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Early cyclosporin A treatment retards axonal 
degeneration in an experimental peripheral nerve 
injection injury model
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Introduction
Surgical and pharmacological therapeutic approaches for 
the treatment of nerve injury caused by drug injection have 
been studied since the 1920s (Matson, 1950; Kobayashi et 
al., 1997; Kaptan et al., 2014) and the clinical presentation 
of drug injection-caused nerve injury  has been well de-
scribed (Maqbool et al., 2009). Until the mid-1980s, the 
pathophysiology of drug injection-caused nerve injury re-
mained obscure, and even now, is controversial. The postu-
lated mechanisms underlying drug injection-caused nerve 
injury include direct needle trauma, secondary constriction 
by scarring, extrafascicular or intrafascicular injection of 
agent, and direct nerve fiber damage by neurotoxic chem-
icals in the injected agent. Nerve injury leads to Wallerian 
degeneration and includes the recruitment of macrophages 
and the phagocytosis of myelin and remnants of axons. 
Neurological sequel can range from minor transient sensory 
disturbance to severe sensory disturbance and motor paral-
ysis with poor recovery (Gentili et al., 1996; Taskinen and 

Roytta, 2000).
The current therapy modalities of nerve injury following 

intramuscular drug injection range from a conservative ap-
proach to immediate operative exposure and irrigation, and 
have included early neurolysis and delayed exploration with 
neurolysis or resection. However, some experimental studies 
related to injection injuries have added to our understanding 
of the pathophysiology of this important medico-legal prob-
lem (Hudson, 1984; Terzis, 1987; Steinfeldt et al., 2010). 

The immunosuppressive agent cyclosporin A (CsA) has 
increased the success rate of organ transplantation (Mackin-
non and Hudson, 1992). Additional studies have investigated 
its use in peripheral nerve allografting. In these studies, au-
thors reported that there were excellent nerve regenerations 
in autograft and allograft applications under immunsu-
pressive effect of CsA (Bain et al., 1988; Mohammadi et al., 
2014). However, its neuroprotective actions are not well un-
derstood (Wang et al., 1997; Kaminska et al., 2004). Here, we 
performed electrophysiological and histopathological studies 
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to investigate the time-dependent efficacy of CsA in a rat 
model of penicillin G potassium injection-caused peripheral 
nerve injury.

Materials and Methods 
Study groups and experimental protocol
Twenty male Wistar rats, weighing 250–300 g, were obtained 
from the Animal Laboratory, University of Gaziantep, Tur-
key and included in this study. The experimental protocol 
was reviewed and approved by the Ethics Committee for 
Animal Experiments of the University of Gaziantep, Turkey. 
The rats were exposed to a 12-hour light-dark cycle and were 
provided access to standard rat chow ad libitum. 

The rats were anesthetized by an intraperitoneal injection 
of Ketamine HCl 50 mg/kg (Ketalar flakon 50 mg/mL, Pfizer, 
Istanbul, Turkey). After fixation on the operating table, all of 
the surgical procedures were conducted under sterile condi-
tions and the right sciatic nerves were exposed under loupe 
magnification (× 4). A longitudinal incision was made in the 
upper to mid thigh, and a 1.5-cm length of the right sciatic 
nerve was isolated by blunt dissection along a fascial plane 
between the gluteus and femoral musculature. Penicillin G 
potassium (0.3 mL, 150,000 IU) was applied to the nerve 
at mid thigh level (Penicillin G flakon 1,000,000 IU/2 mL, 
Ibrahim Ethem Ulugay, Istanbul, Turkey). A sterile 6/0 silk 
suture was tied through the perineural muscle tissue to mark 
the injured site. 

The 20 rats were randomly and evenly divided into 
three CsA-treated groups and a control group. In the 
CsA-treated groups, 20 mg/kg CsA (Sigma-Aldrich, Che-
mie GmbH, Germany) was intraperitoneally administered 
at 30 minutes, 8 and 24 hours after sciatic nerve injury 
(CsA-treated-30 minutes, -8 hours, and -24 hours groups, 
respectively). In the control group, CsA administration was 
omitted. In the three CsA-treated groups, CsA was used 
as a management therapy (10 mg/kg) by intraperitoneal 
route once per day for 3 days. All rats received an injection 
of 20 mg/kg Ceftriaxone (Rocephin flakon 0.5 g, Roche, 
Istanbul, Turkey) 30 minutes before the surgical procedure 
and for 3 days after surgery to prevent infection. The nerve 

biopsies were obtained at 4 weeks after nerve injection in-
jury. Prior to the biopsy, the rats were examined for signs 
of hind limb weakness. The rats were anesthetized using 
an intraperitoneal injection of Ketamine HCl (50 mg/kg). 
The sciatic nerves were exposed surgically and any mac-
roscopic changes which can be seen by direct vision such 
as adhesion, swelling or thickening at the injury site and 
along the length of the nerve, were recorded. For each rat, 
a 10-mm length of the nerve including the site of injection 
and equal-distance proximally and distally was biopsied. 
The nerve samples were fixed in a 10% solution of form-
aldehyde and processed for light microscopy (Olympus Bx 
50 light microscope, Tokyo, Japan). Samples were taken 
and embedded in paraffin; sections of 5 μm thick were 
separated with the help of a microtome. Samples were then 
stained with toluidine blue (Sigma, St. Louis, MO, USA). 
After staining, sections were evaluated under × 40, × 200 
and × 400 magnifications in terms of gross cellular and 
structural changes within the nerve (Malysz et al., 2011).

Electrophysiological recordings
The compound muscle action potential (CMAP) values were 
measured using a Medtronic Keypoint® Version 3.0 EMG 
device (Medtronic Company, Minneapolis, MN, USA). The 
stimulus was given with a bipolar insulated stimulator. One 
silver electrode was placed on dry skin of the tail as a ground 
electrode, and the recording electrode was placed on the 
gastrocnemius muscle surface. A 5–10 mA stimulus was ap-
plied to a point just above the level of the sciatic nerve injury 
(proximal to the injury region). The duration of the stimulus 
was 0.2 ms, and the CMAP values (amplitude, latency, area 
under the curve, and duration) were recorded using distal  
silver electrodes (Table 1). CMAP values were measured just 
before injury, 1 hour after injury (early post-injury) and 4 
weeks after injury (after treatment).

Statistical analysis
Because the measurement variables do not meet the nor-
mality assumptions, the Kruskal-Wallis one-way analysis of 
variance was used to compare the variable measurements 
among the groups. After that, differences in values between 

Figure 1 Effect of cyclosporin A (CsA) on axonal degeneration in sciatic nerves injured with penicillin G potassium at 4 weeks post-injury 
(Toluidine blue, × 200). 
In the CsA-treated-30 minutes (A), -8 hours (B), and -24 hours (C) groups, CsA was administered at 30 minutes, 8 and 24 hours after penicillin 
G potassium injection-caused injury respectively, while in the control group (D), CsA administration was omitted. In the CsA-treated-30 minutes 
group, limited and localized degeneration (small black arrows) was observed in all rats compared to CsA-treated-8 hours, -24 hours and control 
groups. In the CsA-treated-8 hours, -24 hours and control groups, diffuse degeneration and injury patterns, small regeneration clusters, subepineu-
ral tears (thick black arrow in B) and Schwann cell wastes (white arrows in B, C and D) were seen and the changes in morphology were similar. 
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groups were analyzed with the Mann-Whitney U test. Both 
tests were performed using IBM SPSS Statistics for Win-
dows, Version 20 (IBM Corp., Armonk, NY, USA). The data 
were expressed as the mean ± SD. A value of P < 0.05 was 
considered statistically significant.

Results
Effect of CsA on electrophysiological changes after sciatic 
nerve injection injury
The results of the electrophysiological investigation are 
shown in Table 1. After sciatic nerve injection injury, the 
mean values of the CMAP amplitudes were significantly de-
creased in all four groups compared with the values detected 
before injury (P < 0.05). At 4 weeks after injury (after treat-
ment), significant improvement in the mean value of CMAP 
amplitude was only observed in the CsA-treated-30 minutes 
group (P < 0.05). In addition, in each group, the latency and 
area under the slope of the CMAP values post-injury and 
post-treatment were not significantly different from that 
measured before injury (P > 0.05).

Effect of CsA on nerve degeneration after sciatic nerve 
injection injury
The histopathological study of the sciatic nerves demon-
strated focal and limited Wallerian degeneration with a more 
pronounced axonal regeneration pattern in the CsA-treat-
ed-30 minutes group compared with the other groups. 
All of the myelinated axons in the sciatic nerves from the 
CsA-treated-30 minutes group had clear centers and were 
evenly distributed throughout the nerve bundle except for 
the lesion area (Figure 1A). In the CsA-treated-8 hours and 
CsA-treated-24 hours groups, the histopathological find-
ings were morphologically similar to those in the control 
group. In the CsA-treated-8 hours and CsA-treated-24 hours 
groups, sections showed a large number of diffuse axonal de-
generation patterns, regeneration clusters, subepineural tears 
and Schwann cell debris. Furthermore, many myelin sheaths 
had collapsed in the sciatic nerve of the CsA-treated-8 hours, 
CsA-treated-24 hours and control groups. The collapsed 

axons in these groups were not evenly distributed. The col-
lapsed and intact axons of these groups were separated by 
larger interstitial spaces (Figure 1B–D). The pathological se-
verity appeared to increase with the order of CsA-treated-30 
minutes, -8 hours, -24 hours and control groups (Figure 
1A–D).

Discussion
Injection injury to the peripheral nerves remains an import-
ant medicolegal problem in developing countries. Therefore, 
we selected penicillin G potassium, one of the most widely 
used therapeutic agents in treating infectious diseases in 
developing countries, for use in this study (Matson, 1950; 
Gentili et al., 1996). Injection-induced nerve damage might 
be due to both the neurotoxic effect of the agent injected 
and the mechanical damage that causes distortion of the 
blood-nerve barrier (Ong et al., 2011). Because of the insuf-
ficiencies of the possible surgical and medical treatment mo-
dalities for this type of injury, an alternative approach aimed 
at decreasing the process of nerve degeneration is desirable. 
Therefore, we investigated the potential neuroprotective ef-
fects of an immunosuppressant drug on the peripheral ner-
vous system in an injection injury model. 

Damage to the peripheral nerves is followed by degenera-
tion and regeneration phases in early (1–6 hours), rapid (1–3 
days), and fast (7–28 days) post-injury periods. The early de-
generative changes, such as the worsening of CMAP values, 
are observed in both proximal and distal parts of the nerve, 
whereas the axonal disruption and myelin changes start. The 
morphological findings include degeneration in axons and 
myelin with swelling of the injury location (Koltzenburg and 
Bendszus, 2004; Sta et al., 2014). During the rapid degenera-
tion phase, myelin and axonal losses expand distally (Mack-
innon et al., 1991; Conforti et al., 2014). The fast degenera-
tive phase is followed by a long-lasting phase of regeneration 
(7–28 days) in which immunohistochemical, functional and 
neurophysiological results all suggest the slow extension of 
nerve fibers in a distal direction (Mackinnon et al., 1991; Li 
et al., 2001, 2008; Sta et al., 2014).

Table 1 The values of CMAP in four groups

CsA-treated-30 minutes CsA-treated-8 hours CsA-treated-24 hours Control 

Amplitude (mV) Pre-injury 61.04±14.03 35.72±3.41 47.28±23.18 50.84±11.03

Post-injury 20.94±8.24* 20.82±4.42* 22.62±11.46* 25.34±6.92*

After treatment 39.90±7.42# 21.88±6.34 34.42±14.03 26.62±9.33

Latency (ms) Pre-injury 1.00±0.13 0.79±0.18 1.03±0.18 1.00±1.17

Post-injury 1.13±0.17 1.03±0.21 1.20±0.13 1.03±0.14

After treatment 0.99±0.10 1.06±0.19 0.96±0.08 0.96±0.14

Area under the curve (mV.ms) Pre-injury 121.94±57.96 64.96±20.10 77.80±42.42 86.68±16.77

Post-injury 37.72±24.85 37.50±9.76 35.60±20.78 51.62±14.98

After treatment 64.38±11.94 28.96±11.60 50.26±26.86 43.50±19.34

Duration (ms) Pre-injury 11.70±9.36 5.98±1.12 5.58±0.50 5.84±0.43

Post-injury 5.38±1.83 6.02±1.53 5.16±0.32 6.38±1.98

After treatment 5.28±1.04 5.76±1.07 4.82±0.37 5.74±1.39

The data are expressed as the mean ± SD. *P < 0.05, vs. pre-injury; #P  < 0.05, vs. post-injury (Kruskal-Wallis one-way analysis of variance followed 
by the Mann-Whitney U test). There were five rats in each group. CMAP: Compound muscle action potential; CsA: cyclosporin A. 
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Currently, there are two mechanisms proposed to produce 
the rapid Wallerian degeneration in anucleate mammalian 
axons. One mechanism involves the extensive activation of 
calcium (Ca2+)-dependent pathways, which directly or in-
directly affect the degradation of neurofilaments and other 
proteins necessary for axonal viability. The other potential 
mechanism is a vigorous phagocytic response by migra-
tory white blood cells (Glass et al., 1994; Sunio and Bittner, 
1997). Although Ca2+ plays a pivotal role in normal neuronal 
function, excessive amounts are detrimental and have been 
shown to result in significant neuronal loss. Mitochondria 
are believed to play a key role in this process by sequestering 
and releasing Ca2+ via several mechanisms (Okonkwo and 
Povlishock, 1999; Sullivan et al., 2000).  

The data in the literature regarding the ability of CsA to 
improve peripheral nerve regeneration are inconsistent (de 
la Monte et al., 1988; Muramatsu et al., 1995; Meirer et al., 
2002; Mohammadi et al., 2014), which we believe reflects 
the variety of models and testing methods used. Diaz-Ruiz 
et al. (1999) first demonstrated that early administration 
of CsA diminished the production of lipid peroxidation in 
injured spinal cord and also improved functional outcome. 
CsA administration may also have an effect on mononuclear 
phagocytes, which play a critical role during Wallerian de-
generation by affecting the number of macrophages while 
also retarding axonal degeneration and subsequent reinner-
vation (Sunio and Bittner, 1997; Morioka et al., 1999; Taski-
nen and Roytta, 2000). Meirer et al. (2002) observed that 
CsA increased nerve regeneration in vivo in a dose-depen-
dent manner. Given the associated organotoxic and meta-
bolic problems, authors have reported the necessity of using 
low doses of cyclosporin, limiting the duration of therapy or 
choosing topical administration of the drug (Rezzani, 2006; 
Melnikov et al., 2011). Junior et al. (2008) reported that 
administration of low dose CsA (5 mg/kg per day subcuta-
neously) increased fiber density. In addition, it has been re-
ported that intraperitoneal injection of CsA, provided it can 
pass through the blood-brain barrier, significantly prolongs 
survival, reduces brain damage, and improves mitochondri-
al respiration (Uchino et al., 2002; Domanska-Janik et al., 
2004; Kaminska et al., 2004). It has been demonstrated that 
CsA protects both mitochondria and the related axonal shaft 
(Okonkwo and Povlishock, 1999).  

The present investigation has a number of methodolog-
ical deficiencies that need to be discussed. First, in our 
experimental setting, we did not use a control group with 
needle trauma to clarify the injury of the needle alone. An 
experimental study about nerve injury by needle alone 
showed that small-diameter cannulae (24 gauge) may be 
advisable for peripheral nerve blocks to minimize the risk 
of nerve injury in the case of nerve perforation.  In addi-
tion, inflammatory responses (but neither axonal nor my-
elin alterations) were observed in almost all nerve specimen 
within the 24 G needle group (Steinfeldt et al., 2010). In our 
study, we used a thinner 26 gauge tuberculin syringe. Sec-
ond, we could not perform some important investigations 
such as walking track analysis and electron microscopic 

studies because of some technical difficulties and incapac-
ities. However, electrophysiological studies were also used 
to reduce the histopathological subjectivity or bias that may 
arise. 

Despite these insufficiencies, given that this study is the 
first reported experiment to use an immunosuppressant 
agent to improve peripheral nerve injury after drug injec-
tion, we believed that findings from this experiment can be 
useful for the design of future studies. We found that CsA 
limited the injured area or slowed down the process of de-
struction in the rat sciatic nerve and improved the CMAP 
amplitude values, if given at an early period (within 30 min-
utes of injury) by systemic administration. The mechanism 
by which CsA produces its axonal regenerative effect is un-
known. However, probable mechanisms of CsA include in-
hibiting white blood cell proliferation and/or differentiation 
and inhibiting Ca2+ dependent cell injury.  

In summary, the present study confirms the neuroprotec-
tive effect of CsA. Furthermore, our results indicate that un-
known mechanisms underlie the recovery of nerve injection 
injury.
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