
visualization.

Validation of RNA-Seq via Quantitative
Real-Time PCR
After differential analysis, a list of DEGs was obtained. To validate
the accuracy of RNA-seq, qPCR tests were performed. Four pairs
of special primers (MS4A1, PLN, KMO, and CHI3L4, which were
selected by generating random numbers) were designed using the
primer-blast tool (https://www.ncbi.nlm.nih.gov/tools/primer-
blast) and synthesized by Sangon Biological Technology Co.
Ltd. (Sangon, China) (The primer sequences information was
presented in Supplementary Table S1). Based on manufacturer
instructions, the first-strand cDNA was synthesized from six
cattle’s total RNA (1 ug for each sample) using the One-Step
gDNA Removal and cDNA Synthesis SuperMix (Vazyme,
China). The CFX Real-Time PCR apparatus (Applied
Biosystems, Warrington, United Kingdom) and SYBR Green

Master Mix (Biomiga, San Diego, CA, United States) were
used to perform qPCR analysis (Detailed procedures for qPCR
reactions were attached in Supplementary Table S2). Each
sample was examined in triplicate. The CT method was used
to quantify differences in gene expression, and transcript levels
were normalized based on GAPDH expression. The 2–ΔΔt
method was employed to calculate relative expression.

RESULTS

Performance and Feed Efficiency
According to the animal’s RFI value, the five highest and five
lowest bulls were selected for differential analysis. All animal’s
performance was presented in (Supplementary Table S3), and
differential analysis for HRFI and LRFI group showed that the
ADFI and RFI values were significantly higher in the HRFI group
than in the LRFI group (p � 0.004 and p � 0.006, respectively)
(Table 1). Based on ADFI, we found that the HRFI group
consumed 11.97% more feed than the LRFI group, although
ADG values did not show significant differences between the

FIGURE 1 | (A) Volcano diagram of DEGs. The volcano diagram exemplifies the size and significance of the genes expressed differentially between the HRFI and
LRFI groups. The “Molokai blue” and “Luminous Orange” dots represent the down-regulated and up-regulated genes in the LRFI group, respectively. (B)GO and KEGG
analysis of DEGs. The size and color of the dot represent the number of enriched genes and the magnitude of significance in (B).
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two groups. These results revealed that the LRFI group was able to
more adequately improve feed efficiency and keep its ADG in line
with the HRFI group.

Gene Expression Profile
The numbers of raw and clean reads were more than 45 million
and 41 million, respectively. After alignment to the BosTau9
genome, we obtained an average mapping rate of 86.19% for all
samples (minimum � 83.3%, maximum � 88.4%). Therefore, our
data quality satisfied the requirements for the subsequent analysis
of genes differentially expressed between the HRFI and LRFI
groups (Supplementary Table S4).

Among all the genes annotated in the bovine reference genome
(Supplementary Table S5), a total of 380 were found to be DEGs
in our study (Figure 1A). Of the 380 DEGs, 175 were up-regulated
in the LRFI group, and 205 were down-regulated compared to the
HRFI group. Among the up-regulated DEGs, 21 showed a fold
change of over 16, and 79 showed fold changes ranging from 4 to
16.Meanwhile, among the down-regulatedDEGs, 18 showed a fold
change over 16, and 74 DEGs showed fold changes ranging from 4
to 16. The top 10DEGs with the highest fold change (Table 2) were
primarily involved in mitochondrial function or energy
metabolism, such as NDUFS1, ATP2B4, and HADHB.

Functional Enrichment of Differentially
Expressed Genes
To explain the function of 380 DEGs, we had them performed a
functional enrichment analysis. Results have shown that most
DEGs were enriched in processes directly relevant to material
metabolism (Figure 1B, Supplementary Table S6 and

Supplementary Table S7), including “N−Glycan biosynthesis,”
“Metabolic pathways,” which showed enrichment for the highest
number of genes in the study; “Endocytosis pathway,”which were
involved in nutrient absorption in intestinal epithelial cells; and
“Circadian rhythm,” which regulated animal behavior.
Meanwhile, we also found gene enrichment in the “WNT,”
“MAPK,” and “T-cell receptor” signaling pathways, which
were involved in the regulation of the immune response and
nutrient metabolism. The enrichment analysis of 380 DEGs
revealed that these genes were involved in functions that tend
to be related to energy metabolism, material metabolism, and the
regulation of animal behavior.

Identification of Critical Genes and
Pathways via Protein-Protein Interaction
Network Analysis of DEGs
Generally, genes show interaction networks and a complex trait
controlled by micro-effective polygene. In the PPI network
analysis for the identified DEGs, we constructed a gene
interaction network that contained 235 nodes and 383 edges
(Figure 2). Based on this network, twelve core genes were
screened using the CytoHubba plugin in Cytoscape software,
which was the overlap of four methods ranked top 20 by its
value—Degree, EPC, MCC, and MNC. These genes were FN1,
TPM1, TPM2, UNKL, MYH11, RNF4, CUL1, UBE3B, APP,
PDGFA, TLN1, and NES (Figure 3). Most core genes were
involved in important biological regulatory functions related to
mitochondrial function and energy metabolism. For example,
CUL1 was reported to play an essential role in oxidative stress,
mitochondrial stress, and basal respiration. Meanwhile, TPM1

TABLE 2 | Top ten upregulated and downregulated DEGs in LRFI group compared with HRFI group.

Symbola log2FCb q-valuec Descriptiond

CHD8 7.66 0.000 chromodomain helicase DNA binding protein 8
SSH2 6.18 0.000 slingshot protein phosphatase 2
PCBP2 5.80 0.001 poly (rC) binding protein 2
LOC407163 5.35 0.000 trappin 5
CERS5 5.25 0.007 ceramide synthase 5
TDP2 5.25 0.010 tyrosyl-DNA phosphodiesterase 2
WDR11 5.16 0.000 WD repeat domain 11
STYX 5.11 0.007 serine/threonine/tyrosine interacting protein
H2AFY 4.72 0.000 H2A histone family, member Y
NDUFS1 4.57 0.027 NADH: ubiquinone oxidoreductase core subunit S1
TADA2A −4.40 0.000 transcriptional adaptor 2A
VPS37C −4.50 0.003 VPS37C, ESCRT-I subunit
ATP2B4 −4.61 0.037 ATPase plasma membrane Ca2+ transporting 4
SLC6A20 −4.69 0.002 solute carrier family 6 member 20
LRRC28 −4.88 0.013 leucine rich repeat containing 28
WAC −4.89 0.000 WW domain-containing adaptor with coiled-coil
CLOCK −4.90 0.000 clock circadian regulator
TXLNA −5.63 0.001 taxilin alpha
SMTN −6.27 0.000 smoothelin
BAZ2A −6.37 0.003 bromodomain adjacent to zinc finger domain 2A

aSymbol � gene symbol in NCBI.
bLog2FC � Logarithm of fold change with a base of 2, the value was rounded to two decimal places.
cq-value � Significance test probability value, the value was rounded to three decimal places.
dDescription � Description of genes.
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and TPM2 were shown to be involved in mitochondrial pathways
and protein synthesis. Additionally, two significant modules
(module 1, MCODE score � 4.53, Figure 4A; module 2,
MCODE score � 3.71, Figure 4C) were constructed based on
the PPI network of the DEGs, and the seed nodes were RNF4 and
FN1, respectively. Module 1, which contained 18 nodes and 37
edges, was enriched for GO terms such as “identical protein
binding,” “metal ion binding,” and “muscle contraction” and for
KEGG pathways “ubiquitin-mediated proteolysis,” “adrenergic
signaling in cardiomyocytes,” and “protein processing in
endoplasmic reticulum” (Figure 4B). Module 2, which
contained 36 nodes and 66 edges, was enriched for GO terms
such as “protein autophosphorylation,” “peptidyl-tyrosine
phosphorylation,” and “ATP binding” and for KEGG
pathways such as “PI3K-Akt signaling pathway,” “MAPK

signaling pathway,” and “Rap 1 signaling pathway”
(Figure 4B). Through module analysis, several vital pathways
were identified. Notable among these were the PI3K-Akt and
MAPK signaling pathways, involved in inflammation and
metabolism, and the “muscle contraction” pathway involved in
energy metabolism.

Weighted Gene Co-expression Network
Analysis
Using WGCNA, 27 co-expression modules were constructed.
The turquoise module had the highest number of genes (1743
genes), followed by the blue (900 genes), brown (806 genes),
yellow (595 genes), and salmon modules (269 genes) (Figures
5A,B). These modules were independent of each other

FIGURE 2 | PPI network of DEGs. In total, 235 nodes and 383 interaction associations were detected. The red and green nodes represent the up-and down-
regulated genes, respectively. The shapes “Triangles,” “hexagon,” “Square,” “diamond” and “V” denote the “Core gene,” “Both core gene and seed of node,” “Cluster
gene,” “seed of node, hub, and core gene,” and “Both hub and core gene.” The “core genes” represent the overlap of the top 20 genes obtained using Degree, DMNC,
MCC, and MNC. “hub genes” represent those genes which calculated by analyzing tools in Cytoscape from the PPI network, and the “seed of node” are those at
the seed nodes of modules 1 or 2. “cluster genes” represent members of the network.
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(Figure 5C). Analysis for module–trait correlations indicated
that various modules were associated with RFI, with the salmon
module showing the highest correlation (r � −0.87, p � 0.002),
followed by the blue module (r � 0.72, p � 0.03). It suggested that
the genes in salmon and blue modules may be closely associated
with RFI (Figure 5D). Noteworthy, several genes in the blue
module such as DDR2, ZDHHC2, MAP3K20, SYNM, RAB23
had high gene significance for RFI, and there was a strong
correlation between them (module membership >0.83)
(Figure 5E). In the salmon module, genes−for example,
KLHL42, TMEM251, ABI3BP, NKX2-3, FOXF1− had high
gene significance for RFI, and its module membership was at
least −0.79 (Supplementary Table S2). After obtaining the
salmon and blue module, we constructed the PPI networks
for the top 200 weighted edges of the blue and salmon modules,
and they consisted of 47 nodes and 200 edges, and 48 nodes and
197 edges, respectively (Figures 6A,B). Enrichment analysis of
genes in the blue module shown that they were mainly enriched
in energy-related metabolism such as “Oxidative
phosphorylation,” “Mitochondrion,” “MAPK signaling
pathways,” and “PI3K-Akt signaling pathways,” and
substance-related metabolism such as “Glucagon signaling
pathway” and “Metabolic pathways” (Figure 6C). In the
salmon module, genes were mainly enriched in substance-
related metabolism such as “metabolic pathways,” “amino
sugar and nucleotide sugar metabolism,” “amino sugar and
nucleotide sugar metabolism,” and “fructose and mannose
metabolism” (Figure 6C). In terms of enrichment analysis,
both blue and salmon modules were involved in the
metabolism of substances or energy, suggesting that the
metabolism process may be closely related to RFI.

To identify the hub genes in the two modules, we obtained the
intersection of the top 200 genes ranked based on weighted
interaction and the DEGs that were found to be critical core
genes. The following genes were identified: FN1, TPM2, A2M,
ZBTB47, and ATP2B4. Among these, they take part in many
biological processes (Supplementary Figure S3). The FN1 gene is
known to be involved in the “WNT,” “MAPK,” “PI3K-Akt,” and
“TGF-β” pathways, which are closely related to host immune
processes.

Validation of RNA-Seq Results
To validate the accuracy of the RNA-seq profiles, we selected
randomly four expressed genes for qPCR, including PLN
(phospholamban), MS4A1 (membrane-spanning 4-domains
A1), KMO (kynurenine 3-monooxygenase), and CHI3L2
(chitinase 3-like 2). The sample used for qPCR was the same
as that used for RNA-seq. The qPCR results have shown that the
level of gene expression trend was similar to that observed in
RNA-seq, indicating that the RNA-seq results were accurate and
reliable (Figure 6D).

DISCUSSION

Improving feed efficiency in beef cattle is a long-term and far-
reaching breeding goal in livestock production. Over the last few
years, various tissues from beef cattle with different RFI levels
have been examined using transcriptome sequencing to identify
marker genes or related biological processes associated with feed
efficiency. These tissues are liver (Hui-Zeng, 2018; Wang, 2020),
rumen (Kong et al., 2016), muscle (Yang et al., 2020), and fat
tissue (Grubbs et al., 2013), as well as blood (Khansefid et al.,
2017). It is clear that the DEGs and pathways associated with RFI
screened based on different tissue samples are both distinct and
linked. As an important organ in the digestive tract, the
duodenum is closely related to digestion and nutrient
absorption, such as glucose (Zhong et al., 2020) and fat
(Everard et al., 2019); Here, we performed transcriptome
sequencing of duodenal tissue from Qinchuan cattle, following
GO classification, KEGG pathway enrichment, PPI network
construction, and WGCNA analysis. We tried to investigate
key DEGs and pathways associated with RFI from duodenal
tissue and identify potential regulation processes that could
help improve cattle feed efficiency in the future.

As expected, we found gene expression differences between
cattle with different RFI levels in duodenal. Studies show that feed
efficiency is closely related to energy metabolism. Individuals
with high feed efficiency can synthesize ATP more efficiently and
produce less reactive oxygen species (ROS) via enhanced
mitochondrial function (Sierant, 2019). Low ROS production
prevents oxidative damage to lipids and proteins while allowing
for reduced mitophagy and protein turnover (Agarwal et al.,
2019). Moreover, animals with high feed efficiency have greater
resistance to oxidative stress, resulting in a lower inflammatory
response and less impaired growth, which results in more energy
being used for their growth and development (Dias et al., 2019).
In our study, we detected 29 key genes (Figure 6E) related to RFI.

FIGURE 3 | Overlap of genes identified using the four methods using
Cyto-Hubba plugin in PPI. Four methods—Degree, DMNC, MCC, and
MNC—were applied to identify significant hub genes using the four centrality
methods. Different colors denote divergent algorithms. The intersections
indicate the common DEGs. The elements common to all four methods were
identified as the 12 core genes: FN1, TPM1, TPM2, UNKL, MYH11, RNF4,
CUL1, UBE3B, APP, PDGFA, TLN1, and NES.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7418787

Yang et al. Characterization of Duodenal Transcriptome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Of those genes, three were closely associated with mitochondrial
energy metabolism (NDUFS1, HADHB, and ALDOA) and were
significantly upregulated in the LRFI group. NDUFS1 encodes
one subunit of mitochondrial complex I, which is mainly involved
in transferring electrons and maintaining the redox balance (Zou
et al., 2021) in the first step of oxidative phosphorylation (Bertile
et al., 2021). Knockdown of the NDUFS1 gene reduces membrane
potential and mitochondrial mass in cardiomyocytes while also
causing increased ROS production (Ni et al., 2019). It has also
been shown that NDUFS1 expression is downregulated in the
brains of food-restricted mice, suggesting that NDUFS1
downregulation makes mice more responsive to stress and
increases ROS (Gielisch and Meierhofer, 2014). Mutations in
NDUFS1 can affect the gene product and destabilize the N
module of complex I, which interrupted electron tunneling
between N4 and N5 subunits, causing an increase in the
NADH/NAD + ratio in the electron respiratory chain. This
results in a decrease in the amount of NAD+ (Esterhuizen
et al., 2017), leading to a blockage in the conversion of malate
to oxaloacetate in the tricarboxylic acid cycle (TCA), which
causes TCA inhibition via negative feedback due to product
accumulation (Schütt et al., 2012; Zeng et al., 2016).

ALDOA encodes a glycolytic enzyme that increases glucose
utilization, contributes to aerobic glycolysis (Fu et al., 2018), and
affects oxidative stress (Gaiying et al., 2021). ALDOA knockdown
causes a decrease in the concentration of ATP (Li and Schulz,
1988), whereas its overexpression inhibits oxidative stress in
cardiomyocytes under both hypoxic and normal conditions via
the VEGF/Notch/Jagged 1 pathway (Pietrocola et al., 2015).
Another key DEG is HADHB, which plays a critical role in
the β-oxidation of fatty-acyl CoA as the key enzyme catalyzing
the final and rate-limiting step in long-chain fatty acid oxidation
(Kao et al., 2006). Mutations in the HADHB gene result in a
deficiency in the mitochondrial trifunctional protein, which
prevents the body from metabolizing long-chain fatty acids
and further leads to a deficiency of acetyl coenzyme A,
thereby inhibiting the TCA (Shao et al., 2019). Increased
expression of the HADHB gene promotes fatty acid oxidation
and reduces the accumulation of fat in the liver (Iakova et al.,
2020; K2-F4 interplay coor, 2017). The growth and development
of an organism require large amounts of energy, primarily
derived from the TCA cycle. NADH is produced mainly
through the electron respiratory chain to generate large
amounts of ATP for life activities. The three identified

FIGURE 4 | Two hub modules from the PPI network and their enrichment analysis. Module 1 (MCODE score � 4.353), including 18 nodes and 37 edges (A), and
module 2 (MCODE score � 3.771), containing 36 nodes and 66 edges (C), were constructed from the PPI network of the DEGs using MCODE. The color and shape
represent the same values as described in Figure 2. The seed nodes in modules 1 and 2 were RNF4 and FN1, respectively. (B) represent the bubble diagrams for gene
enrichment in modules 1 and 2, respectively. The color and size of the dot represent the number of enriched genes and the magnitude of significance, respectively.
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DEGs–HADHB, ALDOA, and NDUFS1–are essential for fatty
acid β-oxidation (Kao et al., 2006), glycolysis (Fu et al., 2018), and
the function of the electron transport chain complex I,
respectively (Zou et al., 2021). Moreover, other DEGs, such as
CUL1 signigicantly down-regulated in the LRFI group
(knockdown can lead to oxidative injury) (Goo et al., 2017),
RFN4 signigicantly up-regulated in the LRFI group (deficiency of
it can result in mitochondrial stress) (Syota et al., 2008), LDAH
signigicantly down-regulated in the LRFI group (it plays a
primarily lipogenic role (MoranKatz et al., 1998)), INPPL1
signigicantly down-regulated in LRFI group (it shows a
capacity to impair insulin signaling (Ueno and Nakazato,
2016)), were also involved in substance or energy metabolism.
In general, those genes regulate directly or indirectly
mitochondrial function, reduce ROS production, and increase
stress resistance, which may contribute to higher feed efficiency.

In addition to energy metabolism, the regulation of feed intake
behavior could also lead to higher feed efficiency. CCK mainly
regulates feeding behavior by stimulating the vagal nerve through
the CCK receptor (CCKAR) (Cookand, 2004) and then
terminates feeding behavior while promoting metabolism
(Pekas and Trout, 1990). Oral treatment with anti-CCK
antibodies improves feed efficiency and the growth rate in
broilers (Cawthon and Serre, 2021), and immunization of

piglets with CCK can dramatically increase feed intake and
growth rate (Gamble et al., 2013). One feature of diet-induced
obesity (DIO) in humans has reduced sensitivity to CCK, and
vagal afferent neurons phenotypic flexibility is lost in DIO (Mei
and Zhu, 2015). Moreover, CCK also inhibits gastric emptying
and feed intake (Herd and Arthur, 2009). In the present study, the
expression of CCK was signigicantly down-regulated in the LRFI
group compare to control, suggesting the critical role of CCK in
beef cattle. Therefore, we speculate that animals with high RFI eat
more owing to reduced sensitivity to CCK and impaired
sensitivity of vagal afferents, resulting in a delayed satiety
signal, which may ultimately lead to an increase in feed intake.
However, this hypothesis needs to be validated by further
functional experiments.

It is well-known that a large number of genes generally
controls trait, with different genes having different degrees of
effects. Many genes that regulate a particular life process are often
involved in specific signaling pathways that work together to
control that life process through a cascade of signal transduction
reactions (Liu et al., 2016). Research has demonstrated that
metabolic processes and factors—protein turnover, tissue
metabolism, body composition, and physical activity—can
explain 73% of RFI variation (Jin et al., 2019). Generally, RFI
is thought to primarily be associated with metabolic processes

FIGURE 5 | Key findings from the module–trait correlations analyses. (A) The analysis of the scale-free fit index (left) and mean connectivity for diverse soft-
thresholding powers (right). (B) Clustering dendrogram of DEGs associated with RFI. (C) Network heatmap in the co-expression modules (the yellow color scale
indicates the degree of overlap between functional modules). (D) Heat map of the correlations between modules and RFI (each cell contains the correlation coefficient
and its p-value). (E) Significance of genes contributes to RFI in the blue module (one dot denotes a gene in the blue module).
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(Horodyska et al., 2017) such as fatty acid oxidation (Casal et al.,
2020), protein synthesis (Kenny et al., 2018), and energy
metabolism (Wu et al., 2020), and with appetite regulation
(Zhao et al., 2020). In our study, the MAPK and PI3K-Akt
signaling pathways were two of the most commonly observed
pathways. Studies have demonstrated that the MAPK signaling
pathway is associated with lipid (Wang et al., 2018; Zhang et al.,
2018) and energy metabolism (Zheng et al., 2016; Kim et al.,
2018) that regulates glucose metabolism (Long et al., 2015).
Moreover, studies have also shown that PI3K-Akt signaling is
involved in glucose (Ruzzi et al., 2020), lipid (Fu et al., 2020), and
energy metabolism [79, 80]. Based on the present results of the
enrichment analysis, it appears that the identified DEGs may
regulate feed efficiency through signaling pathways related to
energy metabolism and substance metabolism. Our functional
annotation of key genes revealed that they are indeed involved in
regulating energy metabolism, lipid metabolism, oxidative stress,
and feeding behavior. Furthermore, similar results were obtained
from enrichment analysis, PPI network analysis, and WGCNA
analysis.

Although we may have identified key genes and signaling
pathways associated with RFI in the duodenum, this study still
has a few limitations. First, the sample size used for RNA-seq
and WGCNA needs to be expanded, and our findings should be
validated with other datasets, such as data from RNA-seq
analyses of liver or other tissues of the tested individual, or
integrated with other genomic data, such as QTLs, to broaden
our understanding of molecular regulation and animal
phenotype.

CONCLUSION

Duodenal DEG and their signaling pathwaymay be more likely to
improve feed efficiency by strengthening mitochondrial function
for energy efficiency. The expression upregulation of genes
related to energy metabolism and feeding behavior may play
an essential role in regulating feed efficiency in livestock.
However, this result still requires further functional
experiments to verify it.

FIGURE 6 | PPI and enrichment analysis of DEGs in the salmon and blue modules (considering the number of interaction networks, the top 200 genes in the
weighted interaction network were selected to construct the interaction network). (A) Interaction relationship in the blue module, consisting of 47 nodes and 200 edges.
(B) Interaction relationship in the salmonmodule, composed of 48 nodes and 197 edges. In the blue and salmon modules, the top 40 genes were defined as hub genes.
The shape “Ellipse” represented the top 20 genes, and the shape “hexagon” denoted the genes ranking 21–40. (C) represent the enrichment analysis of genes in
the blue and salmon modules. In (C), the color and size of the dot represent the number of enriched genes and the magnitude of significance, respectively. (D) qPCR
results for four randomly selected genes. (E) Heatmap of all candidate genes identified. Blue to yellow fading means gene expression increases, positive and negative
numbers do not indicate positive or negative expression but up-or down-regulation.
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