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Abstract
Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting
accuracy is improved via the detection and processing of a three-dimensional coordinate system
that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization
of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose
delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will
discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the
outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While
clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the
ideal dose-volume metrics.

Introduction
Stereotactic body radiation therapy (SBRT) uses novel
technologies to more accurately localize radiation targets.
The word stereotaxis is derived from the Greek stereos,
meaning solid (i.e. three-dimensional) and taxis, meaning
order (i.e. arrangement or orientation); stereotaxis refers to
movement in space. Stereotactic, combing the Greek stereos
with the latin tactic, meaning "to touch," is the favored ter-
minology. As the name implies, SBRT utilizes a three-
dimensional coordinate system to achieve more accurate
radiation delivery.[1,2] With SBRT, the radiation planning
margins accounting for set-up uncertainty are minimized.
This allows for greater dose-volume sparing of the sur-
rounding normal tissues, which enables the delivery of
higher fractional doses of radiation (hypofractionation).
With SBRT, discrete tumors are treated with the primary
goal of maximizing local control (akin to surgical resec-
tion) and minimizing toxicity. Arguably, SBRT has the
potential to achieve better tumor control than a limited

resection (i.e. resection without wide surgical margins)
due to the penumbra dose around the target which targets
microscopic extension of disease.[3]

SBRT has been defined as hypofractionated (1–5 frac-
tions) extracranial stereotactic radiation delivery, [1,2,4,5]
though arguably SBRT is more simply defined as a radia-
tion planning and delivery technique in which a three-
dimensional orientation system is used to improve target-
ing accuracy, regardless of dose fractionation. When
selecting the fractional and total SBRT dose, several clini-
cal considerations are important, including: (1) predicted
risks of late normal tissue complications; (2) predicted
tumor control; (3) financial costs and time expenditure
for treatment planning and delivery.

The long-term impact of hypofractionated dose delivery
to small volumes of normal tissues is not well understood,
and certainly more clinical studies with longer follow-up
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are needed to better define the variables associated with
risks of late toxicity.

Technical aspects of SBRT
SBRT requires a means to detect and process a three-
dimensional array. Various three-dimensional coordinate
systems can be used, including internal fiducials, external
markers and/or image guidance. Image guided radiation
therapy (IGRT), with daily CT imaging, ultrasound and/or
orthogonal x-rays can assist in targeting accuracy.

Several other tools can be used to improve immobiliza-
tion including stereotactic body frames, abdominal com-
pression devices and vacuum bags. Respiratory gating,
which allows for the radiation beam to be turned off when
respiratory movements place the target outside of the pre-
determined positioning parameters, and for radiation to
resume when the target falls back within the accepted
alignment, can help improve targeting. Controlled respi-
ration, such as relaxed breath-hold or shallow breathing
can also reduce set-up uncertainty.[6] Some SBRT systems
(such as Cyberknife®) track three-dimensional coordi-
nates in real time, while the head of the accelerator rea-
ligns itself in real time to accommodate fluctuations in the
target position.

The planning and delivery of SBRT generally uses multiple
non-coplanar and/or arcing fields, directed at the radia-
tion target. As result, the dose gradient is steeper than with
conventional radiation, though the low dose region
encompasses a larger volume and is irregularly shaped.
The dose with SBRT is generally prescribed to the isocenter
and/or isodose line encompassing the target, resulting in
an inhomogeneous dose delivery in which the isocenter
receives a greater dose than the periphery of the target. To
reduce dose to surrounding tissues, a lower isocenter dose
is selected and/or the dose is prescribed to a higher isod-
ose line. With hypofractionated SBRT, versus conven-
tional radiation, the absolute prescribed radiation dose is
less (due to the use of larger, more biologically effective
dose fractions); this lower absolute dose, in conjunction
with the normal tissues being encompassed by lower isod-
ose lines, provides a biologically sound rationale for using
SBRT to reduce normal tissue exposure.[7]

Radiobiology of hypofractionated radiation
The classic linear-quadratic model of cell survival after
radiation is widely used to predict tumor response and
normal tissue toxicity from fractionated radiation.
Though the linear-quadratic model has limitations,
including the over-estimation of cell killing from radia-
tion,[8] it does provide insight into predicting tumor con-
trol and normal tissue toxicity, and is often used as the
basis for determining fractionation schemes.[9] The valid-
ity of using the linear-quadratic model to predict late

effects has been questioned, as it is a model derived from
in vitro cell survival assays of cancer cell lines and is not
necessarily expected to predict in vivo toxicity of normal
tissues, in which alteration and/or injury of various cell
types is of greater importance than cell survival.[10]

Generally, normal tissue effects are more greatly impacted
by fraction size than are acute effects, which is why 1.8–
2.0 Gy fractions are considered standard in the irradiation
of most diseases in which the patient is expected to survive
long enough to potentially experience late radiation-
induced toxicity. Thus, with hypofractionated radiation,
there is heightened concern about the risks of late toxicity,
even when SBRT techniques are used to reduce the vol-
ume of normal tissue exposed to high doses.

It is generally accepted that unrepaired radiation-induced
DNA damage results in mitotic death. However, at higher
fractional radiation doses, other mechanisms may play a
significant role as well. Interestingly, accounting for the
overestimation of linear-quadratic model in predicting
tumor control (i.e. poorer control than expected) with
large fractional doses, and accounting for the hypoxic frac-
tion of tumors, and the relative radiation resistance asso-
ciated with hypoxia, hypofractionation actually results in
a greater than expected tumor control, suggesting that
novel mechanisms which can overcome hypoxia may play
a role with hypofractionation.[11]

Researchers from Memorial Sloan Kettering have shown
endothelial apoptosis becomes significant above a ~8–10
Gy single dose threshold (albeit fractionated regimens
were not compared to single dose treatments).[12]
Endothelial apoptosis results in microvascular disruption
and death of the tissue supplied by that vasculature.[13]
Radiation, and perhaps higher fractional doses of radia-
tion, may also play a role in stimulating an immune
response. Radiation-induced stem cell depletion is also
likely important. Stem cells can migrate into the radio-
ablated tissue from neighboring undamaged tissue.

SBRT is well suited for the sparing of tumors involving or
abutting parallel functioning tissues (i.e. kidneys, lung
parenchyma and liver parenchyma, in which functional
subunits are contiguous, discrete entities).[1,4] SBRT
reduces the organ volume, and thus the absolute number
of parallel functioning subunits destroyed by radiation.
Because of an organ reserve, with redundancy of function,
the undamaged functional subunits can maintain the
organ function (as occurs in lung, liver and kidney) and/
or regenerate new functional subunits (as occurs in liver).
Serial functioning tissues (i.e., spinal cord, esophagus,
bronchi, hepatic ducts and bowel, which are linear or
branching organs, in which functional subunits are unde-
fined) may also benefit from reduced high-dose volume
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exposure, though there is heightened concern about
radio-abalting these tissues because of the potential dev-
astating, irreversible downstream effects that can occur
from damage to upstream portions of the organ.[1,4]
Stem cell migration may be of greater importance with
serial functioning tissue because unrepaired radiation-
induced damage cannot be compensated for by the func-
tion of the undamaged organ. Though small volumes of
serially functioning tissues, such as spinal cord, can safely
receive suprathreshold doses,[14,15] the volume and ana-
tomical regions which can receive suprathreshold dose are
not well characterized, nor is the impact of inhomoge-
nous dose delivery.[16]

Review of select clinical trials using hypofractionated 
SBRT
Extracranial SBRT has been used in the treatment of
tumors involving many organs, including lungs, liver,
pancreas, kidneys, adrenals, spine and other musculoskel-
etal tissues.[2,17-20] SBRT techniques have also been
used to safely treat primary prostate cancer.[21,22] Most
studies report acute toxicity of SBRT, though many also
discuss late toxicity.

It is critical to understand the dose-volume metrics that
are important in predicting late toxicity in normal tissues
such as spinal cord, esophagus, stomach, bowel, liver, kid-
neys and lungs.[23] Unfortunately, with SBRT, late clini-
cal outcome data is limited, and thus comprehensive
evidenced-base dose-volume constraints are not available.
With increasing clinical experience, these constraints are
likely to become better formalized. The total dose, frac-
tional dose, volume of normal tissue exposed to high
doses of radiation, and location of the target are critical
variables in predicting late toxicity. However, host and
tumor variables, which are presently not well character-
ized, are also likely relevant. The remainder of this paper
reviews the published clinical experience of SBRT. Papers
focusing on normal tissue effects after SBRT, particularly
late toxicity with longer follow-up (when available), were
selected for this review.

Lung
SBRT in commonly used to treat lung tumors, including
primary lung cancer as well as limited metastases, in
patients who are medically inoperable or who refuse more
invasive techniques. Radiation is arguably the safest
option for tumors abutting large vessels and central struc-
tures. Table 1 (Additional File 1) summarizes the toxicity,
prescribed dose and dose-volume constraints in selected
studies described below.

Acute and mild fatigue, malaise, cough and dermatitis are
common. Acute esophagitis can occur with SBRT of cen-
tral tumors.[24] Acute radiographic pneumonitis com-

monly occurs, though grade ≥3 pneumonitis is rare. Late
toxicity is relatively uncommon. Reported late grade ≥3
toxicity ranges from 0–7%. Examples of grade ≥2 late tox-
icity include pneumonitis, [25-28] chronic cough,[29,30]
pulmonary bleeding/hemoptysis,[31,32] bronchial fis-
tula,[33] pulmonary function decline,[25,32] pneumo-
nia,[32] pleural effusion,[25-27,32] airway narrowing,
stricture or obstruction,[30,34,35] tracheal necrosis,[36]
chest wall pain and/or rib fracture. [25,26,30,33,37-42]
brachial plexopathy,[42,43] and esophageal ulcera-
tion.[31,37]

Select studies
At the University of Rochester, 49 patients were treated
with SBRT for limited metastases in the thorax.[44] With
a mean follow-up of 18.7 months, toxicity (acute and
late) was as follows: grade 1–2 (mostly self-limited
cough) in 41%; grade 3 (non-malignant pleural effusion
successfully managed with pleurocentesis and sclerosis)
in 1 patient; and no grade 4–5 toxicity. Pulmonary toxicity
did not correlate with the volume of lung receiving >10
Gy or 20 Gy (V20).

In a Phase I study from Indiana University, 47 patients
with medically inoperable Stage I non-small cell lung can-
cer (NSCLC) were treated with 3 fractions of SBRT, with
the fractional dose escalated in 2 Gy increments, starting
with 8 Gy fractions.[36,45] The mean follow-up was 27
and 19 months for Stage IA and IB NSCLC. Six patients
developed acute radiation pneumonitis requiring ster-
oids. Three of 5 patients receiving 24 Gy fractions devel-
oped grade 3–4 pneumonitis (n = 2) or tracheal necrosis
(n = 1), though the timing of these toxicities is not dis-
cussed.[36] Seventy patients with inoperable Stage I
NSCLC enrolled on a subsequent Phase II study of 60–66
Gy in 3 fractions.[32] Eight patients developed grade 3–4
toxicity 1–25 months after SBRT; including pulmonary
function decline, pneumonia, pleural effusion, apnea,
and dermatitis. Six patients experienced grade 5 toxicity
0.6 – 20 months (median 12) after SBRT: 4 from pneumo-
nia, 1 from pericardial effusion and another from massive
hemoptysis. The extent to which SBRT contributed to the
death in these patients cannot be determined. Central and
hilar tumor location versus peripheral tumors (p = 0.004)
and tumor size 10 ml (p = 0.017) were adverse predictors
of grade 3–5 toxicity.

In a Phase I study from Stanford University, 32 patients
with a solitary metastasis or Stage I NSCLC received single
fraction SBRT, escalated from 15–30 Gy. Central tumor
location, dose >15 Gy and tumor volume were associated
with a greater risk of severe to fatal toxicity.[46] At a
median follow-up of 18 months, 3 patients died 5–6
months after SBRT from radiation pneumonitis (n = 2)
and tracheo-esophageal fistula (n = 1).
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Based on the Indiana University experience, the Radiation
Therapy Oncology Group treated 55 patients with periph-
eral Stage I NSCLC with 60 Gy in 20 Gy fractions. With
median follow-up of 8.7 months, 7 patients developed
grade 3 pulmonary/upper respiratory toxicity and 1 devel-
oped grade 4 toxicity.[47]

In a retrospective study from Technical University, Ger-
many, 68 patients with Stage I NSCLC received 30–37.5
Gy in 10–12.5 Gy fractions for peripheral tumors or 35 Gy
in 7 Gy fractions for central thoracic tumors.[26] Acute
radiation pneumonitis occurred in 36% of patients, while
only 1 patient developed late grade 3 radiation pneumo-
nitis (at 4 months) which progressed to fibrosis. One
patient developed a grade 2 soft tissue fibrosis. With a
mean follow-up of 17 months, no other grade >2 toxicity
was observed.

In a study from Hong Kong, 20 patients received 45–60
Gy in 3–4 fractions of 12–18 Gy for peripheral Stage I
NSCLC.[40] No grade ≥2 acute or late toxicity was
observed. Four patients received fractional doses >6 Gy to
the esophagus. The maximal dose to the trachea and
mainstem bronchus was 42.6 Gy in 14.2 Gy fractions
(with ≤0.5 ml >12 Gy) in 1 patient; 2 others received >10
Gy per fraction and 4 others received >8 Gy per fraction.
The maximal dose to the aorta was 59.1 Gy in 19.7 Gy
fractions (with ≤3.3 ml >15 Gy) in 1 patient; 2 others
received >10 Gy per fraction and 3 others received >8 Gy
per fraction. The maximal dose to the heart was 40.4 Gy
in 10 Gy fractions in 1 patient; 1 other received >10 Gy per
fraction and 2 others received >8 Gy per fraction.

Radiation pneumonitis
Since the volume of lung exposed to clinically significant
doses with SBRT is small, few pulmonary complications
have yet to be observed by our group or others. As a result,
it is difficult to ascertain dose-volume metrics to predict
the risk of clinically significant radiation pneumonitis.
Some studies have demonstrated the risk of radiation
pneumonitis developing later (median of ~5 months)
after SBRT versus after conventional radiotherapy.[27,28]
A Japanese study has shown that a higher conformality
index (less conformal plan) is significantly associated
with a higher risk of pneumonitis, while other dose-vol-
ume metrics (i.e. mean lung dose and volume of lung
exceeding incremental does) are not.[28] The V20 in that
study ranged from 1–11%. In the study from the Univer-
sity of Rochester, in which pulmonary toxicity did not cor-
relate with V20, the V20 ranged from 1–34%, with a
median of 10%. Arguably the variance in V20 in these
studies may not be large enough to conclude that V20 is
not a significant predictor of radiation pneumonitis, since
a V20 in the 30–40% range with standard fractionation is
associated with increased risk of symptomatic pneu-

monits.[23] The standard dose-volume metrics used to
predict radiation pneumonitis, such as V20, V13 and
mean lung dose, may still be relevant.

Pulmonary function
For the most part, SBRT does not significantly impact pul-
monary function, and in some patients pulmonary func-
tion may improve after SBRT.[37,48] Pulmonary function
decline may be asymptomatic or transient in some
patients.[45,49] In a study from Aarhus University, late
dyspnea was not correlated to any dose-volume parame-
ters, and no consistent temporal variations of dyspnea
after SBRT were observed.[50] Worsening dyspnea was
more attributable to pre-existing chronic obstructive pul-
monary disease as opposed to late radiation effects. In a
study of 70 patients from Indiana University, neither poor
baseline values of forced expiratory volume in 1 second
(FEV1) nor diffusing capacity of the lung for carbon mon-
oxide (DLCO) predicted for time to first Grade ≥2 pulmo-
nary toxicity or survival after SBRT.[51] While FEV1 did
not significantly change over time, the DLCO significantly
decreased by 1.11 ml/min/mm Hg/y. In a study from Wil-
liam Beaumont Hospital, FEV1 reductions occurred pri-
marily at ~6 weeks, and remained stable thereafter, with a
~6–7% decline.[52] DLCO reductions occurred at >6
months. At 1-year, the DLCO was reduced ~16–21%, and
mostly asymptomatic. The decrease in DLCO correlated
with mean lung dose and V10–20, and was stable when
corrected for alveolar volume, suggesting alveolar damage
as a mechanism for change. There is no consensus on a
safe lower limit of pulmonary function for SBRT. In the
study from Indiana University, the pretreatment FEV1
ranged from 0.29–2.12 and the DLCO ranged from 3.5–
23.05. Certainly, clinical judgment is needed to determine
the safety of SBRT in any given patient, taking into
account the pulmonary function, as well as the location
and number of lesions.

Rib fracture/chest wall pain
Rib fractures can be asymptomatic, and therefore perhaps
under-reported. In a study from Hong Kong, the dose to
the chest wall in 3 patients who experienced asympto-
matic rib fractures was 20–21 Gy in 3–4 fractions.[40] In
a multi-institutional study, the risk of rib fracture from
SBRT to peripheral lung lesions, ≤1.5 cm from chest wall,
was a function of the absolute volume of chest wall receiv-
ing >30 Gy in 3–5 fractions.[41] No rib fractures occurred
with <35 ml of chest wall receiving >30 Gy; at >35 ml, half
of the patients developed rib fracture. Princess Margaret
Hospital reported a 48% 2-year risk or rib fracture, mostly
asymptomatic or mildly symptomatic, a median of 17
months after delivery of 54–60 Gy in 18–20 Gy fractions
for tumors close (0–1.8 cm, median 0.4 cm) to the chest
wall.[38] The median dose at the fracture site was 29–78
Gy (median 49). In a prospective Japanese study, 1 of 45
Page 4 of 10
(page number not for citation purposes)



Radiation Oncology 2008, 3:36 http://www.ro-journal.com/content/3/1/36
patients developed grade 2 chest wall pain after receiving
a prescribed dose of 60 Gy in 7.5 Gy fractions to a periph-
eral tumor; the chest wall received a maximal dose of 48
Gy.[37]

Esophageal toxicity
With standard fractionation, the volume, length and sur-
face of esophagus exposed to suprathreshold radiation
increases the risk of toxicity.[23] SBRT can reduce the
amount of esophagus exposed to therapeutic doses,
though hypofractionated radiation delivery does raise
concern for esophageal toxicity. Generally, the dose con-
straints adhered to for esophagus have proven to be safe
(see Table 1 (Additional File 1)). In a prospective Japanese
study, 1 of 45 patients developed grade 5 esophageal
ulceration 5 months after receiving a prescribed dose of 48
Gy in 6 Gy fractions; in this patient, the esophageal maxi-
mum was 50.5 Gy and 1 cc of esophagus received >42.5
Gy.[37]

Brachial plexopathy
In an Indiana University study of 37 lesions in 36 patients
with apical lung tumors treated to median dose of 57 Gy,
the 2-year risk of brachial plexopathy was 46% after the
brachial plexus received a biologically effective dose max-
imum of >100 Gy versus 8% for <100 Gy (p = 0.04).[43]
Anther study reported brachial plexopathy in 1 of 60
patients due to significant volume of brachial plexus
receiving 40 Gy in 4 fractions.[42]

Radiographic changes
Following SBRT, the lung parenchyma undergoes acute
(occurring after weeks to months) and late (after 6
months) changes, reflected by characteristic radiographic
findings,[27,53-55] and perhaps correlated to V7–10 and
mean lung dose. [56] Acute radiation pneumonitis
appears radiographically as diffuse or patchy consolida-
tion and/or ground glass opacities. Late radiographic
fibrosis can be linear and streaking or mass-like. The fibro-
sis can change in shape and extent; it can shrink and
migrate centrally towards the hilum over the course of sev-
eral months of follow-up imaging.[27,55] It can also
grow, appear as abnormal opacities, and/or potentially
mimic recurrent tumors.[27,57,58] While late radio-
graphic changes reflect fibrosis, the clinical significance of
these changes is not known. Radiographic bronchial/tra-
cheal wall thickening (with or without clinical airflow
restriction) can also be seen.[34]

In a study from Hiroshima University, patients were fol-
lowed with serial CT scans after receiving 48–60 Gy in
3.85–12 Gy fractions. Patients who developed grade >2
radiation pneumonitis, were more likely to have had
acute diffuse consolidation or no evidence of acute radio-
graphic changes (versus patchy consolidation or ground

glass opacity changes).[54] The late changes, classified as
modified conventional pattern (consolidation, volume
loss and bronchiectasis), mass-like pattern (focal consoli-
dation around tumor site) and scar-like pattern (linear
opacities and volume loss), developed in 62%, 17% and
21% respectively. Among those lesions developing acute
diffuse consolidation, 80% proceeded to develop to a
modified conventional pattern of late changes; among
those lesions with no acute densities, 59% developed a
scar-like pattern of late changes.

In a study from Kyoto University, late changes (after a
dose of 48 Gy in 12 Gy fractions) developed as patchy
consolidation (within irradiated lung, not conforming to
SBRT field) in 8%, discrete consolidation (within SBRT
field, not outlining shape of field) in 27% and solid con-
solidation (outlining SBRT field) in 65%.[53] The shape
of the radiation changes were described as wedge (35%),
round (35%) and irregular (29%); the extent of fibrotic
change was described as peripheral (48%), central (6%),
both (39%) and skip lesion(s) isolated from the tumor
(6%).

Liver
SBRT in commonly used to treat liver tumors, including
hepatocellular carcinoma as well as limited metastases, in
patients who are medically inoperable, who refuse more
invasive techniques, whose disease is unresectable and/or
who have several lesions. Table 2 (Additional file 1) sum-
marizes the toxicity, prescribed dose and dose-volume
constraints used in selected studies described below.

Acute mild fatigue, malaise, nausea, diarrhea and derma-
titis are common. Grade ≥3 toxicity, including hepatic
failure, bowel perforation or obstruction and gastrointes-
tinal bleeding, is rare. In the rare situations of hepatic fail-
ure, it is often difficult to determine whether hepatic
failure resulted from radiation or tumor progression.

Select studies
At the University of Rochester, 69 patients were treated
with SBRT for limited metastases of the liver. At a median
follow-up of 14.5 months, grade 1–2 elevation of liver
function tests occurred in 28% of patients, and no grade
≥3 toxicity was observed.[59] Clinically insignificant radi-
ographic changes were seen in all patients.

In a collaborative Phase I study, the University of Colo-
rado and Indiana University enrolled 18 patients with 1–
3 liver metastases treated with three fractions of SBRT.[60]
No patients developed grade >2 toxicity. Late radiographic
changes of well circumscribed hypodense lesions were
commonly seen, corresponding to the 30 Gy dose distri-
bution. In a follow-up analysis, including an additional
18 patients treated on a Phase II study of 3 fractions of 20
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Gy, 1 patient developed subcutaneous tissue breakdown;
no radiation-related liver toxicity occurred.[61]

In a study from Aarhus University, 44 patients with liver
metastases from colorectal cancer received a dose of 45 Gy
in 15 Gy fractions. Acute toxicity (<6 months after SBRT)
included grade 3 colonic ulceration (n = 1), grade 3 duo-
denal ulceration (n = 2), grade 3 skin ulceration (n = 2),
grade 3–4 pain (n = 11), grade 3 nausea (n = 2) and grade
3 diarrhea (n = 2). One patient died from hepatic failure
<2 months after SBRT. Late toxicity was not explicitly dis-
cussed.[62] Grade 3 gastric and duodenal mucosal ulcera-
tion 3 months after SBRT was also reported in 2 of 48
patients in a recent Italian study, in which patients
received 30–36 Gy in 3 fractions.[63]

Princess Margaret Hospital treated 41 patients with pri-
mary hepatocellular or intrahepatic biliary cancer on a
Phase I study of 24–60 Gy in 6 fractions.[64] Using nor-
mal tissue complication modeling, patients were stratified
into 3 different dose escalation groups, based on the effec-
tive liver volume to be irradiated. Acute (<3 months) ele-
vation of liver enzymes occurred in 24% of patients, acute
grade 3 nausea occurred in 7% and acute transient biliary
obstruction occurred in 5% patients. There was one late
death from gastrointestinal bleeding of a duodenal-tumor
fistula and one patient required surgery for a bowel
obstruction; both late toxicities were exacerbated by (and
perhaps attributable to) recurrent disease.

Pancreas
Locally advanced pancreatic cancer has a grave prognosis,
with a high likelihood of metastatic and local progression.
Radiation can palliate or prophylactically palliate symp-
toms from local progression, such as biliary obstruction,
bowel obstruction and splanchnic nerve pain. SBRT may
afford an advantage in terms of improved local control,
reduced volume of normal tissue exposure and shorter
treatment duration.

Table 3 (Additional file 1) summarizes the toxicity, pre-
scribed dose and dose-volume constraints used in the
studies described below.

Select studies
Aarhus University conducted a Phase II study in which 22
patients with unresectable pancreatic cancer received 45
Gy in 15 Gy fractions.[65]. All evaluable patients devel-
oped acute (14 days post- treatment) decline in perform-
ance status and nausea, and most developed acute to
subacute pain. Other grade 2–4 toxicities included
diarrhea, and gastrointestinal mucositis, ulceration and
perforation. Whether toxicity was related to SBRT or dis-
ease progression could not be assessed. Poor survival pre-
cluded a late toxicity analysis.

Stanford University conducted a Phase I in which 15
patients with unresectable pancreatic cancer received sin-
gle fraction SBRT, escalated from 15 to 25 Gy.[66] No
acute grade ≥3 toxicity was observed; late toxicity and
symptom control were not explicitly reported, presuma-
bly due to limited follow-up (median 5 months) and poor
survival (median 11 months). In a subsequent Phase II
study, 16 patients received 45 Gy with intensity modu-
lated radiotherapy followed by a single 25 Gy SBRT frac-
tion.[67] Acute grade 3 toxicity included gastroparesis in
2 patients (one prior to receiving SBRT). Late toxicity
occurred in some patients (number not explicitly
reported) who developed grade 2 duodenal ulceration 4–
6 months after SBRT. In a later report, the authors docu-
ment late gastrointestinal bleeding (unknown cause) and
duodenal obstruction occurring in the same patient.[68]

The reported tolerability of SBRT by Stanford University
conflicts with the excessive toxicity reported by Aarhus
University. Perhaps these differences are attributable to
different dose fractionation, different treatment design
(i.e. Stanford University uses respiratory tracking), differ-
ences in patient population (i.e. tumor volumes were
appreciably larger in Aarhus University study) and/or dif-
ferences in failure pattern.

Radiation induced histo-pathologic changes
In a study from Stanford University, the pathologic
changes after SBRT to the pancreas were characterized in 4
patients who underwent an autopsy 5–7 months after
SBRT.[68] The primary tumors developed extensive fibro-
sis, tumor necrosis, ischemic necrosis widespread vascular
injury (fibrinous exudate of arterial wall, necrosis and
luminal occlusion) and sparse residual cancer cells. Stro-
mal changes included fibrosis, atypical fibroblasts and
fibrin deposition. Lymph nodes within the SBRT field
were depleted of lymphocytes. In 1 patient, the adjoining
colorectal mucosa, estimated to have received 4–11.5 Gy,
developed a mucosal exudate with possible pseudomem-
brane formation and submucosal vascular damage.

Spine
Spinal metastases are quite common and are readily palli-
ated with radiation. The commonly prescribed doses of 20
– 40 Gy in 2.5 – 4 Gy fractions effectively palliates spinal
metastases, with safe dose exposure to the spinal cord. The
prescribed dose of 20 – 40 Gy with these larger fraction
sizes is generally accepted to be at the spinal cord toler-
ance (though certainly below the TD 5/5).[23] Additional
radiation can be delivered to maximize tumor control or
to treat recurrent disease, albeit with greater risks of spinal
cord toxicity.[69] In patients with previously irradiated,
symptomatic spinal metastases, SBRT is well suited to
deliver additional radiation to the vertebral body while
minimizing spinal cord dose. While hypofractionation in
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this situation is counter-intuitive, early clinical data has
shown it to be tolerable, albeit with limited patient fol-
low-up.

Several studies have demonstrated excellent palliation
using single fraction (spinal radiosurgery) [70-77] and
hypofractionated SBRT [75,78-80] to treat spinal metas-
tases, using tools such as intensity modulated radia-
tion,[72,73,77-79,81] and IGRT, [82] to minimize spinal
cord dose. At least one report has suggested that acute tox-
icity using SBRT is perhaps better than conventional radi-
ation.[83] Late toxicity is difficult to assess in this
population of patients due to the poor survival of patients
with metastatic disease. However, it appears that myelop-
athy and radiculopathy rarely occur.[84] Most institutions
try to achieve a spinal cord maximum dose <10 Gy.[83] A
recent multi-institutional pooled analysis has shown that
radiation myelopathy has only been documented to occur
after exceeding a fractional dose maximum of 10 Gy to the
spinal cord and/or a biologically effective dose of 60 Gy in
2 Gy fractions; other dose-volume paramaters such as
dose to 1–5 ml of spinal cord were not significant in pre-
dicting radiation myelopathy.[85] More rigid dose con-
straints have yet to be published. A recent paper offers a
comprehensive review of spinal radiosurgery. [77] Select
studies are discussed below, with a focus on treatment
related toxicity.

Select studies
Henry Ford Hospital published the planning constraints
and outcome of single fraction SBRT in the treatment of
233 lesions in 177 patients. Their data suggests that a dose
constraint of 10 Gy to <10% of the contoured spinal cord
(6 mm above and below the target) is safe, and that small
volumes (<1% of the contoured cord) can safely receive
higher maximal doses, perhaps up to 20 Gy.[70,71] One
of 177 patients developed radiation related spinal cord
injury, resulting in mild unilateral lower extremity weak-
ness (4 out of 5 strength) that responded to steroids.

In a study from Memorial Sloan Kettering, 103 lesions in
93 patients were treated with single fraction SBRT; the pre-
scribed dose was 18–24 Gy to the PTV, with the spinal
cord limited to 12–14 Gy. [86] Late toxicity included radi-
ographic evidence of vertebral body fracture in the
absence of tumor in 2 patients and tracheoesophageal fis-
tula requiring surgery in 1 patient.

The University of Pittsburgh recently updated their experi-
ence of single dose SBRT in 393 patients with 500 lesions.
The prescribed dose was 12.5–20 Gy around the periphery
of the targeted lesions, allowing for only a small volume
of spinal cord to exceed 8 Gy. No acute or late neurotoxic-
ity was observed, and no late toxicity was reported after a
follow-up of 3–53 (median 21) months.

Recommendations
Deriving standard acceptable maximally effective and
minimally toxic dose fractionation schemes presents a
challenge, even with the available published outcome
data. In part, this complexity arises from not only the dif-
ferent dose-fractionation schemes used, but also in differ-
ences in how the dose is prescribed. For example, a
fractional dose of 20 Gy delivered to the isocenter is
appreciably less than a fractional dose of 20 Gy delivered
to the 80% idosdose line and/or periphery of the PTV.
Tables 1–3 (Additional file 1) summarize how the dose
was prescribed in many of the studies discussed above.
These tables also summarize the late toxicity (as well as
acute toxicity if the timing of the toxicities was not elabo-
rated). While some studies provided a correlation of tox-
icity with dose-volume parameters of the affected normal
tissue, most did not. Acknowledging these limitations,
Tables 4–5 (Additional file 1) attempt to offer recommen-
dations for safe SBRT hypofractionated dose exposure to
small volumes of normal tissues. It should be appreciated
that these are general guidelines derived from the litera-
ture as discussed above. For the most part, the volume of
normal tissue exceeding these tolerance doses is not well
described, but certainly every effort should be made to
minimize the volume exposed to therapeutic or close to
therapeutic dose. Tables 1–2 (Additional file 1) do offer
the dose-volume constraints used in published studies
and the recent RTOG 0236 and ongoing RTOG 0438 stud-
ies

Conclusion
SBRT reduces the volume of normal tissue exposed to
therapeutic doses, allowing for larger fractional dose
delivery. Recent clinical data has demonstrated the effi-
cacy and safety of SBRT in the treatment of tumors in sev-
eral body sites. Further study and longer follow-up are
needed to ascertain the dose-fractionation schedule that
optimizes tumor control while minimizing toxicity, and
to better understand the optimal normal tissue dose-vol-
ume constraints. CURED, a recently formed multi-institu-
tional, international collaborative group stemming from
the Late Effects of Normal Tissue (LENT) conferences, is
actively investigating late effects after cancer therapy, and
is potentially well-equipped to further investigate late tox-
icity after SBRT.
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