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Abstract: Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment,
whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensi-
tizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in
the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells.
The incidence rate of breast cancer (BC) is regularly growing among women, which are currently
being treated with methods, such as chemotherapy, radiotherapy, and surgery. These conventional
treatment methods are invasive and often produce unwanted side effects, whereas PDT is more
specific and localized method of cancer treatment. The utilization of nanoparticles in PDT has shown
great advantages compared to free photosensitizers in terms of solubility, early degradation, and
biodistribution, as well as far more effective intercellular penetration and uptake in targeted cancer
cells. This review gives an overview of the use of inorganic nanoparticles (NPs), including: gold,
magnetic, carbon-based, ceramic, and up-conversion NPs, as well as quantum dots in PDT over the
last 10 years (2009 to 2019), with a particular focus on the active targeting strategies for the PDT
treatment of BC.

Keywords: Breast cancer treatment; Photodynamic therapy; Inorganic nanoparticles; Active targeting

1. Introduction

Breast cancer (BC) is the most prevalent malignancy among women worldwide [1].
Cisplatin (cis-diammine-dichloroplatinum (II)) is currently an approved drug that can be
utilized for the treatment of various cancers, since it inhibits DNA replication and chain
elongation [1]. Although numerous anticancer drugs have been developed over the years
for BC treatment, it still remains a therapeutic challenge; since BC can metastasis, become
resistant to certain drugs, as well as exhibit lesions of recurrence after surgery [2]. More
importantly, conventional anticancer drugs, when administered, spread throughout the
body, and thus affect healthy cells and tissues, instead of just the localized tumor area,
which requires treatment [3].

The effectiveness of photodynamic therapy (PDT) in ablating localized BC tumors,
with limited side-effects is a significant breakthrough in unconventional treatments [4].
PDT can be performed as an adjuvant to other therapies, since it enables selective, as
well as localized damage to tumors and their surrounding vasculature [4]. PDT is based
on the activation of a nontoxic photosensitizer (PS) with an appropriate light to produce
reactive oxygen species (ROS), which in turn eradicates cancer cells [4]. However, due to
the hydrophobic nature of most PSs, they have high tendency to aggregate in aqueous
solution, reducing the efficacy of PDT treatment [5]. In addition, PSs do not tend to bind to
tumor cells selectively, resulting in poor specificity uptake in cancer cells and so localized
normal tissues can become affected during treatment [6]. In this context, the combination
of nanotechnology and PDT in the form of nanoplatforms is of great importance, whereby
PSs are covalently or non-covalently bound to the nanoparticles (NPs) [6]. The selectivity of
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the nano delivery agents can be also enhanced using active targeting, whereby antibodies
and small ligands can be bound to NPs, and so allow for PSs to be specifically (as well
as directly) delivered into targeted tumor cells [6]. Therefore, the aim of this review is to
collate and discuss the types of inorganic NPs that have been used for the active (as well as
targeted) delivery of PSs within PDT BC treatment.

2. Conventional Treatments of Breast Cancer

Chemotherapy, surgery, and radiotherapy are the main therapies utilized for small
sized BC tumors [7]. Some other less invasive treatments, such as cryotherapy, laser
ablation, and radiofrequency ablation (RFA), have also been developed for early stage
BC [8,9]. In spite of promising developments in the treatment of early BC, surgery is
generally the first option. Often, positive BC tumor margins can remain unresected, and so
the possibility of reoccurrence is eminent. Thus, most often, patients require additional
surgeries and chemotherapy treatments [10,11]. In this context, new (and far more effective)
treatment modalities are sought after in order to mitigate the collateral damage, as well as
improve the treatment outcomes of BC.

3. Photodynamic Therapy (PDT) and Photosensitizers (PSs)

PDT is an alternative non-invasive therapeutic technique for the treatment of various
types of cancers and non-oncological diseases [4]. PDT is painless and its selectivity to
cancer cells is well tolerated by patients [12]. It involves three main aspects: (1) a photo
active compound or PS that accumulates in neoplastic cells; (2) local light to excite and
activate the PS; as well as (3) surrounding tumor molecular oxygen [13]. When a PS
becomes activated through illumination at an appropriate wavelength and it reacts with
surrounding molecular oxygen, it produces reactive oxygen species (ROS) and singlet
oxygen, which destroys localized tumor cells [13].

Among the broad spectrum of light, ultraviolet (UV) light (200–400 nm) may damage
biological components, and so its biomedical applications are restrained, while visible
light in the range of 400–650 nm can be utilized for activation of various PSs [13]. In
addition, “biological transparent windows” in near infrared (NIR)-I (750–1000 nm) and
NIR-II window (1000–1700 nm) enjoy low absorption and scattering, with deep tissue
penetration and low auto-fluorescence from biological tissues, and so can be utilized for
biophotonic imaging [14,15].

Tissue penetration depth of light can be sometimes limiting, which can affect the
amount of PS activated, which in turn affects the amount of ROS and singlet oxygen
produced to kill tumor cells [16]. Short wavelengths (<650 nm) generally have a lower
penetration depth in tissues, while longer wavelength (above 850 nm) ranges are not
sufficient enough to excited or activate PSs [16]. Thus, the most appropriate wavelength
for PDT is between the range of 600 and 850 nm, which is known as the “phototherapeutic
window” (Figure 1) [16].

The most effective PSs in PDT cancer applications are chemically pure and stable, as
well as have minimal dark toxicity and side effects, with ideal hydrophilic properties [17].
Additionally, PSs should have strong absorption within the range of 600–850 nm, as
to ensure, limited scattering, high tissue depth penetration, with maximum extinction
coefficients [17].

Hematoporphyrin derivative (HpD) and photofrin are the first-generation commercial
PSs, known for harsh PDT unwanted side effects [18]. While aminolevulinic acid (ALA),
esterified derivatives of ALA and phthalocyanine compounds, which are considered
second generation PSs, are known to produce minimal PDT side effects, with improved
ROS generation, due to their longer absorption wavelengths, with improved tissue depth
penetration [18]. Moreover, conjugation of second generation PSs to various biological
carriers (such as nanoparticles) are referred to as third generation PSs, since these “carrier”
conjugations generally allow PSs to selectively accumulate in cancer cells [19].
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Thus, the activation wavelength, solubility, octanol/water partition coefficient, and
molar extinction coefficient are of great importance for determining the potency of a PS in
PDT. The main parameters of some PSs are compared in Table S1.Pharmaceutics 2021, 13, x 3 of 31 
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Figure 1. Electromagnetic spectrum showing the ideal phototherapeutic window for photodynamic therapy (PDT) treatment
of cancer.

4. Mechanisms of Photodynamic Therapy

There are two main PDT mechanisms, which occur in tumor cells, in the presence of
molecular oxygen (Figure 2). Upon irradiation of a PS with a wavelength of light coinciding
its absorption spectrum, the PS molecule becomes converted from a ground state to a singlet
excited state [20]. The PS drug loses a part of its energy through fluorescence and the
remainder is transferred and so the singlet state PS becomes excited to a triplet state. In
a type I mechanism, the triplet excited state PS interacts with biomolecules from tumors
surroundings to form radicals, which react with molecular oxygen to produce ROS, such
as hydrogen peroxides, superoxide anion radicals, and hydroxyl radicals [20]. In the type
II mechanism, the energy from an excited triple state PS is directly transferred to triplet
state oxygen (3O2) to form singlet oxygen (1O2) (Figure 2A) [20]. Both ROS and 1O2 induce
cancer tumor cell death via either apoptotic, necrotic, or autophagy cell death pathways,
depending on the intracellular localization of a PS [21]. Apoptotic cell death is usually due
to mitochondrial PS localization and damage, whereas necrotic cell death is mostly due to
cell membrane damage and loss of integrity. Within autophagy cell death, usually the PS
induces endoplasmic reticulum or lysosomes damage; however, this form of PDT induced
tumor cell death is not favored since cells can recover [21].
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5. Passive and Active Targeting PS Uptake Strategies

PS subcellular localization uptake can be classified into either passive or specifically
active targeting (Figure 2B). Passive PS uptake is encouraged via the permeability and
retention (EPR) effect, which causes tumor tissues to present a leaky vasculature [22]. It is
natural occurring process, which utilizes the difference in anatomical and pathophysiologi-
cal abnormalities of cancer tissue versus normal cells to improve PS passivation in tumor
cells [22]. When nanoparticle carriers are bound to PS, they tend to promote the passive
uptake of PSs via the EPR effect [22]. Active targeting requires the binding of specific
targeting ligands, such as antibodies, peptides, aptamers, folic acid (FA), small ligands,
or carbohydrates, onto the surface of PS-loaded nanocarrier systems, which are explicitly
overexpressed only on cancer cell receptors; thus, PS uptake in these cells is specifically
enhanced and actively internalized [22].

In comparison to passive targeting, nanoparticle active targeting most definitely does
provide a more selective absorption of PS in tumor cells with improved PS concentration
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accumulation; thus, higher accumulation of the nanocarrier and cellular concentration of
the drug into the cells will take place [22,23].

6. Nanoparticle Delivery Systems for PDT

Drug delivery systems based on nanoparticles (NPs) are a promising approach in PDT
to enhance PS absorption in cancer cells. A large surface to volume ratio of the NPs can
promote the loading capacity of PSs and so improves concentration delivery and either
passive or active uptake in cancer cells [24]. In addition, anchoring of PSs to NPs can
improve either the stability and solubility, as well as reduce dark toxicity and enhance
localized delivery, to improve PDT treatment outcomes and minimize unwanted side
effects [24]. Moreover, the small size of NPs, not only assists PSs to accumulate in cancer
cells via passive or active targeting, but also allows these nanocarrier to mimic biological
molecules and, thus, easily pass through immune system barriers [25]. In relation to active
targeting, PS nanocarriers are usually further functionalized with specific ligands, which
are compatible to overexpressed tumor sites, to improve their biocompatibility and specific
targeted absorption [26].

Various organic and inorganic NP carrier platforms have been developed over the
years for improved PS uptake and enhanced PDT treatment of BC. In this current review,
the utilization of actively targeted inorganic NPs for PDT of BC has been discussed over
10 years.

7. Types of Inorganic NPs Utilized for Active Breast Cancer Targeting PDT Treatments

Inorganic NPs have great advantages over organic nanomaterials through their high
stability, tunable size, and optical properties, as well as ease of surface functionalization
to make them more biocompatible within biological applications [27,28]. Additionally,
metallic and inorganic NPs have a lower degradation rate when compared to organic
NPs [29]. The main characteristics of inorganic NPs have been summarized in Table 1.

7.1. Noble Metal Nanoparticles

Among various types of metallic NPs, gold NPs are ideal candidates for PS delivery
into the body, due to their inertness, low toxicity, and limited side effects, as well as ease of
synthesis and surface functionalization [30]. Furthermore, gold NPs are able to enhance the
passive uptake of a PS-carrier system in tumor cells via the EPR effect [30,31]. Moreover,
gold NPs possess a large surface area, which can be functionalized with a variety of ligands
for active targeting [32]. Considering the high binding affinity of gold to thiol and amine
groups, these NPs can be easily functionalized with antibodies, proteins, nucleic acids,
and carbohydrates, which enable selective targeting and enhanced PS delivery in cancer
tissues [33].
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Table 1. Main properties and structures of inorganic nanoparticles (NPs).

Inorganic NPs Properties Structure Reference

Gold NPs

High surface to volume ratio, easy
functionalization with antibodies, suitable

for passive and active targeting, near
infrared absorption, localized surface

plasmon resonance (LSPR) characteristics
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Gold NPs can be employed for imaging contrast agents and radiosensitizers thanks to
the high atomic number of gold [30]. Furthermore, since gold NPs have a high atomic num-
ber and optical properties of light absorbance within near infrared (NIR) wavelengths [14],
they generate heat when exposed to NIR laser irradiation, through surface plasmon res-
onance effects, allowing them to induce hyperthermia in tumor cells and so assist in
improving PDT treatment outcomes [30]. In addition, since gold NPs peak absorbance
wavelength is within the visible range of 400–600 nm, NIR light is transmitted through
normal cells with low absorption [41], resulting in hyperthermia induction in cancer cells,
with very little damage to surrounding healthy cells [42]. Lastly, the surface plasmon
resonance effect of gold NPs within the NIR region enhances singlet oxygen and ROS
generation [28], and so they tend to improve the overall treatment effect of PDT [31].

Studies by Li et al. (2009) noted that the passive tumor uptake of gold PS nanocon-
jugates in BC cells could be enhanced by binding them to active targeting biomark-
ers [43]. With respect to active targeting, a novel 4-component anti HER-2 antibody–
zinc–phthalocyanine derivative–polyethylene glycol–gold NP conjugates were prepared
for the in vitro PDT treatment of SK-BR-3 (BC cells with HER-2 receptors), MDA-MB-231
(BC cells without the receptor overexpression), and normal breast cells (MCF-10A) [44]. The
study noted that the binding of the antibody to the gold PS nanoconjugate did not have an
effect on the rate of singlet oxygen production and fluorescence microscopy demonstrated
higher BC cellular uptake in SK-BR-3 cells, due to active HER-2 receptor targeting [44].
Within PDT treatments using 633 nm laser irradiation, the gold PS antibody nanoconjugate
induced 40% cell death in SK-BR-3 cells, whereas MDA-MB-231 only noted 25%, and nor-
mal MCF-10A reported 7% cell death [44]. These findings suggested that active antibody
receptor targeting enhanced the delivery of the PS in BC, which has over expressed HER-2
receptors, and so significantly improved the overall treatment outcomes of PDT [44].

In a similar study, gold NPs were stabilized with hydrophobic zinc phthalocyanine
PS (C11Pc) and hydrophilic polyethylene glycol (PEG) for the PDT treatment of SK-BR-3
BC [45]. The C11Pc-PEG gold NPs were then further functionalized with jacalin (a lectin
specific for cancer-associated Thomsen–Friedenreich (T) carbohydrate antigen) or with
monoclonal antibodies specific for the human epidermal growth factor receptor-2 (HER-
2) [45]. The study revealed that the NP conjugates were more specifically internalized
within the acidic organelles SK-BR-3 BC cells [45]. Within PDT treatments under 633 nm
irradiation, both jacalin and antibody conjugates at C11Pc equivalent concentrations of
1 µM and 1.15 µM, showed 99% cell death [45]. However, antibody-conjugates note the
main advantages of limited PS dark toxicity, when compared to the jacalin-conjugates in
SK-BR-3 BC cells, since prior to irradiation, antibody-conjugates reported a 58.9–70.2%
viability, whereas jacalin-conjugates noted 85.5–98.5% [45].

Relating to the PDT effect of zinc phthalocyanine PSs on BC cells, gold NPs were
functionalized with two substituted zinc (II) phthalocyanine PSs, with differing carbon
chain lengths (C3Pc or C11Pc), a lactose derivative for stabilization, and a BC galectin-1
targeting agent [32]. Theses functionalized NPs–PSs were utilized to evaluate in vitro PDT
efficiency of two breast adenocarcinoma cell lines namely, SK-BR-3 and MDA-MB-231 [32].
The conducted studies showed that the galectin-1 receptors overexpressed on the surface
of MDA-MB-231 cells could only be targeted via the lactose-C3Pc-AuNPs, whereas the
lactose-C11Pc-AuNPs in SK-BR-3 cells reported no active galectin-1 targeting. Furthermore,
post-PDT (at 633 nm) no internalization and cell death was observed in MDA-MB-231 cells
treated with lactose-C11Pc-AuNPs. Whereas, the lactose-C3Pc-AuNPs reported significant
galectin-1 receptor targeting in both BC cell lines and noted far higher cytotoxicity in
comparison to the C11Pc PS [32].

The PDT effect of gold NPs prepared via biphasic and monophasic approaches on
SK-BR-3 in vitro cultured human BC cells was further elaborated by Penon et al. (2017) [46].
The gold NPs were further functionalized with a porphyrin derivative and PEG (PR-
AuNP-PEG) synthesized using two different protocols [46]. The monophasic method
reported more porphyrin derivative attached ligands per NP and higher singlet oxygen
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species yields than when compared to the biphasic nanoconjugates [46]. The researchers
then covalently linked an anti-erbB2 antibody (PR-AuNP-PEG-Ab) to the monophasic
PR-AuNP-PEG nanoconjugates, to target the overexpressed erbB2 receptors on the surface
of SK-BR-3 BC cells [46]. Overall, the study noted higher cellular PR PS targeted uptake
in BC cells when compared to normal cells, suggesting it had solubilized the PS, with
significant cellular damage after 495 nm laser irradiation PDT treatment [46].

In other studies, gold nanostars have showed promising characteristics for Raman
diagnostics. Since gold nanostars have tunable plasmon bands in the NIR tissue optical
window, as well as multiple sharp branches, these act as “hot-spots” and so are capable of
the surface-enhanced Raman scattering (SERS) effect [47]. Inspired by the unique SERS
properties of gold nanostars, Fales et al. (2013) proposed the utilization of these nanostars
for the Raman imaging and PDT treatment of BT-549 BC cells [48]. The nanotheranostic
system comprised of a Raman-labelled gold nanostar, protoporphyrin IX (PpIX) PS, and a
cell-penetrating peptide (CPP) known as transactivator of transcription (TAT) to enhance
PS intercellular accumulation of the nanoplatform [48]. The gold nanostars were also
coated with PEG and silica shells to enhance particle stability and PS-loading capacity [48].
Raman imaging results noted that the nanoplatform actively accumulated in the BC cells,
due to the overexpression presence of TAT peptides [47]. The PDT treatment of BT-549 BC
cells with 0.1 nM nanoconjugate and 633 nm irradiation revealed a higher photocytotoxicity
and cell death, when compared to the 0.1 nM PpIX-loaded NP platforms without TAT [48].

The application of gold nanomaterials has been further developed to gold nanorod
applications for successful BC active targeting PDT treatments. The enhanced active
uptake of gold nanorods within in vitro cultured MCF-7 BC cells was found when gold
nanorods were conjugated with anti-HER-2 antibodies [49]. Dube et al. (2018) reported
that the conjugation of a complex of glycosylated zinc phthalocyanine to gold nanorods
(AuNRs) could improve triplet, singlet, and fluorescence quantum yields, more than
gold nanospheres (AuNSs), in PDT applications [50]. PDT results at 680 nm noted that
less than 50% viable MCF-7cells were found at a concentration of ≥40 µg/mL complex-
AuNRs, while this same result was only achievable at a concentration of ≥80 µg/mL
complex-AuNSs, suggesting that AuNRs improve PS uptake and PDT outcomes at far
lower concentrations [50].

A nanoplatform of AuNR@MSN-RLA/CS(DMA)-PEG was also proposed for the com-
binational PDT/photothermal therapy (PTT) of MCF-7 breast cancer [51]. Gold nanorods
were coated with mesoporous silica (AuNR@MSN) and β-cyclodextrin (β-CD), as well as
loaded with Indocyanine green (ICG) [51]. The nanoplatform was then grafted with an
Ada modified RLA peptide ([RLARLAR]2), to enhance plasma membrane permeability
and mitochondria-targeting capacity to form AuNR@MSN-ICG- β-CD/Ada-RLA [51].
Then 2,3-dimethylmaleic anhydride (DMA)-modified chitosan oligosaccharide-block-poly
(ethylene glycol) polymer (CS(DMA)-PEG) was coated onto the surface of AuNR@MSN-
ICG- β-CD/Ada-RLA to serve as a charge-switchable and anti-fouling layer (Figure 3) [51].
Within in vitro MCF-7 BC cytotoxicity assays, the nanoconjugate showed no obvious
toxicity prior to laser irradiation [51]. MCF-7 cells treated with AuNR@MSN-ICG- β-
CD/Ada-RLA/CS(DMA)-PEG at pH 6.8 displayed a higher inhibition and cellular uptake
when compared to AuNR@MSN-ICG, suggesting that CS(DMA)-PEG coating protected
the nanoplatform from hydrolysis, and so promoted cancer cell uptake [51]. Moreover, the
weak acidity microenvironment of cancer cells could reverse the charge of the AuNR@MSN-
ICG- β-CD/Ada-RLA/CS(DMA)-PEG nanoplatform, promoting mitochondrial targeting
and overall improved ROS generation [51]. When MCF-7 BC cells were treated with
the nanoconjugate and 808 nm NIR laser irradiation, the AuNR@MSN-ICG- β-CD/Ada-
RLA/CS(DMA)-PEG complex noted the highest PDT and PTT inhibition relative to control
groups, due to its overall stability and superior ROS, which was mediated by the plasmonic
photothermal effects and local electric field of the DMA AuNR [51]. In vivo investigations
within xenograft nude mouse models noted a higher tumor temperature in mice treated
with AuNR@MSN-ICG- β-CD/Ada-RLA/CS(DMA)-PEG than when compared to those
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treated with AuNR@MSN-ICG, suggesting the DMA coated nanoconjugates were far more
superior at treating BS in combination with PDT and PTT therapy [51].
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A chlorine e6 PS based (Ce6)-AuNR@SiO2-d-CPP nanoconjugate template was devel-
oped by synthesizing gold nanorods and passivating PEGylated mesoporous SiO2 onto the
gold NPs surface core to entrap the Ce6 PS [52]. Then, a D-type cell penetrating peptide
(d-CPP) was linked to the gold nano shell to direct active PS targeting of the nanocarrier
towards human BC MCF-7 cells [52]. Free Ce6, AuNR@SiO2-mPEG, and Ce6-AuNR@SiO2-
d-CPP showed no dark cytotoxicity within in vitro cultured BC cells. The combinative PDT
(650 nm)/PTT (808 nm) therapy results on BC cultured cells noted that Ce6-AuNR@SiO2-d-
CPP provided the highest treatment outcomes and caused almost complete cell death [52].
The injection of Ce6-AuNR@SiO2-d-CPP into a nude mouse BC xenografts and exposure to
PTT/PDT combinational therapy noted a significant decrease in tumor weight sizes [52].

Dendrimer-encapsulated NPs (DENs) were first reported in 1998, whereby metal
ions were encapsulated within dendrimers, and to reduce them to produce zerovalent
DENs [37]. DENs are synthetic polar macromolecules consisting of branches that emanate
from a core that has functional groups of neutral, positive, or negative charges [53]. They
are monodisperse NPs, which have lower toxicity in cells, a high surface reactivity, as well
as allow for slow release and, thus, report a great accumulation in tumor cells, making them
suitable for various drug delivery enhancement applications [54]. Poly(propyleneimine)
(PPI) and poly(amidoamine) (PAMAM) dendrimers are some examples of DENs [55].

In this regard, one study evaluated the applicability of multiple particles delivery
complexes (MPDC) for the PDT treatment of MCF-7 BC cell, using 680 nm laser irradia-
tion [56]. The MPDC was comprised of gold NP encapsulated dendrimers (AuDENPs)
and a sulfonated zinc-phthalocyanine mix (ZnPcsmix) [56]. The morphology of the PDT
AuDENPs–ZnPcsmix treated BC cells noted an altered appearance from epithelial-like to
irregular and a 59% of apoptotic cell death was found, in comparison to control groups [56].
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In addition, a decrease in the polarized mitochondrial membranes of the BC cells and an
increase in the depolarized cell membranes were observed after PDT treatment, with an
increase in caspase 3/7 activity and cytotoxicity being found [56].

Recently, a multi-stimuli-responsive theranostic nanoplatform for the fluorescence
imaging-guided PDT/PTT dual-therapy of MCF-7 BC cells was proposed [57]. The
nanoplatform was based on functionalizing AuNRs with hyaluronic acid (HA), and subse-
quently conjugating anti-HER-2 antibody, 5-aminolevulinic acid (ALA) and Cy7.5 onto the
HA, to enhance active PDT targeting and fluorescence imaging respectively (Figure 4) [57].
Cellular uptake efficiency of AuNR-HA-ALA/Cy7.5-HER-2 noted a significantly improved
uptake of 75.5% in MCF-7 cells when compared to control groups, which received AuNR-
HA-ALA/Cy7.5 of 36%, suggesting the nanoplatform improved PS uptake via the specific
HER-2 receptor mediated dual-targeting strategy [57]. Furthermore, AuNR-HA-ALA/Cy7.5-
HER-2 single treated PDT MCF-7 cells at 635 nm reported a 75.6% decrease in cell viability,
and cells treated with singular PTT at 808 nm noted a 58.4% decrease in cell viability [57].
Overall, a combinative PDT/PTT modality at a 5.5 µg/mL ALA concentration with the
AuNR-HA-ALA/Cy7.5-HER-2 nanoplatform noted a significant 61.2% cell death [57]. Within
in vivo studies on BC-induced mice, this dual treatment modality showed a rapid decrease
in tumor sizes 20-days post treatment [57].
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Figure 4. Schematic illustration for preparing GNR-HA-ALA/Cy7.5-HER2 with triple-responsive
drug release and its application for HER2/CD44 dual-targeted and fluorescence imaging-guided
combined PDT/ photothermal therapy (PTT) treatment of breast cancer. Reprinted with permission
from reference [57]. Copyright 2019 Elsevier.

NP drug carriers are sometimes easily recognized and cleared from the body via
the mononuclear-phagocyte system (MPS); thus, the surface of NPs drug carriers are
generally coated with PEG to act as a shield, and so reduce this biological clearance [58].
However, some studies have noted that upon second administration of PEGylated NP
drug carriers the human body can sometimes become stimulated to produce anti-PEG
antibodies, resulting in the unwanted rapid clearance of the PEGylated NP, decreasing
overall drug uptake in tumor cells [58–60]. In order to alleviate the rapid clearance of
NPs via MPS, researchers have focused on red blood cells (RBCs), since they are a natural
long-circulation delivery vehicle, which do not interfere or impact on the functionality of
NPs [61–63].



Pharmaceutics 2021, 13, 296 11 of 30

In a study, cationized gold nanoclusters (CAuNCs) with various initial sizes of 150,
200, and 300 nm were constructed and coated with HA (CAuNCs@HA) [58]. In order to
increase the circulation of the CAuNCs@HA nanoclusters, an RBC membrane was attached
to its surface forming mCAuNCs@HA [58]. The mCAuNCs@HA nanoclusters were then
loaded with a pheophorbide A (PheoA) PS, which is a ROS-responsive prodrug paclitaxel
dimer (PXTK) and an anti-PD-L1 peptide dPPA forming pPP-mCAuNCs@HA [58]. This
combinative PDT, chemotherapy and immunotherapy treatment approach was investigated
within in vitro cultured 4T1 BC cells [58]. The study confirmed that the RBC membrane
improved the overall PS in vitro cellular uptake in 4T1 cells, which was found to be
a 2.02-, 1.55-, and 1.95-fold higher uptake for NP-300, NP-200, and NP-150 nm pPP-
mCAuNCs@HA, respectively, when compared to uncoated groups [58]. The study also
demonstrated that the 650 nm laser irradiation PDT induced late apoptosis with pPP-
mCAuNCs@HA was a 2.41-fold higher than when compared to pPP-mCAuNCs@HA
without irradiation [58]. The anti-tumor therapeutic effects within in vivo 4T1 tumor
bearing female mice treated with pPP-mCAuNCs@HA and irradiation was 2.47-fold higher
than when compared to groups injected with pPPmCAuNCs@HA without irradiation [58].

The successful applications of gold NPs in BC PDT active targeting treatments within
in vitro and in vivo studies have led to more clinical applications [64]. In spite of the fact
that gold NPs are inert for bio-tissues and are an alternative platform for PS delivery in
PDT BC treatment studies, particular care must be exercised within clinical studies to noted
their long-term toxicity and biodistribution, as some tend to have a limited clearance in the
spleen and liver; however, this phenomenon is highly dependent on the different shape,
size, and surface charge of AuNP [64].

7.2. Magnetic Nanoparticles

Magnetic NPs (MNPs) have drawn tremendous attention within in vivo and in vitro
biomedical uses, because of their high field irreversibility, small size, and surface function-
ality [35,65]. Within in vitro studies, MNPs have been employed in magnetorelaxometry,
diagnostic separation, and selection applications, whilst within therapeutic studies they
have been utilized to induce hyperthermia and promote active drug-targeting, as well as
assist in diagnostic applications, such as nuclear magnetic resonance imaging (NMR) [66].

Narsireddy et al. (2014) fabricated chitosan coated Fe3O4 NPs, which were de-
posited with gold NPs followed by lipoic acid conjugation [67]. A 5,10,15,20-tetrakis(4-
hydroxyphenyl)-21H,23H-porphyrin PS was also attached onto the surface of gold NPs to
form Fe3O4-Au-LA-PS (MGPS) [67]. In order to improve targeting of this nanoconjugate,
human epidermal growth factor receptor specific peptide (Affibody HER-2) was anchored
onto its chitosan coat forming Aff-MGPS [67]. The PDT effects of Aff-MGPS were then
investigate within in vitro cultured SK-OV-3 BC cells, which are HER-2 positive [67]. The
cellular uptake efficiency of the targeted Aff-MGPS was far more superior than when
compared to free PS or NPs controls alone (Figure 5) [67]. In addition, no dark toxicity was
observed for MGPS or Aff-MGPS nanoplatforms, while free PS noted high dark toxicity [67].
Furthermore, the Aff-MGPS nanoplatforms noted improved targeted peptide uptake in
BC cells when compared to group controls [67]. The targeted PDT specific delivery of
Aff-MGPS was further assessed in nude SK-OV-3 BC induced tumor mice, in comparison to
MGPS treatment alone at 120 J/cm2, and tumor volumes in mice grew slower in Aff-MGPS
PDT treated mice than when compared to MGPS irradiation treatment alone, suggesting
Affibody HER-2 enhanced BC PDT targeted treatment outcomes [67].

The photodynamic anticancer activities of magnetic Fe3O4 NPs on BC was further
investigated through the conjugation of Ce6 and FA onto its surface to form Fe3O4-Ce6-
FA [68]. The synthesized nanoconjugate could effectively produce 1O2 and ROS, with no
dark toxicity being found [68]. Within PDT Fe3O4-Ce6-FA 660 nm experiments, MCF-7
in vitro BC cells reported a concentration-dependent manner decrease in viability, and
increased apoptotic cell death pathway activation via caspase 3/7, with notable nuclear
fragmentation and plasma membrane translocation [68].
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Within a study conducted by Matlou et al. (2018) the aim was to assess the PDT activity
of two zinc phthalocyanine (Pc) derivatives: Zn mono cinnamic acid phthalocyanine and
zinc mono carboxyphenoxy phthalocyanine complexes, which were covalently linked to
a FA targeting agent and an amino functionalized Fe2O3 MNP (AMNPs) [69]. The dark
toxicity of this MNP PS carrier noted a significant decrease after attachment of the FA
complex [69]. The in vitro MCF-7 PDT effect of Pc-AMNPs noted a significant 60% cell
death under 670 nm irradiation, when compared to Pc-FA, which only reported a 40% cell
death [69].

Fe3O4 and Fe2O3 NPs are supermagnetic [70], and so release a significant amount of
heat upon external exposure to laser irradiation and, thus, these NPs are highly effective in
combinative PTT and PDT applications to destroy cancer cells [71]. Furthermore, when
these magnetic NPs are PEGylating or bound to other polymers, their rapid clearance from
the MPS can be alleviated [72]. However, PDT applications with MNPs cannot be taken
lightly, as free Fe2+ may react with oxygen or hydrogen peroxide to form Fe3+ and hydroxyl
radicals, which are toxic and can damage DNA; thus, the confirmation of the stability of
these NP as PS carriers is crucial [70].

Even though only a few studies have been performed using MNPs for the active
PDT treatment of BC, their superparamagnetic PTT hyperthermia properties have been
demonstrated as a powerful and efficient approach in clinical trials of unresectable tumors
or cancers representing terminal illness [73]. Furthermore, MNPs can be utilized in mul-
tiple therapeutic and diagnostic strategies [73], as well as eradicating apoptosis resistant
cancer cells, since they generate heat intracellularly within the lysosomes and the tumor
stroma, and so can obliterate tumor cells completely via necrotic cell death [74,75]. Thus,
further studies and investigations utilizing MNPs for the effective treatment of BC is an
ongoing need.

7.3. Carbon-Based Nanoparticles

Fullerene, carbon nanotubes, and graphene are carbon nanomaterials, which are com-
monly utilized as PS nanocarriers in PDT applications [76–78]. When PSs are attached
via covalent or non-covalent bonding to functionalized carbon-based nanomaterials, they
often provide improved solubility and biocompatibility in PDT treatments [36]. Fullerenes
are carbon-based nanomaterials, which present in the forms of tubes, ellipsoids, or spheres,
and successfully produce ROS upon irradiation exposure at an appropriate wavelength [28].
Single walled or multi-walled carbon nanotubes are other types of PS nanocarriers used in
PDT cancer treatments [28]. Since carbon nanotubes present advantageous characteristics,
such as fast elimination, low cytotoxicity, ease of functionalization, and reliable internal-
ization through endocytosis, it makes them ideal PS nanocarriers in PDT [28]. Regarding
graphene nanomaterials, due to their large surface areas they offer high therapeutic loading
capacities for enhanced PS uptake in tumor cells [79].

In studies performed by Shi et al. (2014), fullerene-iron oxide NPs (IONP) were
synthesized and functionalized with PEG, Ce6, and FA (C60-IONP-PEG-FA) for the active
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tumor targeting [80]. The performance of these multifunctional NPs was studied for
their PDT effect, radiofrequency thermal therapy (RTT), and magnetic targeting, within
in vitro MCF-7 BC cells and in vivo BC mice models [80]. Individual in vitro PDT assays at
concentration of 16 µg/mL C60-IONP-PEG-FA and 532 nm laser irradiation, 31.3% viability
was reported, and individual RTT therapy at the same concentration with 13.56 MHz
radiofrequency noted a 36.9% of viable cells [80]. In combinational C60-IONP-PEG-FA RTT,
followed by PDT, in vitro assays reported a significant 18.8% of cells only being found to
be viable [80]. Within in vivo studies on S180 BC tumor-bearing mice, individual PDT and
PTT applications induced 62% and 37% of apoptosis, respectively, and the integration both
treatments could enhance apoptotic cell death to 96% [80].

By taking advantage of the ultra-high loading capacity of graphene oxide (GO) through
π−π stacking and hydrophobic interactions [81], GO(HPPH)-PEG-HK was prepared by
functionalizing it with PEG-GO, so that a HK peptide (which binds specifically to integrin
αvβ6 on BC tumors) could be linked to it [82]. This actively functionalized nanoconjugate
was then coated with a Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-
alpha, HPPH) PS [83]. The large surface area of GO enabled conjugation of multiple
HK peptides and high concentrations of HPPH, allowing for improved in vivo PDT treat-
ment outcomes of BC [83]. Within in vivo 4T1 BC tumor mouse models, results reported
that GO(HPPH)-PEG-HK under 671 nm laser irradiation that tumor growths remarkably
decreased in comparison to control groups [83]. Furthermore, studies went on to note
that remarkable increases in the CD40+ and CD70+ fractions in treated mice after PDT
treatment with GO(HPPH)-PEG-HK induced dendritic cell maturation and so promoted
anti-tumor immunity in the 4T1 tumor model (Figure 6) [83]. Thus, this actively functional-
ized nanoconjugate via PDT application could reduce in vivo BC tumor sizes, as well as
trigger host anti-tumor immunity, to cause the inhibition of metastasis and further tumor
growth [83].
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Overall, very few studies have been conducted using carbon-based nanomaterials
for the active PDT targeting of BC. However, from the above studies, it can be seen that
the combination of the synergistic effects of carbon–based NPs with PSs can improve
the efficacy of BC PDT treatment [76]. It is worth mentioning that fullerene cages, such
as C60 [84] and carbon nanotubes [85], can act alone as PSs in PDT applications and so
self-generate ROS from photons owing to their π bond electrons [86]. Thus, fullerene
derivatives alone are competitive PSs for in vivo PDT or preclinical treatment [87], since
no additional PS is required to generate ROS and, thus, should be researched further for
BC treatment [76]. Despite all of the idealistic properties carbon nanotubes have, they
sometimes can induce asbestos-like inflammation [73], which is a carcinogenic, and so their
individual toxicity needs to be fully investigated and understood [88].

7.4. Semiconductor Quantum Dots (QDs)

Quantum dots are a subclass of fluorescent nanomaterials, which have unique chem-
ical and physical properties compared to organic dyes [89]. They have been utilized as
multifunctional nanocarriers for PDT thanks to their high quantum yields, simple surface
modification, and tunable optical properties [90]. They are also excellent donors in fluores-
cence resonance energy transfer (FRET) applications [91]. To date, no studies have been
investigated relating to the application of active targeted QDs for the PDT treatment of BC.

Studies by Monroe et al. (2019) only performed a spectrophotometric assay in order
to assess the cellular uptake, cytotoxicity, and ROS generation of graphene QDs (GQDs)
associated with methylene blue (MB) PS against in vitro cultured MCF-7 BC cells [92]. This
study reported that MB improved cytotoxicity and ROS generation when compared to a
1:1 GQD:MB ratio [92].

In another study, Zn(II) phthalocyanines (ZnPcs) with different substitutes were
fabricated and conjugated to GQDs to investigate the in vitro PDT activity of Pc-GQDs
conjugates in a human BC in vitro MCF-7 cell line [93]. The conjugate and Pcs alone did
not report dark toxicity and in vitro PDT studies noted that Pc-GQDs conjugates enhanced
treatment outcomes when compared to Pcs administration alone [93].

The above QD-based BC PDT studies have paved a new avenue for researchers to
synthesize various targeted-QDs against breast cancer. It has been reported that QDs
have potential cytotoxicity under UV irradiation to act as efficient PSs [90]. Furthermore,
NIR fluorescent QDs provide improved PS water solubility, chemical stability, and low
optical interference with biological tissues in PDT cancer treatments, when compared to
small molecule-based PSs administered alone [94]. Additionally, the large surface area of
QDs also enables the conjugation of multiple PSs and ligands for targeted photodynamic
imaging [90]. Nevertheless, one of the most controversial problems with QD-based PDT is
the high toxicity they possess, since most consist of toxic heavy metals, such as cadmium
ions, and so they tend to be under investigated [90,95]. In order to alleviate some of these
issues cadmium free QDs, such as zinc and indium based QDs [96], substituted with other
elements, such as silicon or carbon [97], or their incorporation into polymeric NPs [98]
have been proposed to enhance their application in diagnostic applications and PDT cancer
clinical trials [99]. Overall, it is envisaged that QDs, particularly GQDs, will open the
door to a multitude of new opportunities for PDT treatment of BC, and through continued
research, they could subsequently be able to provide high biocompatibility and improved
PS solubility in biological media, with less unwanted toxic effects.

7.5. Ceramic Nanoparticles

Ceramics NPs are inorganic solids made up oxides, carbides, carbonates, and phos-
phates, and have properties that range between metals and non-metals [40]. Silica (SiO2),
titanium oxide (TiO2), alumina (Al2O3), zirconia (ZrO2), calcium carbonate (CaCO3), and
hydroxyapatite (HA) are some examples of ceramic NPs with porous characteristics that
can be fabricated to control the release of drugs [40]. The main features of ceramic NPs
are high loading capacity, stability, and chemical inertness, as well as heat resistance and
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ease of conjugation to either hydrophilic or hydrophobic drugs [29], making them highly
advantageous for drug delivery, imaging, photodegradation of dyes, and photocatalysis
applications [37,40,100].

7.5.1. Silica Nanoparticles

Silica is an oxide of silicon and one of the most efficient materials for controlled drug
delivery, since it can store and be controlled to gradually release therapeutic drugs [40].
Mesoporous silica nanoparticles (MSNs) are formed by polymerizing silica, and so have
distinctive properties, such as tunable pore size (allowing for a high therapeutic drug
loading capacity capacities) [101], large surface area to volumes, automatic release of drugs,
as well as ease of functionalization with various functional groups or ligands, offering
actively targeted drug delivery capabilities [40]. Thus, within PDT applications, PSs can be
easily covalently linked or encapsulated onto the surface of silica NPs for favorable cancer
treatment outcomes [28].

A nanosystem comprised of mesoporous silica NPs (MSN) with covalent anchoring of
a synthesized anionic porphyrin PS and BC targeting mannose was presented by Brevet
et al. (2009) [102]. The study confirmed that PS mannose-functionalized NPs within
in vitro cultured MDA-MB-231 BC cells improved the efficiency of PDT relative to the
non-functionalized NPs, since it induced 99% cell death when irradiated at 630–680 nm
with 6 mW/cm2, while non irradiated control groups only noted 19% cell death [102].

Another promising nanoconjugate PS depended on a two-photon absorption, which
integrated a two-photon excitation (TPE) with silica nanotechnology [103,104]. Conven-
tional PSs require the absorption of a single photon equal to the band-gap energy of a
PSs [105]. However, when a PS absorbs two lower energy photons of infrared light, TPE
can occur and the sum of the photon energies are equal to the band-gap of energy, leading
to a deeper light penetration and lower photo-bleaching of the actual PS [105–109]. Fur-
thermore, in a TPE, the nonlinearity of photon absorption allows a PS activation to occur at
the focal point of a laser beam, and so allows for greater spatial control of PS activation in
three-dimensional (3D) tumor models, decreasing off-target phototoxicity in surrounding
healthy tissues [110,111].

With respect to the TPE–PDT, a porphyrin functionalized porous silica NP (pSiNP)
was coupled to a mannose targeting moiety to investigate the imaging and PDT potentials
within in vitro cultured MCF-7 BC cells [112]. When compared to other two-photon
absorbing nanoparticles such as, CdSe quantum dots, gold nanorods, or carbon dots,
pSiNPs appear to be biodegradable in vivo [113], since their silicon components degrade
to silicic acid, which can quickly be eliminated by kidneys [112,113]. The authors of this
showed that the pSiNP with mannose moieties were able to actively accumulate in MCF-7
BC cells, with far higher PDT efficacy, since phototoxicity results noted a 2.3-fold better
outcome for two photon PDT at 800 nm than when compared to one-photon excitation at
650 nm [112].

Within studies performed by Cao et al. (2014), in order to enhance PS accumulation
in BC cells, it was proposed to use mesenchymal stem cells (MSCs) to directly deliver a
PS to in vitro cultured MCF-7 cells [114]. The application of MSCs in PDT cancer treat-
ments seems promising, as various studies have demonstrated that they have a naturally
high tumor affinity within in vivo tumors, they can be easily isolated from bone marrow
and modified to carry desired drugs, as well as be efficiently implanted into patients
to avoid immune system clearance [115–118]. In this study, porous hollow silica NPs
were conjugated to a purpurin-18 PS (PS-SiO2NPs) and then they were loaded into the
MSCs cells (PS-SiO2NPs-MSCs) for in vivo PDT studies in MCF-7 modified mouse models
(Figure 7a) [114]. Results noted that the BC tumor affinity of the MSCs was not inhibited
by loading PS-SiO2NPs into the MSCs, and that intercellular ROS generation proportion-
ally increased with PS-SiO2NPs-MSCs conjugation upon laser irradiation, suggesting the
in vivo BC tumors retained the PS [114]. In addition, within PDT studies, the in vivo
groups that received PS-SiO2 NPs-MSCs reported far greater tumor growth inhibition than
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when compared to control groups, which received unmodified MSCs without loading
PS-SiO2NPs, suggesting that the MSCs cells were capable of high PS BC tumor affinity
targeting (Figure 7b) [114].
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Studies by Bharathiraja et al. (2017) reported that silica NPs decorated with Ce6 and
FA (silica-Ce6-FA) could accumulate far higher within in vitro cultured MDA-MB-231 BC
cells, when compared to free Ce6 [119]. Even though the level of ROS generated by silica-
Ce6-FA nanoconjugate was moderately lower than when compared to free Ce6, at 680 nm
PDT, the study showed that due to the folate receptor targeting in the nanoconjugate, the
PS uptake in BC cells was improved, and so higher cell death was observed than when
compared to free Ce6 administration alone [119].

Although, NIR light within the range of 630–800 nm is employed as an excitation PDT
source to treat deep-seated cancer tissues [120], most clinically approved PSs have a low ab-
sorption in NIR region, and so their overall penetration depth is less than 1 cm [121]. Thus,
researchers have also begun to investigate X-ray sources for use in X-ray-mediated PDT
(X-PDT), since they are able to penetrate far deeper into tissues, which perhaps better out-
comes [112]. Within these applications PSs need a system to convert X-rays into UV–visible
photons, since they cannot absorb X-ray photons directly [112]. Scintillating nanoparticles
or nanoscintillators, such as lanthanide doped rare-earth nanoparticles [122], have emerged
as energy transducer for this conversion and deep seated X-PDT treatment [123–125].

Studies by Sengar et al. (2018) investigated X-PDT for the deep penetration of BC
tumors [126]. They synthesized Y2.99Pr0.01Al5O12-based (YP) mesoporous silica (MS) coated
NPs and functionalized them with PpIX and FA (YPMS@PpIX@FA) for the X-PDT treatment
of BC cells with overexpressed folate receptors (Folr 1) [126]. The utilized BC in vitro cell
lines were PyMT-R221A mouse BC cells (which have high levels of folate receptors), as
well as 4T1 BC cells (which have low folate expression) [126]. PyMT-R221A mouse BC
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cells reported higher cellular uptake of YPMS@PpIX@FA when compared to 4T1 BC cells,
revealing that FA targeting of this nanoconjugate was functional [126]. Additionally, non-
activated YPMS@PpIX@FA reported a low cytotoxicity when used at concentrations below
25 µg/ml, while upon light activation at 365 nm, a remarkable decrease in PyMT-R221A
mouse BC cells was observed [126]. Lastly, administration of YPMS@PpIX@FA suspension
at a single dose of up to 125 mg/kg did not cause the death or any detectable behavior in
inoculated CD1 mice [126].

Overall, it can be observed from the above in vitro and in vivo studies that silica NPs
seem very promising for the PDT treatment of BC, and due to their non-toxicity and rapid
renal clearance, the move forward of these studies into clinical applications is pertinent.

7.5.2. Titanium Oxide Nanoparticles

Titanium dioxide (TiO2), also called titania, is another type of ceramic NP, which
possesses chemical and biological inertness, photostability, photoactivity, and high stability
within biomedical applications [127]. More importantly, the strong oxidizing and reducing
ability TiO2 has when photoexcited with irradiation at <390 nm can produce ROS, which
consequently induces apoptotic cell death in BC cells [128].

Studies by Gangopadhyay et al. (2015), constructed TiO2 NPs and decorated them
with a 7,8-dihydroxy coumarin PS chromophore and chlorambucil (Ti-DBMC-Cmbl NPs)
and FA (Ti-FA-DBMC-Cmbl NPs) to serve as a chemotherapeutic drug and phototrigger,
respectfully in PDT/chemotherapy treatments of in vitro cultured MDA-MB BC cells
(Figure 8) [129]. After 60 min of PDT laser irradiation at ≥410 nm, cells treated with Ti-
DBMC-Cmbl NPs noted a 35% cell viability, whereas cell treated with Ti-FA-DBMC-Cmbl
NPs reported a mere 19% cell viability and more significant apoptotic cell death [129].
Overall, results revealed that the synergic effect of both targeted PDT and well known
chemotherapeutic drug chlorambucil was successful for the eradication of MDA-MB BC
cells [129].
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In general, ceramic NPs show great potential in carrying PSs in PDT application to
targeted BC tumors, due to their excellent chemical inertness and high heat resistance.
However, since limited studies have been performed using ceramic NPs in BC, it is con-
structive to highlight that a suitable method in relation to their synthesis to control size,
porosity, surface area to volume ratio, should be fine-tuned in order to allow for a high PS
pay loading capacity and reduce any possible unwanted biological clearance issues [129].
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7.6. Other Inorganic Nanoparticles

Cerium oxide NPs (or nanoceria/ceria NPs) are considered from a lanthanide metal
oxide that can be used as an ultraviolet absorber [130]. They have antioxidant properties
at a physiological pH, while their oxidases activity in tumors idealistically functions in
an acidic microenvironment [131,132]. Nanoceria NPs alone tend to have a poor water
solubility so they are generally coated with polymers to enhance biocompatibility, stability,
and their overall solubility [133].

A multifunctional drug delivery system of PPCNPs-Ce6/FA was introduced by Li
et al. (2016) and it comprised of Ce6/FA-loaded branched polyethylenimine–PEGylation
ceria NPs (PPCNPs) for the possible PDT targeting of drug resistant in vitro BC MCF-
7/ADR cells in combination with chemotherapeutic agent DOX [134]. The results revealed
that internalization efficiency and diffusion of the synthesized nanoplatform with positive
surface charges via endocytosis in BC cells was far higher than free Ce6 [134]. PDT efficiency
under 660 nm irradiation in BC cells treated with the PPCNPs-Ce6/FA reported a 35%
apoptotic and necrotic cell death, while BC cells treated with PPCNPs-Ce6 only noted an
overall 25% cell death [134]. Moreover, results reported that low-dose PPCNPs-Ce6/FA
PDT remarkably improved the chemotoxicity of DOX in in vitro MCF-7/ADR BC cells in
a dose-dependent manner [134]. In vivo PDT studies within MCF-7/ADR athymic nude
mouse xenograft models showed a significant 96% reduction in the tumor volume when
injected with PPCNPs-Ce6/FA, in comparison to a 25% reduction when PPCNPs-Ce6 was
applied [134].

In relation to metastatic triple-negative BC (mTNBC), numerous studies have noted
that treatments, such as radiation, cytotoxic chemotherapy, and surgical interventions are
ineffective and so this has driven researchers to consider immunotherapy for the possible
treatment of mTNBC [135,136]. Tumor immunotherapy relies on the fact that BC cells can
be eradicated by host cytotoxic CD8+ T cells [137,138].

In this regard, Duan et al. (2016) introduced a promising strategy using a checkpoint
blockade-based immunotherapy for the treatment of primary in vitro 4T1 BC tumors [139].
A non-toxic core–shell comprising of ZnP@pyro NPs was fabricated using Zn and py-
rophosphate (ZnP) and a pyrolipid PS was incorporated into its core, for PDT applications,
while a PD-L1 antibody was added for checkpoint blockade immunotherapy [139]. Results
reported that the immunogenic ZnP@pyro NPs were non-toxic prior to light activation [139].
Within PDT studies, they successfully eliminated in vitro BC cells upon 670 nm irradia-
tion, through apoptotic and necrotic cell death [139]. PDT in vivo investigations of the
ZnP@pyro NPs on orthotopic 4T1 tumor-bearing mice demonstrated that this immuno-
genic PS nanocarrier enhanced PS uptake via the EPR effect for high tumor accumulation,
as well as disrupted tumor vasculature and increased tumor immunogenicity [139]. The
authors also claimed that the ZnP@pyro NPs not only prohibited the further metastasis,
but also inhibited pre-existing metastatic tumors growth by generating systemic anti-tumor
immunity [139].

7.7. Upconversion Nanoparticles

The unique “photon upconversion” process of upconversion NPs(UCNPs) has been
applied in low tissue penetration depth PDT applications [140,141]. Upconversion is an
anti-Stokes shift, which is defined as the conversion of NIR light to a shorter wavelength of
light in the visible region [140]. Thus, UCNPs are able to absorb two or more low energy
photons and, thus, show a unique anti-Stokes shift of fluorescence emission in UV–Vis
wavelengths (300–700 nm) under NIR light excitation (750–1400 nm) [142]. UCNPs can be
utilized in biomedical applications as they have shown improved reduced fluorescence
background, with lowered phototoxicity [39]. Therefore, in order to treat deep-seated
tumors, PSs in NPs are excited with longer wavelength [28] and emitted fluorescence by
UCNPs, so can excite PS electrons effectively to produce efficient amounts of singlet oxygen
in PDT applications [143].
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In 1991, Cai et al., utilized novel TiO2 or ZnO semiconductors, which had photo-
effects, such as inorganic PSs for the PDT treatment of cancer [144]. These semiconductors
promoted electrons from valance bands to conduction bands upon PDT UV irradiation,
leaving electron hole pairs [28] and so resulted in oxidation or reduction of chemical
species, such as water and oxygen around the TiO2 or ZnO semiconductors, to generate
ROS [145,146].

In this regard, Janus nanostructures comprised of NaYF4:Yb/Tm UCNPs with TiO2
inorganic PSs were synthesized by Zeng et al. (2015) and loaded with FA and DOX
(FA–NPs–DOX) (Figure 9) for NIR-triggered inorganic targeted PDT and chemotherapy
treatment of drug-sensitive MCF-7 and drug resistant MCF-7/ADR BC cells within in vitro
and in vivo applications [147]. The chemotherapeutic results alone revealed that the
FA-targeted nanocomposite promoted the cellular uptake of DOX, as well as caused a
viability decline of 44.4% in MCF-7 and 28.9% in MCF-7/ADR BC cells [147]. However,
combinational chemotherapy and PDT results under 980 nm NIR irradiation, noted a far
higher significant decrease in cellular viability, whereby only 5.8% MCF-7 cells were found
viable and 17.6% of MCF-7/ADR BC drug resistant cells were found to alive [147]. Within
PDT in vivo assessments on female BALB/c (nu/nu) nude mice, MCF-7 tumor growths
reported a 99.34% inhibition of growth, while MCF-7/ADR tumor growths noted a 96.74%
decline, when treated with FA–NPs–DOX + NIR [147].
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In studies by Zeng et al. (2015), HER-2-targeted multifunctional nanoprobes based on
808 nm-excitation bound to NaGdF4:Yb,Er@NaGdF4:Yb@NaGdF4:Yb,Nd UCNPs, with
Ce6 PS and SiO2 (T-UCNPs@Ce6@mSiO2) were fabricated for 808 nm irradiation PDT and
magnetic resonance imaging (MRI) within in vitro MDA-MB-435 BC cells [143]. Regarding
the cellular uptake, the accumulation amount of T-UCNPs@Ce6@mSiO2 in in vitro BC
cells was 1–2 times higher than those treated with UCNPs@Ce6@mSiO2, due to HER-2
active targeting [143]. Furthermore, the PDT treatment of in vitro BC cells using non-
targeted UCNPs@Ce6@mSiO2 reported a 16.4% cell viability, whereas cells treated with
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T-UCNPs@Ce6@mSiO2 noted a 6.8% cell viability, suggesting that the PDT efficiency im-
provement was due to active targeting [143]. Additionally, in vitro T-UCNPs@Ce6@mSiO2
PDT, reported a significant 16.5% for early apoptosis and 10.2% for late apoptosis cell
death [143]. The in vivo PDT investigation of nanocomposite in MDA-MB-435 tumor-
bearing nude mice indicated that the targeted T-UCNPs@Ce6@mSiO2 significantly en-
hanced tumor accumulation of up to 12%, whereas the non-targeted UCNPs@Ce6@mSiO2
only noted a 2% accumulation potential [143]. Furthermore, the MR signal was far higher
and stronger in T-UCNPs@Ce6@mSiO2 treated mice than when compared to those treated
with UCNPs@Ce6@mSiO2 [143].

Within studies by Wang et al. (2017) Lanthanide-doped UCNPs were encapsulated in
fourth-generation poly amido amine (PAMAM) dendrimers, bearing 64 peripheral amines
(G4) and Ce6 to assess NIR-trigged PDT in 2D and 3D in vitro MCF-7 BC [142]. The internal
cavities within the dendrimers enabled the trapping of small molecules through host-guest
affinity and so enhance the cellular uptake of the UCNPs [142]. More importantly, when
Ce6 was loaded onto the dendrimer-modified UCNPs, and 660 nm PDT laser irradiation
applied in 2D models 50% cell death was noted, whereas approximately 70% cell death was
found in those treated with 980 nm PDT laser irradiation [142]. These findings confirmed
that the NIR could pass through the 2D BC tumor cell model membranes and organelles to
reach and effectively activate the UCNPs, and so enhance PDT efficacy with deeper tissue
penetration [142]. With reference to the 3D model, 980 nm NIR light noted a deep tumor
penetration and produced cell death that was consistent with the 2D model results [142].
Moreover, in vivo PDT assessments using 980 nm irradiation in 4T1 BC tumor-bearing
mouse models treated with high doses of the UCNPs, demonstrated significant tumor
growth inhibition, through induction of the γH2AXser139 protein marker for DNA double
strand breaks; thus, substantial DNA damage was observed [142].

A precise tumor-specific UCNP targeting strategy was assessed by Yu et al. (2018)
for the enhanced PDT treatment of in vitro MCF-7 BC cells [148]. NaYF4:Yb3+, Er3+ UC-
NPs capped with polyacrylic acid (UCNPs@PAA) were fabricated and modified with
FA and Ce6 PS, as well as were functionalized with DNA sequences of varying lengths
(Figure 10A) [148]. The in vitro cellular uptake results showed that the fabricated
UCNPs@PAA-DNA located efficiently within BC lysosomes via effective folate recep-
tor targeting (Figure 10B) [148]. Significant reduction within in vitro 980 nm PDT treated
BC cells with UCNPs@PAA-DNA was reported [148]. The study stated that the Ce6 PS
on the longer DNA nanocomposite moved to the vicinity of the UCNPs and generated
singlet oxygen upon NIR irradiation, through Förster resonance energy transfer (FRET).
The study proposed that when the fabricated UCNP reached the BC tumor cells, the C base-
rich long DNA within the nanocomposite could form a C-quadruplex and the FA groups
overexpressed on the folate receptors of BC cells could be attracted, and so efficiently active
BC tumor targeting was achieved [148]. Furthermore, the pre-protective strategy using
UCNPs@PAA-DNA with longer DNA alleviated any other possible side effects on the
normal cells, as the FA groups of the shorter DNA was protected by this longer DNA
to preclude any possible binding with normal cell folate receptors [148]. In vivo PDT
experiments within BALB/c mice with BC xenograft tumors not only demonstrated the
successful accumulation of the nanocomposites, but also eliminated tumor volume tenfold
in comparison to control groups [148].

Generally, NP particle size can affect their overall uptake and retention in the liver,
kidney, and spleen [149], furthermore large sized NPs can induce high toxicity, with
unwanted side effects and heightened cellular phagocytosis [150]. Thus, within clini-
cal applications, they tend to be more inclined towards the use of small NPs, which
report less retention and unwanted toxicity [151]. Within a study performed by Yu
et al. (2018) a core–multishell nanocomposite (MNPs(MC540)/DSPE-PEG-NPY) was
constructed that was an ultrasmall size for the in vitro and in vivo PDT evaluation within
MCF-7 BC cells [151]. This UCNP nanostructure was based on a multifunctional Y1Rs-
targeting ligand [Pro30, Nle31, Bpa32, Leu34]NPY(28–36), abbreviated to NPY and loaded
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with merocyanine 540 (MC540) PS to form LiLuF4:Yb,Er@nLiGdF4@mSiO2 (MNPs) [151].
Then 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-carboxy (polyethylene glycol)—
2000] (DSPE–PEG) was coated onto the surface of MNPs to improve water solubility
and biocompatibility of the final nanocomposite [151]. Within 980 nm in vitro PDT as-
says BC MCF-7 cells treated with MNPs(MC540) noted a 84.8% cell death, whereas those
treated with MNPs(MC540)/DSPE-PEG reported a 86.7% cell death and those treated
with MNPs(MC540)/DSPE-PEG-NPY noted a 93.5% cell death, suggestive that active
targeting and uptake was present (Figure 11) [151]. Within 980 nm in vivo PDT assays
on MCF-7 BC induced female BALB/c nude mice tumor volumes of the groups treated
with MNPs(MC540), MNPs(MC540)/DSPE-PEG, and MNPs(MC540)/DSPE-PEG-NPY
increased over the first 4 days and then decreased on the sixth day after a double PDT
application was performed [151]. After 28 days of a double PDT application, mice injected
with MNPs(MC540)/DSPE-PEG-NPY showed no tumor growth [151].
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In a study performed by Ramírez-García et al. (2018), a UCNP nanoconjugate was con-
structed for the targeted PDT and imaging against HER-2-positive BC cells, as well as to try
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and overcome the limited tumor cell depth penetration visible light has [152]. NaYF4:Yb,Er
UCNPs were fabricated and attached to a zinc tetracarboxyphenoxy phthalocyanine (ZnPc)
PS and a trastuzumab (Tras) HER-2 specific monoclonal antibody to form a UCNPs-ZnPc-
Tras nanocomposite [152]. The covalent bonds between UCNPs and ZnPc resulted in
resonance energy transfer from the NPs to the PS, which in turn produced cytotoxic singlet
oxygen and higher 1O2 quantum yields when compared to control groups [152]. The PDT
efficacy of this nanocomposite was evaluated in vitro within HER-2 positive SK-BR-3 and
HER-2 negative MCF-7 human BC cells [152]. Cytotoxicity assays post-PDT at 975 nm
noted higher values in HER-2 positive SK-BR-3 BC cells than when compared to HER-2
negative MCF-7 human BC cells, suggestive that enhanced PS targeting uptake was present
due to specific HER-2 targeting [152]. Moreover, post-PDT HER-2 positive SK-BR-3 BC
cells noted a 93.5% cell death, when compared to HER-2 negative MCF-7 human BC cells
which reported a mere 21.8% cell death, suggestive that this nanocomposite was capable of
specific and far more enhanced HER-2 positive BC receptor mediated targeted PDT [152].

As previously mentioned, photocatalysis TiO2 NPs are nontoxic and have a high
photochemical stability to yield improved levels of ROS upon irradiation [153]. When
TiO2 NPs are utilized within PDT applications as PS, a far higher and controlled loading
with improved uptake has been reported [154]. Furthermore, other studies noted that
when doping metal atoms, such as ZrO2, are attached to TiO2 heterostructures, they
can temporarily constrain the high recombination rate of photogenerated electron–hole
pairs in TiO2 NPs when electron–hole pairs migrate from the inside of the photocatalyst
to the surface, improving PDT treatment outcomes [154,155]. In a more recent study
performed by Ramírez-García et al. (2019), a NaYF4:Yb,Tm UCNP core was fabricated and
coated with photo-effecting material TiO2-ZrO2 as a shell to improve NIR-triggered PDT
(NaYF4:Yb,Tm@TiO2/ZrO2 core@shell NPs) [153]. The monoclonal antibody known as
Tras was also added to the UCNPs surface, to improve its overall NP PS active targeting
within HER-2 positive in vitro cultured SK-BR-3 human BC cells [153]. Within PDT assays
at 975 nm irradiation at 400 µg/mL the NaYF4:Yb,Tm@TiO2/ZrO2–tras nanocomposite
reported 76% cell death, whereas control groups treated with single TiO2 UCNP that lacked
ZrO2 attachment, only 40% cell death was found [153]. Overall, these results revealed
that the combinative photocatalytic activity of TiO2–ZrO2 within the final nanocomposite,
improved the PDT treatment outcomes in BC cells due to higher levels of ROS being
produced [153].

Studies by Feng et al. (2019) employed a promising strategy called a “all-in-one”,
whereby imaging and therapeutic PDT functions were integrated into one nanoplatform,
by anchoring a PSs to UCNPs to allow for dual imaging-guided PDT within in vitro MCF-7
BC cells [156]. A bioorthogonal chemical reaction was utilized in this study to allow for a
“off/on” state of PDT, in order to circumvent any issues associated with photoactivity of
preloaded norbornene-rose bengal (RB-NB) PS, since it can produce skin photosensitivity
and so damage normal cells [156]. Thus, a NaYF4: Er, Yb@NaYF4 UCNP was synthesized
and covalently bound to a pre-targeting tetrazine (Tz) and FA molecule to form a UCNPs-
Tz/FA-PEG (Figure 12a), which was utilized as the one handle of the bioorthogonal reaction
in tracking and imaging of deep-seated tumors, since it lacked PS [156]. Then when the
RB–NB PS were attached on the surface of the nanoplatform via a bioorthogonal chemical
reaction (as the other handle of the UCNP), it demonstrated efficient PS targeting, UCNP
energy transfer to the PS, with high yields of ROS and so enhanced treatment within in vitro
BC tumors under 980 nm irradiation (Figure 12b) [156]. Upconversion luminescence (UCL)
imaging of the nude mice injected with MCF-7 BC cells showed high accumulation of the
nanoplatform in tumor sites, due to FA active targeting and EPR effect [156]. Furthermore,
in vivo PDT assays on these tumor bearing mice when treated with NPs-Tz/FA-PEG +
RB–NB under 980 nm irradiation provided 75.5% decrease in tumor size when compared
to control groups [156].
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reference [156]. Copyright 2019 Elsevier.

A lot of research has been carried within the utilization of UCNPs for the enhanced PS
delivery and PDT treatment of BC, due to their ability to be allow for PS activation within
the higher NIR wavelength ranges, and consequently be able to provide deeper penetration
of tumor tissues, when compared to visible light applications, since the upconversion
visible emission from UCNPs can excite PS to produce more ROS [140,157]. It is envisaged
that the integration of UCNPs with more NIR penetrable light and idealistic PSs will
potentiate near-future targeted PDT BC clinical trials.

8. Conclusions and Perspectives

BC is invasive form of cancer, which can metastasize, and frequently recurs after
treatment [2]. Many conventional therapies utilized for BC often present themselves with
some form of resistance and unwanted side-effects, and surgery is invasive [3]. In this
sense, actively targeted PDT is gaining a prominent position as a non-invasive, limited side
effect approach for the treatment of BC.

The combination of NPs with PSs, to passively, as well as actively enhance their accu-
mulation in tumor tissues more selectively in order to enhance PDT treatment outcomes,
as well as lessen the unwanted side effects on localized tissues is fast becoming a popular
approach [22,23].

Inorganic NPs have unique properties, which assist in reducing PS leaching, allow for
a high loading capacity of PSs, improve PS passive uptake via the EPR effect, and allow for
ease of functionalization with various ligands to promote active PS absorption and, thus,
allow for the overall enhancement of PDT BC treatment [27,158]. Furthermore, inorganic
and metallic PS nanocarriers are less susceptible to degradation and do not release attached
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PSs, but rather allow activated ROS after irradiation to diffuse out of them, when compared
to organic NPs, and so are more prominently utilized within the field of PDT [29,158].

Gold NPs for example have shown surface plasmon resonance effects that can intensify
singlet oxygen quantum yield, as well as induce hyperthermia promoting the overall effect
of PDT [28]. Furthermore, inorganic NPs, such as UCNPs can provide a deeper penetration
of light in tumors [140] or porous silica NPs allow for the entrapment of oxygen to improve
overall PDT treatment outcomes [28].

Anchoring of active targeting moieties to PS-loaded inorganic NPs, allow nanosystems
to be specifically directed towards BC cells only, allowing enhanced PS accumulation, which
is localized in tumor target cells, only limiting unwanted side effects on normal cells [22,23].
It is also noteworthy to emphasize that the number of receptors per tumor cell is 105,
while the number of the PS molecules that can be attached to an inorganic NP to obviate
cancer cells is 107, allowing each tumor receptor to be able to at least receive a 102 PS
concentration [159]. Thus, the binding of targeting ligand to PS-loaded NPs is imperative to
ensure the highest uptake possible of PSs in tumor cells, in order to promote PDT treatment
outcomes [159].

It is postulated that, in the near future, the applications of nanotechnology to po-
tentiate PDT should allow for the widespread of breast cancer amongst women to be
overcome [159]. However, additional comprehensive studies are still required to scrutinize
the physiochemical, pharmacokinetic properties, and safety profiles of nanocarriers, so that
maximum accumulation and PS uptake can be attained in the target tissues. In addition,
although anchoring of the PSs on the surface of NPs can enhance their biocompatibility,
the potential toxic effects and unwanted liver and renal accumulation, must be taken into
consideration. Thus, it is imperative that the above discussed and reviewed inorganic
NP studies for the actively applied targeted PDT treatment of BC in vitro and in vivo be
investigated further within clinical trials, so that the possible future targeted PDT treatment
of BC can become a reality.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/3/296/s1, Table S1: spectroscopic and physicochemical properties of some photosensitizers
utilized for PDT of cancer.
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125. Kaščáková, S.; Giuliani, A.; Lacerda, S.; Pallier, A.; Mercère, P.; Tóth, É.; Réfrégiers, M. X-ray-induced radiophotodynamic therapy
(RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 2015, 8, 2373–2379. [CrossRef]

126. Sengar, P.; Juárez, P.; Verdugo-Meza, A.; Arellano, D.L.; Jain, A.; Chauhan, K.; Hirata, G.A.; Fournier, P.G.J. Development of a
functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J. Nanobiotechnol.
2018, 16, 1–19. [CrossRef] [PubMed]

127. Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S.B. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lig-
nocellulosic waste material. BioMed Res. Int. 2014, 2014, 1–7. [CrossRef]

128. Kitsiou, P.; Lagopati, N.; Tsilibary, E.-P.; Falaras, P.; Papazafiri, P.; Pavlatou, E.P.; Kotsopoulou, E. Effect of nanostructured TiO2
crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int. J. Nanomed. 2014, 9, 3219–3230. [CrossRef] [PubMed]

129. Gangopadhyay, M.; Mukhopadhyay, S.K.; Karthik, S.; Barman, S.; Singh, N.D.P. Targeted photoresponsive TiO2–coumarin
nanoconjugate for efficient combination therapy in MDA-MB-231 breast cancer cells: Synergic effect of photodynamic therapy
(PDT) and anticancer drug chlorambucil. MedChemComm 2015, 6, 769–777. [CrossRef]

130. Zholobak, N.; Ivanov, V.; Shcherbakov, A.; Shaporev, A.; Polezhaeva, O.; Baranchikov, A.; Spivak, N.; Tretyakov, Y. UV-shielding
property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B: Biol. 2011, 102, 32–38.
[CrossRef] [PubMed]

131. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles.
Angew. Chem. Int. Ed. 2009, 48, 2308–2312. [CrossRef] [PubMed]

132. Culcasi, M.; Benameur, L.; Mercier, A.; Lucchesi, C.; Rahmouni, H.; Asteian, A.; Casano, G.; Botta, A.; Kovacic, H.; Pietri, S. EPR
spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: Evidence for NADPH
oxidase and mitochondrial stimulation. Chem.-Biol. Interact. 2012, 199, 161–176. [CrossRef] [PubMed]

133. RajeshKumar, S.; Naik, P. Synthesis and biomedical applications of Cerium oxide nanoparticles—A Review. Biotechnol. Rep. 2018,
17, 1–5. [CrossRef] [PubMed]

134. Li, H.; Liu, C.; Zeng, Y.-P.; Hao, Y.-H.; Huang, J.-W.; Yang, Z.-Y.; Li, R. Nanoceria-mediated drug delivery for targeted pho-
todynamic therapy on drug-resistant breast cancer. ACS Appl. Mater. Interfaces 2016, 8, 31510–31523. [CrossRef]

135. Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12,
237–251. [CrossRef] [PubMed]

136. Couzin-Frankel, J. Cancer Immunotherapy. Science 2013, 342, 1432–1433. [CrossRef]

http://doi.org/10.1126/science.2321027
http://doi.org/10.1002/adma.201403415
http://doi.org/10.1038/nmat2398
http://www.ncbi.nlm.nih.gov/pubmed/19234444
http://doi.org/10.1002/adma.201401550
http://doi.org/10.1002/stem.187
http://doi.org/10.1016/j.biomaterials.2008.10.028
http://doi.org/10.1016/j.biomaterials.2011.03.030
http://www.ncbi.nlm.nih.gov/pubmed/21507480
http://doi.org/10.1634/stemcells.2007-0758
http://www.ncbi.nlm.nih.gov/pubmed/18192232
http://doi.org/10.1016/j.pdpdt.2017.06.001
http://doi.org/10.1002/jps.23356
http://www.ncbi.nlm.nih.gov/pubmed/23132644
http://doi.org/10.1007/s00330-002-1524-x
http://www.ncbi.nlm.nih.gov/pubmed/12541130
http://doi.org/10.1002/smll.201501923
http://www.ncbi.nlm.nih.gov/pubmed/26398119
http://doi.org/10.1021/jp4077189
http://doi.org/10.1021/nl504044p
http://doi.org/10.1007/s12274-015-0747-5
http://doi.org/10.1186/s12951-018-0344-3
http://www.ncbi.nlm.nih.gov/pubmed/29482561
http://doi.org/10.1155/2014/205636
http://doi.org/10.2147/IJN.S62972
http://www.ncbi.nlm.nih.gov/pubmed/25061298
http://doi.org/10.1039/C4MD00481G
http://doi.org/10.1016/j.jphotobiol.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/20926307
http://doi.org/10.1002/anie.200805279
http://www.ncbi.nlm.nih.gov/pubmed/19130532
http://doi.org/10.1016/j.cbi.2012.08.007
http://www.ncbi.nlm.nih.gov/pubmed/22940227
http://doi.org/10.1016/j.btre.2017.11.008
http://www.ncbi.nlm.nih.gov/pubmed/29234605
http://doi.org/10.1021/acsami.6b07338
http://doi.org/10.1038/nrc3237
http://www.ncbi.nlm.nih.gov/pubmed/22437869
http://doi.org/10.1126/science.342.6165.1432


Pharmaceutics 2021, 13, 296 30 of 30

137. Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and Genetic Properties of Tumors Associated with Local
Immune Cytolytic Activity. Cell 2015, 160, 48–61. [CrossRef] [PubMed]

138. Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [CrossRef]
139. Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic Therapy Mediated by Nontoxic Core–Shell

Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast
Cancer. J. Am. Chem. Soc. 2016, 138, 16686–16695. [CrossRef] [PubMed]

140. Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst
2010, 135, 1839–1854. [CrossRef] [PubMed]

141. Mader, H.S.; Kele, P.; Saleh, S.M.; Wolfbeis, O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging.
Curr. Opin. Chem. Biol. 2010, 14, 582–596. [CrossRef]

142. Wang, B.-Y.; Liao, M.-L.; Hong, G.-C.; Chang, W.-W.; Chu, C.-C. Near-Infrared-Triggered Photodynamic Therapy toward Breast
Cancer Cells Using Dendrimer-Functionalized Upconversion Nanoparticles. Nanomaterials 2017, 7, 269. [CrossRef] [PubMed]

143. Zeng, L.; Pan, Y.; Zou, R.; Zhang, J.; Tian, Y.; Teng, Z.; Wang, S.; Ren, W.; Xiao, X.; Zhang, L.; et al. 808 nm-excited upconversion
nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in
HER2-overexpressed breast cancer. Biomaterials 2016, 103, 116–127. [CrossRef] [PubMed]

144. Cai, R.; Hashimoto, K.; Itoh, K.; Kubota, Y.; Fujishima, A. Photokilling of Malignant Cells with Ultrafine TiO2 Powder. Bull. Chem.
Soc. Jpn. 1991, 64, 1268–1273. [CrossRef]

145. Wang, K.; Qincheng, W.; Wang, F.; Bai, S.; Li, S.; Li, Z. Coating a N-doped TiO2 shell on dually sensitized upconversion
nanocrystals to provide NIR-enhanced photocatalysts for efficient utilization of upconverted emissions. Inorg. Chem. Front. 2016,
3, 1190–1197. [CrossRef]

146. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nat. Cell Biol. 1972, 238, 37–38.
[CrossRef] [PubMed]

147. Zeng, L.; Pan, Y.; Tian, Y.; Wang, X.; Ren, W.; Wang, S.; Lu, G.; Wu, A. Doxorubicin-loaded NaYF4:Yb/Tm–TiO2 inorganic photo-
sensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials
2015, 57, 93–106. [CrossRef]

148. Yu, Z.; Ge, Y.; Sun, Q.; Pan, W.; Wan, X.; Li, N.; Tang, B. A pre-protective strategy for precise tumor targeting and efficient
photodynamic therapy with a switchable DNA/upconversion nanocomposite. Chem. Sci. 2018, 9, 3563–3569. [CrossRef]

149. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat.
Biotechnol. 2015, 33, 941–951. [CrossRef]

150. Kettiger, H.; Schipanski, A.; Wick, P.; Huwyler, J. Engineered nanomaterial uptake and tissue distribution: From cell to or-ganism.
Int. J. Nanomed. 2013, 8, 3255.

151. Yu, Z.; Xia, Y.; Xing, J.; Li, Z.; Zhen, J.; Jin, Y.; Tian, Y.; Liu, C.; Jiang, Z.; Li, J. Y 1-receptor–ligand-functionalized ultrasmall
up-conversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. Nanoscale
2018, 10, 17038–17052. [CrossRef] [PubMed]

152. Ramírez-García, G.; Panikar, S.S.; López-Luke, T.; Piazza, V.; Honorato-Colin, M.A.; Camacho-Villegas, T.; Hernández-Gutiérrez,
R.; De La Rosa-Cruz, E. An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy
against HER2-positive breast cancer. Nanoscale 2018, 10, 10154–10165. [CrossRef]

153. Ramírez-García, G.; De la Rosa, E.; López-Luke, T.; Panikar, S.S.; Salas, P. Controlling trapping states on selective theranostic
core@ shell (NaYF4:Yb,Tm@TiO2-ZrO2) nanocomplexes for enhanced NIR-activated photodynamic therapy against breast cancer
cells. Dalton Trans. 2019, 48, 9962–9973. [CrossRef]

154. Pirzada, B.M.; Mir, N.A.; Qutub, N.; Mehraj, O.; Sabir, S.; Muneer, M. Synthesis, characterization and optimization of pho-
tocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Mater. Sci. Eng. B 2015, 193, 137–145. [CrossRef]

155. Xu, A.-W.; Gao, Y.; Liu, H.-Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2
Nanoparticles. J. Catal. 2002, 207, 151–157. [CrossRef]

156. Feng, Y.; Wu, Y.; Zuo, J.; Tu, L.; Que, I.; Chang, Y.; Cruz, L.J.; Chan, A.; Zhang, H. Assembly of upconversion nanophoto-sensitizer
in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials 2019, 201, 33–41. [CrossRef]
[PubMed]

157. Guo, Y.; Kumar, M.; Zhang, P. Nanoparticle-Based Photosensitizers under CW Infrared Excitation. Chem. Mater. 2007, 19,
6071–6072. [CrossRef] [PubMed]

158. Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [CrossRef] [PubMed]
159. Huang, Y.-Y.; Sharma, S.K.; Dai, T.; Chung, H.; Yaroslavsky, A.; Garcia-Diaz, M.; Chang, J.; Chiang, L.Y.; Hamblin, M.R. Can

nanotechnology potentiate photodynamic therapy? Nanotechnol. Rev. 2012, 1, 111–146. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2014.12.033
http://www.ncbi.nlm.nih.gov/pubmed/25594174
http://doi.org/10.1126/science.aaa4971
http://doi.org/10.1021/jacs.6b09538
http://www.ncbi.nlm.nih.gov/pubmed/27976881
http://doi.org/10.1039/c0an00144a
http://www.ncbi.nlm.nih.gov/pubmed/20485777
http://doi.org/10.1016/j.cbpa.2010.08.014
http://doi.org/10.3390/nano7090269
http://www.ncbi.nlm.nih.gov/pubmed/28892021
http://doi.org/10.1016/j.biomaterials.2016.06.037
http://www.ncbi.nlm.nih.gov/pubmed/27376560
http://doi.org/10.1246/bcsj.64.1268
http://doi.org/10.1039/C6QI00194G
http://doi.org/10.1038/238037a0
http://www.ncbi.nlm.nih.gov/pubmed/12635268
http://doi.org/10.1016/j.biomaterials.2015.04.006
http://doi.org/10.1039/C8SC00098K
http://doi.org/10.1038/nbt.3330
http://doi.org/10.1039/C8NR02387E
http://www.ncbi.nlm.nih.gov/pubmed/29850734
http://doi.org/10.1039/C8NR01512K
http://doi.org/10.1039/C9DT00482C
http://doi.org/10.1016/j.mseb.2014.12.005
http://doi.org/10.1006/jcat.2002.3539
http://doi.org/10.1016/j.biomaterials.2019.02.015
http://www.ncbi.nlm.nih.gov/pubmed/30784770
http://doi.org/10.1021/cm7028454
http://www.ncbi.nlm.nih.gov/pubmed/18820736
http://doi.org/10.1021/cr5004198
http://www.ncbi.nlm.nih.gov/pubmed/25602130
http://doi.org/10.1515/ntrev-2011-0005
http://www.ncbi.nlm.nih.gov/pubmed/26361572

	Introduction 
	Conventional Treatments of Breast Cancer 
	Photodynamic Therapy (PDT) and Photosensitizers (PSs) 
	Mechanisms of Photodynamic Therapy 
	Passive and Active Targeting PS Uptake Strategies 
	Nanoparticle Delivery Systems for PDT 
	Types of Inorganic NPs Utilized for Active Breast Cancer Targeting PDT Treatments 
	Noble Metal Nanoparticles 
	Magnetic Nanoparticles 
	Carbon-Based Nanoparticles 
	Semiconductor Quantum Dots (QDs) 
	Ceramic Nanoparticles 
	Silica Nanoparticles 
	Titanium Oxide Nanoparticles 

	Other Inorganic Nanoparticles 
	Upconversion Nanoparticles 

	Conclusions and Perspectives 
	References

