
1

Briefings in Bioinformatics, 00(00), 2021, 1–11

doi: 10.1093/bib/bbaa373
Problem Solving Protocol

HISNAPI: a bioinformatic tool for dynamic
hot spot analysis in nucleic acid–protein
interface with a case study

Long-Can Mei†, Yu-Liang Wang†, Feng-Xu Wu, Fan Wang, Ge-Fei Hao and
Guang-Fu Yang
Corresponding author: Ge-Fei Hao, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal
University, Wuhan 430079, China. State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green
Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang
550025, China. Tel.: +86-27-67867706; Fax: +86-27-67867706; E-mail: gefei_hao@foxmail.com.
†These authors contributed equally to this work.

Abstract

Protein–nucleic acid interactions play essential roles in many biological processes, such as transcription, replication and
translation. In protein–nucleic acid interfaces, hotspot residues contribute the majority of binding affinity toward molecular
recognition. Hotspot residues are commonly regarded as potential binding sites for compound molecules in drug design
projects. The dynamic property is a considerable factor that affects the binding of ligands. Computational approaches have
been developed to expedite the prediction of hotspot residues on protein–nucleic acid interfaces. However, existing
approaches overlook hotspot dynamics, despite their essential role in protein function. Here, we report a web server named
Hotspots In silico Scanning on Nucleic Acid and Protein Interface (HISNAPI) to analyze hotspot residue dynamics by
integrating molecular dynamics simulation and one-step free energy perturbation. HISNAPI is capable of not only predicting
the hotspot residues in protein–nucleic acid interfaces but also providing insights into their intensity and correlation of
dynamic motion. Protein dynamics have been recognized as a vital factor that has an effect on the interaction specificity
and affinity of the binding partners. We applied HISNAPI to the case of SARS-CoV-2 RNA-dependent RNA polymerase, a vital
target of the antiviral drug for the treatment of coronavirus disease 2019. We identified the hotspot residues and
characterized their dynamic behaviors, which might provide insight into the target site for antiviral drug design. The web
server is freely available via a user-friendly web interface at http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/ and http://a
groda.gzu.edu.cn:9999/ccb/server/HISNAPI/.
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Introduction
Proteins and nucleic acids are the two fundamental and
significant components of living organisms. Protein is the
product of gene expression, and gene expression depends on
protein. Protein–nucleic acid interactions exist at almost all
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levels of gene expression [1, 2]. In protein–nucleic acid interfaces,
a residue whose mutation to alanine leads to a large reduction
in the binding free energy is termed as hotspot [3–5]. They are
often clustered and packed to form ‘hot regions’ [6]. Typically,
the technique of per-residue binding free energy decomposition
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is applied to identify hotspot residues [7–9]. Rigorous approaches
have been developed to calculate the binding free energy, such as
free energy perturbation (FEP) [10], thermodynamic integration
(TI) [11] and Molecular Mechanics/Poisson–Boltzmann Surface
Area (MM/PBSA) [12]. The decomposition of free energy is
performed toward individual residues. These hotspot residues
are the main favorable contributors to the binding interactions
between protein and nucleic acid molecules. Modulating these
regions contributes to an increased knowledge of protein
function and thus uncovers their pathological implications. For
example, targeting the hot regions of the protein–nucleic acid
interface is an important modality in the treatment of cancer
[13–15]. Hence, studying favored nucleic acid binding hotspots
on proteins may provide essential information for identifying
the targetable region of the protein–nucleic acid interface in
disease treatment.

Recently, the dynamic properties of hotspot are receiving
more and more attention [16]. The flexibility of hotspots plays a
key role in allosteric regulation of protein surfaces. The nucleic
acid could induce conformational changes in hotspot residues to
form a substantially concave topology, which may be a potential
binding pocket in drug discovery [17]. Conformational change is
important for the formation of binding pockets and interactions
with other partners. Structural flexibility has an effect on con-
formational movement, which may change an existent pocket
or form a new pocket. Hotspots In silico Scanning on Nucleic
acid and Protein Interface (HISNAPI) gives a good description
of the pattern of hotspot movement, which allows the regula-
tion of pocket formation on binding campaigns. The dynamic
properties of these binding pockets are crucial for drug binding
affinity and specificity [18]. For example, the binding and dis-
sociation constants vary with different dynamics in the case of
a maltose-binding protein and a series of mutants [16]. Another
example is the consideration of protein binding pocket dynamics
in p38 mitogen-activated protein kinase, which helped to find an
inhibitor [19]. Hence, knowledge of nucleic acid binding-induced
protein hotspot dynamics may facilitate a more comprehensive
understanding of protein function, which is particularly relevant
to drug discovery.

To date, numerous computational methods based on various
principles have been developed to accelerate the prediction of
the effects of mutations on protein–nucleic acid binding. Scor-
ing methods have been developed for evaluating protein–RNA
binding affinity, such as QUASI-RNP and DARS-RNP [20], ITScore-
PR [21] and 3dRPC-Score [22]. Machine learning-based methods
have increasingly emerged to model binding interactions [23–
27]. These approaches could be utilized in the form of stand-
alone programs, while their operational complexity may daunt a
researcher without skillful computational chemistry knowledge.
Several methods have been developed into web servers for public
use, such as mCSM-NA [28], SAMPDI [29], PrabHot [30] and PrPDH
[31]. However, the goal of these methods is only to identify
the hotspot residues, regardless of their dynamic properties
associated with protein functions.

To this end, we introduced a web server, named HISNAPI, to
assist in describing the dynamic motions of hotspot residues in
protein–nucleic acid binding interactions. Molecular dynamic
(MD) simulation and one-step FEP have been integrated to
develop a fast and accurate de novo method for binding
free energy calculations [32]. HISNAPI was validated using
different types of cross-validation on diverse and large sets of
single alanine mutations from the ProNIT [33] and dbAMEPNI
[34] databases, and compared with several other tools. The
correlation we achieved for the binding free energy changes of

299 mutants from 40 protein–nucleic acid systems was R = 0.77.
The sensitivity, specificity and precision were 74.4, 87.8 and
81.6%, respectively, with AUC = 0.86. Because of conformational
sampling by molecular simulations, HISNAPI has an exclusive
advantage in generating the dynamic information contained
in simulation trajectories. HISNAPI provides a reliable way
to predict the effect of single alanine mutations on protein–
DNA/RNA binding and to characterize the dynamic properties of
hotspot amino acids.

Materials and methods
Interfacial residues detection

The interfacial residues are identified against a distance crite-
rion: those amino acids within a distance cut-off from any atoms
in a nucleic acid molecule are defined as interfacial residues. A
default 4 Å cut-off is recommended, which is accepted in most
cases [35].

MD simulation

Considering conformational flexibility, we performed conven-
tional MD simulation on protein–nucleic acid complexes to
obtain conformational ensembles by AMBER 16 program [36].
Each complex was prepared by the tleap module in AMBER.
Protein and nucleic acid molecules were parameterized by
ff14SB force field [37], RNA by RNA OL3 force field [38] and
DNA by DNA OL15 force field [39]. Each system was solvated
in a TIP3P water [40] box with 10 Å distance between the solute
and box. Counter-ions, Na+ and Cl−, were added to neutralize
the unbalanced charges. Following the standard protocol of
energy minimization, each system was then minimized by two
steps: firstly, all the heavy atoms in the backbone of the protein
were restrained with an elastic constant of 50 kcal·mol−1·Å−2

(2500 cycles of steepest descent and 2500 cycles of conjugate
gradient minimizations); secondly, the whole system was
minimized for 5000 steps without any restraint (2500 cycles
of steepest descent and 2500 cycles of conjugate gradient
minimizations). Each system was gradually heated from 0 to
300 K during a period of 500 ps in the NVT ensemble. Then, 1 ns
equilibration simulation was performed in the NTP (T = 300 K
and P = 1 atm) ensemble. In the production MD simulation
process, the SHAKE algorithm [41] was used to constrain all
of the covalent bonds involving hydrogen atoms. The cut-off
for calculating the short-range interactions (electrostatic and
Van der Waals interactions) was set to 10 Å, and the Particle
Mesh Ewald (PME) algorithm [42] was used to handle the long-
range electrostatic interactions. The time step was set to 2 fs,
and the snapshots were collected at an interval of 10 ps. At
least 1 ns production simulation is performed in the sampling
phase, but we add an evaluation of the equilibration. The root
mean square deviation is evaluated during the simulation. Once
the fluctuation of the root mean square deviation value of
the backbone of the whole system is smaller than 1.0 Å, the
simulation will be terminated. Elsewise, the simulation will
proceed to the next 1 ns until the maximum duration of 10 ns.
Finally, the last 1000 frames were extracted for the following
binding free energy calculation.

Computational alanine mutations

We have previously developed computational mutation scan-
ning (CMS) method [32] to predict binding affinity change in
protein-organic compound system upon residue mutation. Here,
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we produce alanine variant structure following the method.
More details can be found in the literature [43], the following is a
brief protocol: (1) single-alanine substitution was performed in
sequence on wild-type conformations by PyMOL software (Ver-
sion 1.2, Schrödinger, LLC); (2) a standard energy minimization
for relaxing mutant conformations by AMBER program and (3) a
short period of MD simulation to refine the orientation of residue
side chains. The unreasonable conformation of the side chains
after mutation may influence the conformation of the backbone.
Thus, the backbone of the protein is restrained with an elastic
constant of 50 kcal·mol−1·Å−2, and other atoms are free to move.
Energy minimization is performed by 5000 cycles of steepest
descent and 5000 cycles of conjugate gradient. Subsequently,
50 ps MD simulation is performed in NPT ensemble.

Binding free energy calculation

For each protein–nucleic acid complex system, the binding free
energy was calculated by the FoldX algorithm [44] based on the
conformational ensemble extracted from 1 ns MD trajectory.
FoldX is an empirical force field that is applicable to evaluate the
binding affinity of macromolecule complex based on its three-
dimensional structure. It shows good performance in computing
free energies over protein–DNA structures [45] and allows cal-
culations on structures containing RNA molecules [46]. In brief,
free energy calculation by FoldX is based on the sum of empirical
energy terms:

�G = �Gvdw+�GsolH+�GsolP+�Gwb+�Ghbond+�Gel+T�Smc+T�Ssc

(1)
where �G is the folding free energy. The terms �Gvdw, �GsolH,
�GsolP, �Gwb, �Ghbond, �Gel, �Smc and �Ssc represent the
contributions from Van der Waals, solvation energy for apolar,
polar groups, extra stabilizing free energy provided by water
molecules, hydrogen bond formation, electrostatic of charged
groups, the entropic cost for fixing the backbone and side
chain in the folded state, respectively. For protein–nucleic acid
interactions, FoldX calculates ��G of interaction:

��Gcom = �Gcom − (
�Gprot + �Gna

) + �Gkon + �Ssc (2)

��Gcom is the binding free energy of protein and nucleic
acid molecules. The terms �Gcom, �Gprot, �Gna, �Gkon and �Ssc

represent the folding free energy of the complex, mono-protein,
mono-nucleic acid, the effect of electrostatic interactions on
the kon and the loss of translational and rotational entropy for
complex formation, respectively.

The binding free energy change (��Gε) as a consequence
of single alanine mutation is the difference of binding affin-
ity between the mutant (��Gcom,mut) and wild-type (��Gcom,wt)
complexes:

��Gε = ��Gcom,mut − ��Gcom,wt (3)

Hotspot residues are a small subset of residues that have a
more significant contribution to the binding free energy than
other residues. In protein–nucleic acid systems, hotspot residues
can be defined operationally as those for which alanine muta-
tions have destabilizing effects on the total binding free energy
of more than 1.0 kcal·mol−1 [24, 31]. In most studies, researchers
achieved consensus on the threshold value of 1.0 kcal·mol−1 to
define hotspot residues [26, 47, 48]. Thus, we chose the same
criterion to compare the performance of HISNAPI with the other

methods. We defined hotspot residues as the ones which cause
the binding free energy change of greater than 1.0 kcal·mol−1.

Dynamical properties analysis

The movement stability of per residue is represented by root
mean square fluctuation (RMSF). The RMSF is a measure of the
deviation between the position of atom i (ri) and the reference
position (rref

i ):

RMSFi =
⎡
⎣ 1

T

T∑
tj=1

∣∣∣ri
(
tj
) − rref

i

∣∣∣
2

⎤
⎦

1/2

where T is the time over the MD simulation and rref
i is the

reference position of atom i. Here, the reference position is the
time-averaged position of atom i.

The movement correlation of pairwise residues is repre-
sented by the dynamical cross-correlation matrix (DCCM). The
correlation between the atom i and atom j is defined by the
following equation,

C
(
i, j

) = 〈
�ri · �rj

〉
/
〈
�ri

2〉1/2 〈
�rj

2〉1/2

where �ri and �rj are the fluctuations of atom i and j from
the time-average positions, and the angle brackets represent the
average over the simulation time.

Normal mode analysis (NMA) provides the information about
the direction of large-amplitude movement of a protein in MD
simulation. Normal mode calculation is based on the harmonic
approximation of the potential energy function (V) around a
minimum energy conformation:

V (rn) = 1
2

N∑

i
α = x, y, z

N∑

j
β = x, y, z

∂2V
∂riα

∂rjβ

∣∣∣∣∣
R

υiαυjβ

where r is the distance between atoms i and j, R is the average
distance, v is the difference of average distance and α and β

represent the direction of the motion. The routines for NMA
include a Hessian construction, Newton–Raphson minimiza-
tion and normal mode calculations. More details can be found
in the previous literature [49]. The snapshots extracted from
the simulations need to be fully minimized. Conformational
optimization was conducted by a maximum of 10 000 cycles
of conjugate gradient minimization with a convergence crite-
rion of 0.0001 kcal·mol−1·Å−1. Then, a maximum of 200 cycles
of Newton–Raphson minimization is applied, and the conver-
gence criterion is the root-mean-square of the gradient less than
1.0 × 10−12 kcal·mol−1·Å−1. To speed up the calculation, NMA is
performed on the α-carbon atoms of the protein.

Datasets and validation

To evaluate the performance of our method, we collected
23 protein–RNA and 17 protein–DNA complexes from ProNIT
[33] and dbAMEPNI [34] databases, which contains 299 exper-
imental measured binding free energy changes upon ala-
nine mutations (Supplementary Table S1 available online at
https://academic.oup.com/bib). The distribution of experi-
mental measured binding free energy changes is shown in
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Supplementary Figure S1A available online at https://academic.
oup.com/bib, in which 135 residues upon alanine mutations
with larger binding affinity change (��G ≥ 1.0 kcal·mol−1) are
considered as hotspot residues while other 164 residues are
considered as neutral residues. The distribution of protein–
nucleic acid complex type is shown in Supplementary Figure S1B
available online at https://academic.oup.com/bib, including 5
double-stranded RNA (dsRNA), 18 single-stranded RNA (ssRNA),
12 double-stranded DNA (dsDNA) and 5 single-stranded DNA
(ssDNA). HISNAPI was evaluated using the linear regression
against the experimental data and the receiver operating
characteristic (ROC) analysis to distinguish hotspot residues
from neutral residues.

Web server configuration

We have implemented our method via a user-friendly freely
available web server HISNAPI (http://chemyang.ccnu.edu.cn/
ccb/server/HISNAPI/ and http://agroda.gzu.edu.cn:9999/ccb/se
rver/HISNAPI/). HISNAPI web server runs on a Linux system
computer cluster [50, 51]. The web application uses PHP, HTML
and JavaScript to serve web pages [52]. The data are stored in
a database implemented in MySQL [53]. Molecular structure
visualization is based on NGL Viewer [54–56] web application,
which runs on all modern browsers with no additional plugins.

Results
Computational workflow

The HISNAPI prediction workflow is shown in Figure 1. HISNAPI
could define the interfacial residues as candidates that will
undergo the following mutation scanning. The method employs
MD simulation to generate the conformational ensemble of a
protein–nucleic acid complex in the wild-type residue environ-
ment. A total of 1000 snapshots are collected from the equili-
brated MD trajectory at regular intervals to obtain an ensemble
of wild-type complex structures. Then, single-alanine muta-
genesis of the wild-type ensemble is performed sequentially
on mutation sites to obtain mutant conformational ensembles.
Both wild-type and mutant structural conformations are refined
by a standard energy minimization protocol. Following structural
optimization, the average binding free energy of a conforma-
tional ensemble is calculated by the FoldX algorithm. The conse-
quences of alanine mutations are represented by the difference
in the binding free energy between the mutant and wild-type
(Equation 3). According to the consensus from previous stud-
ies [30], the residues that cause large binding affinity reduc-
tion (��Gε ≥ 1.0 kcal·mol−1) are identified as hotspot residues.
In addition, the dynamic properties of key residues could be
analyzed from simulation trajectories, including the stability,
correlation and direction of the residue movement.

The usage of web server

The server provides two options for the user to perform hotspot
prediction, as shown in the job submission interface (Figure 2A).
The ‘Site-directed mutations’ allow the user to predict the effects
of alanine mutations at specific sites on the binding affinity of a
protein–nucleic acid complex. The user should upload the initial
structure file of the protein–nucleic acid complex or input the
PDB ID collected in the Protein Data Bank database. A standard
PDB-format file is recommended. The users need to input the
chain ID of a single protein chain, as well as residue numbers of
mutation sites in the structure file. The ‘Single-chain scanning’

allows the user to perform alanine scanning on all interfacial
residues which are defined by the distance criterion. In addi-
tion to a complex structure file and a protein chain ID, users
need to input a distance cut-off value. Amino acids within the
distance of nucleic acids are considered mutation sites. Gen-
erally, a default parameter of 4 Å is advisable to detect all the
interfacial residues. User may input any reasonable parameter
value to suit her or his studies. Users are allowed to perform
MD simulations with a certain ionic strength. They can either
assign the concentration of sodium ion and chloride ion in
the prompt boxes, or ignore the prompt boxes to neutralize
the system by counter ions. Example input is present in the
textbox to guide the user to input the parameters. Some extra
information is optional for users, including task name, emails
and passwords, which help users mark the job, receive the notice
and keep the job private. A sample submission entry is available
on the submission page to guide users to submit their jobs. A
help page has been implemented and is accessible via the top
navigation bar.

The simplified exhibition of the results page is shown in
Figure 2B. The user can access the results page by the link on
the Jobs web page. All the result files can be downloaded as
text and image files by the link at the top of the results page.
The results page contains three main panels: (1) The ‘Hotspots
Identification’ panel shows the predicted hotspot residues. A
figure of the protein–nucleic acid complex structure is shown,
in which mutation sites are highlighted by sphere style and
hotspots are colored red. The wild-type structure uploaded
by the user can be visualized directly by the NGL Viewer web
application. Protein and DNA/RNA molecules are shown as
cartoon style, and mutation sites are highlighted in red stick
style. The user can interactively operate the style of the three-
dimensional structure mode to have a profile of residue packing
at an atomic level. (2) The ‘Binding Free Energy Change’ panel
shows the predicted change in binding free energy upon alanine
mutations. Additional structural characteristics corresponding
to a mutation site are analyzed, including secondary structure
elements, hydrogen bonds and changes in solvent accessible
surface area. The main components of the binding free energy
change are also provided for analysis of dominant interactions.
In addition, the energy terms are displayed in a histogram. (3)
The ‘Hotspots Dynamics Analysis’ panel presents the dynamical
properties focusing on the predicted hotspots, including RMSF,
principal component analysis (PCA), NMA, DCCM and hydrogen
bonds formation between protein and DNA/RNA molecules.
RMSF represents the movement fluctuation of each residue
based on the alpha-carbon atoms. The larger the RMSF value is,
the more flexible the residues are. PCA describes the dominant
changes in the conformational ensemble obtained by MD
simulation. A PCA object stores the covariance matrix and
principal modes. NMA is one of the vector quantization-based
techniques used to probe large-scale motions in biomolecules.
A typical application is for the prediction of functional motions
in proteins. DCCM allows the identification of the correlated
and anti-correlated motions of all pairwise residues. In the
heatmap plot, positive values (red) represent a correlated motion
between the corresponding residue pair, while negative values
(blue) represent an anti-correlated motion. The value of 1 or
−1 means a fully correlated and anti-correlated motion. The
formation of H-bonds during the MD simulation is listed in the
table. Detailed H-bonds components are recorded, including
the H-bonds acceptor (Acceptor), donor and hydrogen atom in
donor (Donor, DonorH), average distance (AvgDist) and angle
(AvgAng).

http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/
http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/
http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/
http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/
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Figure 1. HISNAPI workflow. The method employs molecular simulation to generate the conformational ensemble of a protein–nucleic acid complex on the wild-type

residue environment. Then, the alanine mutagenesis is performed to obtain mutant conformations. The average binding free energy change between wild-type and

mutant is calculated by FoldX algorithm. In addition, dynamical behaviors of the hotspots residues are characterized from simulation trajectories.

Table 1. Statistical analysis of prediction results in protein–RNA
dataset

Protein–RNA Experimental data Total

Hotspot
residues

Neutral
residues

Predicted
data

Hotspot
residues

54 9 63

Neutral
residues

13 64 77

Total 67 73 140

Performance

We performed ROC analysis to evaluate the performance in
distinguishing hotspot residues from neutral residues. The
total test dataset contains 135 hotspot residues and 164
neutral residues. HISNAPI accurately predicted 93 hotspot
residues and 153 neutral residues with a true positive rate
(sensitivity) of 74.4% and a true negative rate (specificity) of
87.8% (Tables 1–3). HISNAPI achieved good performance in
protein–RNA and protein–DNA datasets. Figure 3A–C shows
the ROC curve for classification capability. The area under the
curve (AUC) value was 0.86 for the total dataset (Figure 3A),
indicating the satisfactory capability of HISNAPI to distinguish
different types of mutations. The AUC values for the protein–
RNA and protein–DNA datasets were 0.89 and 0.81, respectively
(Figure 3B and C).

Table 2. Statistical analysis of prediction results in protein–DNA
dataset

Protein–DNA Experimental data Total

Hotspot
residues

Neutral
residues

Predicted
data

Hotspot
residues

39 12 51

Neutral
residues

19 89 108

Total 58 101 159

Table 3. Statistical analysis of prediction results in the total dataset

Protein–nucleic acid Experimental data Total

Hotspot
residues

Neutral
residues

Predicted
data

Hotspot
residues

93 21 114

Neutral
residues

32 153 185

Total 125 174 299

A comparison against experimental data was further carried
out to evaluate the performance of HISNAPI in predicting the
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Figure 2. Example of job submission and results web page. (A) ‘Site-directed mutations’ and ‘Single-chain scanning’ are two alternative ways for hotspots prediction.

(B) The results provided by HISNAPI consist of three aspects, including hotspots identification, binding free energy change and dynamic analysis.

Figure 3. The ROC curve of classification of hotspots (��G ≥ 1.0 kcal·mol−1) and neutral residues (��G < 1.0 kcal·mol−1) in protein–RNA (A), protein–DNA (B) and the

total datasets (C).
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Figure 4. Regression plot between the experimental and the conformational ensemble predicted changes in binding affinity for protein–RNA (A), protein–DNA (B) and

all dataset (C).

Table 4. Prediction performance of HISNAPI in comparison with other approaches

Methods Principle Datasets Number of
mutations

Ra AUCb Dynamic
analysis

Web Computation
time (min)

HISNAPI Force field 27 protein–RNA
and 13
protein–DNA
complexes

299 0.77 0.86 Yes http://chemyang.
ccnu.edu.cn/ccb/serve
r/HISNAPI/ or http://a
groda.gzu.edu.cn:9999/
ccb/server/HISNAPI/

∼150

mCSM-NA Machine
learning

14 protein–RNA
and 4
protein–DNA
complexes

81 0.70 - No http://structure.bioc.ca
m.ac.uk/mcsm_na

∼10

SAMPDI Force field 13 protein–DNA
complexes

105 0.72 - No http://compbio.clemso
n.edu/SAMPDI

∼15

PrabHot Machine
learning

47 protein–RNA
complexes

209 - 0.86 No http://denglab.org/Pra
bHot/

∼20

PrPDH Machine
learning

24 protein–DNA
complexes

64 0.51 0.76 No http://bioinfo.ahu.edu.
cn:8080/PrPDH

∼10

XGBPRH Machine
learning

15 protein–RNA
complexes

58 0.66 0.81 No https://github.com/Su
permanVip/XGBPRH

∼20

SPHot Machine
learning

15 protein–RNA
complexes

58 0.65 0.84 No http://bioinfo.ahu.edu.
cn:8080/SPHot

∼20

aR: Pearson correlation coefficient.
bAUC: The area under the curve of ROC.

binding free energy change. Figure 4 depicts the linear regres-
sion plots between the experimental and predicted data. The
analysis showed a Pearson correlation coefficient of 0.78 for the
protein–RNA dataset (Figure 4A) and 0.76 for the protein–DNA
dataset (Figure 4B). The performance of HISNAPI seems as good
in the protein–RNA dataset as in the protein–DNA dataset. For
the total dataset, HISNAPI achieved a Pearson correlation coef-
ficient of R = 0.77 (Figure 4C). In our previous works [43, 57], we
demonstrated that compared with that based on static struc-
tures, the calculation accuracy based on conformational ensem-
ble could be improved. Here, we also performed alanine scanning
based on static structures of the protein–nucleic acid complex.
The results showed a Pearson correlation coefficient of 0.41 for
the total dataset, with 0.39 for the protein–RNA dataset and 0.44
for the protein–DNA dataset (Supplementary Figure S2 available
online at https://academic.oup.com/bib). This outcome indicates
that conformational sampling has an effect on the accuracy of
the binding free energy calculation. Sufficient conformations
could provide more reliable prediction results.

We finally compared the hotspot prediction performance of
HISNAPI with some up-to-date and widely used approaches.

These approaches use force field or machine learning-based
techniques to predict the mutation effects, and are available by
online web servers or stand alone. We constructed a dataset con-
sisting of 299 mutants to test HISNAPI, while other approaches
used smaller datasets (Table 4). The test datasets for HISNAPI
and mCSM-NA include protein–DNA and protein–RNA complex
systems. HISNAPI achieved a correlation coefficient (R) of 0.77,
which demonstrates its good capability to predict the effects
of alanine mutations. Except for PrPDH, which has a minimum
R value of 0.51, the other approaches have R values greater
than 0.6. Both HISNAPI and PrabHot have the largest AUC value
of 0.86 among those methods. This only indicated the consid-
erable ability of HISNAPI and PrabHot to distinguish hotspot
residues from neutral residues. We observed that all approaches
obtained satisfactory AUC values greater than 0.7. In addition, we
collected a benchmark protein–RNA dataset and a benchmark
protein–DNA dataset (Supplementary Table S2 available online
at https://academic.oup.com/bib) to evaluate the performance
of HISNAPI and the other methods. These datasets are not
used to train models for the machine learning-based methods.
The benchmark protein–RNA dataset consists of 15 complexes,

http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/
http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/
http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/
http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/
http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/
http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/
http://structure.bioc.cam.ac.uk/mcsm_na
http://structure.bioc.cam.ac.uk/mcsm_na
http://compbio.clemson.edu/SAMPDI
http://compbio.clemson.edu/SAMPDI
http://denglab.org/PrabHot/
http://denglab.org/PrabHot/
http://bioinfo.ahu.edu.cn:8080/PrPDH
http://bioinfo.ahu.edu.cn:8080/PrPDH
https://github.com/SupermanVip/XGBPRH
https://github.com/SupermanVip/XGBPRH
http://bioinfo.ahu.edu.cn:8080/SPHot
http://bioinfo.ahu.edu.cn:8080/SPHot
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Figure 5. Case study of RdRp complex from SARS-CoV-2. (A) The cryo-EM structure of RdRp (white cartoon) and RNA (orange cartoon) complex (PDB ID: 7BV2). Those

interfacial residues are highlighted by cyan spheres. (B) The hotspot residues predicted by HISNAPI. The hotspot residues are represented by red spheres, and the

neutral residues by gray spheres. (C) The binding free energy changes upon alanine substitutions of RdRp complex from HISNAPI prediction data. (D) Characterization

of dynamic properties of RdRp protein in apo and holo forms, including RMSF (left), PCA (middle) and DCCM (right).

a total of 99 alanine mutations. The benchmark protein–DNA
dataset consists of 10 complexes, a total of 73 alanine mutations.
As shown in Supplementary Table S3 and Figure S3 available
online at https://academic.oup.com/bib, the prediction accuracy
of HISNAPI is 0.71 for protein–RNA dataset and 0.75 for protein–
DNA dataset. The AUC value is 0.84 for protein–RNA dataset
and 0.79 for protein–RNA dataset. In protein–RNA system, HIS-
NAPI and XGBPRH have the same accuracy of 0.71. The lowest
accuracy achieved by SPHot is 0.58. In protein–DNA system,

HISNAPI has the highest accuracy of 0.75. The other three meth-
ods achieved the accuracy above 0.6. The results prove that
HISNAPI has a comparative performance in predicting protein–
nucleic acid hotspot residues. HISNAPI and mCSM-NA are appli-
cable to both protein–DNA and protein–RNA complex systems.
Most of those approaches are developed exclusively for a sin-
gle system. HISNAPI, mCSM-NA and SAMPDI can quantitatively
predict the binding free energy changes, while PrabHot, PrPDH,
XGBPRH and SPHot score the probability of whether a residue
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is a hotspot. XGBPRH and SPHot provide the source code, which
can predict locally in batches. Among all approaches, HISNAPI
is the only one for not only hotspot prediction but also dynamic
behavior analysis of those hotspots. However, we still need to
realize the limitations in HISNAPI. The HISNAPI method simu-
lates the flexibility of protein–nucleic acid complexes at the cost
of computational resources and time. It costs much calculation
time for a large complex system. We recorded the time taken
by all the methods to complete a benchmark task. The average
time spent by each method to complete a job represented its
calculation speed. The computational time is listed in Table 4.
HISNAPI needs a longer calculation time of ∼150 minutes for a
job, while other methods can complete a job in ∼30 minutes.
Compared with the machine learning-based scoring methods,
computational speed is one of the limitations of the structure-
based computational method. Currently, HISNAPI is only capable
of predicting the effects of alanine mutations and is thus not
suitable for other natural amino acid mutations.

Case study

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), a vital
component for the replication of the virus, is an attractive
drug target for the treatment of COVID-19 disease. The cryo-EM
structures of SARS-CoV-2 RdRp in apo form and in complex with
a template-primer RNA and remdesivir have been reported [58].
RdRp is a so stable enzyme that no significant conformational
changes between the apo and the holo form structures are
observed. This work revealed the inhibition mechanism by
remdesivir and provided a structural basis for designing antiviral
drugs based on nucleotide analogs. We applied HISNAPI to the
RdRp–RNA complex to provide a basic understanding of RNA
recognition by RdRp. A total of 29 residues (except alanine
and glycine) in RdRp were found to be within 4 Å of the RNA
molecule (Figure 5A). HISNAPI performed alanine scanning
on these interfacial residues. The results showed 7 hotspot
residues (V560, F594, Y595, Y689, I847, L862 and Y915) and 22
neutral residues (Figure 5B). The binding affinity changes upon
alanine substitution are shown in the histogram (Figure 5C). We
observed the large reductions of binding affinity in Y595A and
Y915A mutations. The results revealed that the residues Y595
and Y915 contribute mostly to the interaction between RdRp and
RNA molecules.

HISNAPI also provides insights into the dynamic properties
of hotspot residues in the RdRp protein. Binding site dynamics
have been recognized as a vital factor that has an effect on the
interaction specificity and affinity of the binding partners in
drug design [59]. Figure 5D shows the routine analysis of residue
movement, including RMSF (left), PCA (middle) and DCCM (right).
In the RMSF plot, the RMSF value reports on the fluctuations
that take place on a per residue basis during the simulation.
The movements of RdRp protein in apo form (blue) and in holo
form (orange) are recorded. The red dotted lines highlight the
positions of the predicted hotspot residues. The larger the RMSF
value is, the more flexible the residue is. RMSF analysis revealed
that the whole structures of RdRp in apo and holo forms share
a similar tendency for residue fluctuation. The regions around
the RNA binding interface decreased the fluctuation upon RNA
recognition. We observed that the hotspot residues tend to be
located in locally stable regions with smaller RMSF values than
that of the flank. The movements of the hotspots on V560,
F594, Y595 and Y689 were not affected by RNA binding. The PCA
plot shows the dominant changes in the conformation ensem-
ble during the simulation. The conformation space sampled by

MD simulation is used to build and diagonalize the covariance
matrix to determine the principal modes of structural variations.
The red dotted lines highlight the positions of the predicted
hotspot residues. The apo form (blue) RdRp has dramatic confor-
mational changes in some regions compared with the holo form
(orange). However, these hotspot residues of V560, F594, Y595
and Y689 in both forms maintain stable conformations. This
revealed the conformational stability on these sites, which is
consistent with the RMSF analysis. ‘Stability patches’ have been
reported to exist on protein surfaces, regulating protein recog-
nition interactions [60]. The stable backbone of hotspot residues
may contribute to their role in facilitating the binding of small
ligands to the binding sites. DCCM describes the movement cor-
relation of all pairwise residues. The DCCM plot shows the differ-
ence in the correlation coefficient between the holo form and the
apo form RdRp. Positive values (red) represent the motion that
becomes more correlated, while negative values (blue) represent
the motion that becomes more anti-correlated. In DCCM plot,
we observed that the changes of movement correlation are
low-scale and occurred in small local regions throughout the
RdRp protein structure. This indicates that RNA binding had no
substantial effect on the correlation of protein motion. It may
be explained by the structural stability of RdRp in response to
the perturbation of RNA binding. Protein flexibility plays a vital
role in molecular recognition. The dynamic behaviors may help
to predict the binding interaction at the residue level. Computa-
tional approaches to identify hotspot residues and describe their
dynamics provide a means to reveal potential binding pockets to
expand the possibility for improving drug design.

Conclusions
In our previous work, we developed the PIIMS (Protein Interface
In silico Mutation Scanning) web server for predicting the hotspot
residues in protein–protein complex interfaces and the effects
of hotspot mutations on protein–protein interactions. The cal-
culation strategies of HISNAPI and PIIMS are both based on the
CMS protocol. However, HISNAPI is designed to characterize the
dynamic properties of hotspot residues, while PIIMS is designed
to predict the effects of hotspot mutations. HISNAPI utilizes an
empirical force field FoldX to evaluate the binding free energy,
and PIIMS uses the MM/PBSA method.

HISNAPI was developed to predict the hotspot residues in
protein–nucleic acid interfaces and provide dynamic informa-
tion of the hotspots. Considering the flexibility of interfacial
residues, HISNAPI evaluates the binding affinity based on
conformational ensemble by conformational sampling rather
than static structure. And HISNAPI utilizes an empirical force
field FoldX to evaluate the binding affinity, which is applicable
not only to the protein–DNA system but also to the protein–RNA
system. The method achieved a correlation of up to 0.77 between
experimental and predicted data and was able to classify the
large and small effects upon alanine mutations with an AUC
value of 0.86, showing its high capability to identify hotspot
amino acids. HISNAPI provides a way to connect structure,
dynamics and function in macromolecule binding processes by
extracting dynamic properties from molecular simulations. MD
simulations allow the motion of a protein to be predicted over
time. It is a powerful approach to study the dynamic properties
at the atomic level. Simulation time is a main limitation for
accurate analysis of protein motion. A basic assumption is made
in our method that affects the applicability of HISNAPI and
the interpretation of the results. It is assumed that there are
no dramatic conformational changes in a protein–nucleic acid
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complex. Nanosecond time-scale MD simulations are possible to
describe the dominant conformational space for a rigid protein
system. For a flexible or disordered protein system, HISNAPI
could not well describe the dynamic properties. We believe that
HISNAPI is a multifunctional tool for mutagenesis research to
guide experimentation, shedding light on the mechanism of
protein–nucleic acid binding at the molecular level.

Key Points
• Accurate and fast predictions of hotspots on protein–

nucleic acid interfaces are essential for understanding
the mechanisms of protein–nucleic acid interactions.

• We have made our method available as a webserver
HISNAPI for prediction of the hotspot residues on
protein–nucleic acid interface.

• Besides the superior performance in prediction of
hotspot residues, HISNAPI has unique capability to
describe the dynamic properties of hotspots, leading
to the connection between structure, dynamics and
function.

• HISNAPI is free access for public without registration.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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