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Introduction

Caloric restriction (CR) is an intervention that has been shown 
to extend life and reduce age-related and chronic diseases, such 
as cardiovascular disease and cancer.1-3 Although the positive 
benefits of CR were first described nearly a century ago,4 there 
now is renewed interest in CR with an, increasing body of lit-
erature demonstrating a direct connection between dietary prac-
tices, cancer outcomes and obesity. One such cancer that has 
been shown in vivo to respond to CR is breast cancer.5 Caloric 
restriction has been shown to not only decrease the incidence, but 
also the progression of breast cancers.6,7 Most recently CR has 
been shown in vivo to decrease metastases from breast cancer.7 
Human epidemiologic studies indicate the relevance of dietary 
intake on breast cancer incidence and treatment. Population 
studies on obese patients have shown increase rates of breast can-
cer mortality, while those assessing anorexia nervosa have found 
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a ~50% decreased risk of breast cancer compared with the normal 
population.8

At the molecular level, CR has optimal characteristics to 
combat cancer, as it has been shown to increase apoptosis and 
decrease the rate of proliferation, angiogenesis, hormones lev-
els and growth factors.9 In fact, many novel therapeutic agents 
for cancer treatment are targeted against individual molecules 
known to also be targets of CR, such as IGF1-R/Akt pathway, 
mTOR and AMP-K.10 These observations have led to investiga-
tions into CR as a potential treatment for cancer. To date, CR 
has proven to be very important, because it can inhibit mTOR11,12 
and can increase the effectiveness of chemotherapy13,14 while pro-
tecting normal tissue.12,15,16 Interestingly, many of those same 
molecular targets, including mTOR, are also altered with radia-
tion therapy.17-20 Therefore, in this study we sought to determine 
if CR could be used in conjunction with radiation therapy to 
render cancer cells more susceptible to treatment.
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published reports for ADF may be due to the relatively short 
timeline of the experiment (38 d).

ADF did cause a decrease in tumor growth rate when com-
pared with AL controls (Fig. 2A and B) for both 4t1 and 67NR 
implants. At 1,000 mm3, ADF caused an average growth delay 
of 16% (NS) for 67NR tumors and 30% (p value 1.37E-06) for 
4t1 tumors. We also sought to determine how dietary restriction 
interacts with ionizing radiation (IR). To determine the proper 
dose of radiation to use for each cell line-derived tumor in vitro, 
clonogenic expansion assays were performed, and the radiation 
dose that achieved 1 log cell kill was determined to be 6 Gy for 
67NR cells and 8 Gy for 4t1 cells (Fig. S1). IR alone caused a 
delay of 14% (NS) for 67NR tumors and 11% (p value 9.64E-07) 
for 4T1 tumors, and ADF combined with IR caused an aver-
age growth delay of 25% for 67NR tumors (p-value 0.0069) and 
45% for 4T1 tumors (p value 1.32E-07).

Since these results seemed encouraging, but the 20–30% 
reduction in calories was not achieved, another cohort of mice 
were then treated after palpable 4T1 tumors were generated with 
caloric restriction (CR) that constituted controlled daily feeding 
of 70% of normal intake, and an additional arm which received 
both CR and IR. Compared with AL fed mice at 1,000 mm3, CR 
provided a growth delay of 56% (p value 2.29E-06), while the 
CR + IR group yielded a more than additive growth delay of 82% 
(p value 1.18E-05) (Fig. 2C). All growth delays were considered 
significant if p < 0.05 by Student’s t-test.

The weight of each mouse was measured three times a week 
for the duration of the experiment and recorded (Figs. 2D–F). 
Minor and temporary weight loss was noted with ADF treated 
mice that was not observed in AL cohorts (Fig. 2D and E). 
Weight loss was observed in CR-treated mice, with an average 
weight loss of 12% (Fig. 2F).

Molecular response of dietary interevention. The molecular 
changes responsible for the physiologic tumor regression noted 
were explored. Histologic evaluation on hematoxylin and eosin 

The use of caloric restriction to augment radiation treat-
ment has not been previously investigated. In this study, an in 
vivo model of breast cancer was used to determine if CR could 
increase the efficacy of radiation on established tumors. This is 
the first study to report the use of CR as a novel therapy in com-
bination with radiation for breast cancer.

Results

Physiologic response of dietary intervention. Dietary caloric 
intake has a strong positive correlation for the incidence of 
many human cancers,8,21 and spontaneous tumor develop-
ment in mouse models.22,23 Studies have also shown that large 
reductions (40–60% reduction) in caloric intake can slow the 
growth of implanted tumors in mouse models.7,24,25 Using an in 
vivo model of breast cancer that mimics the clinical presenta-
tion in patients, we sought to determine if diet modification 
could slow established tumor growth with and without radia-
tion (Fig. 1).

Mice were implanted orthotopically with one of two triple-
negative breast cancer (TNBC) cell lines: 4T1, which are highly 
metastatic, or 67NR, which are locally aggressive. When pal-
pable tumors formed, feeding changes were instituted; when 
tumors reached 100 mm3, radiation was administered, and 
tumor growth was recorded.

Mice with both types of TNBC tumors were treated with 
one of four conditions: control, which was ad libitum feeding 
(AL), alternate day feeing (ADF), IR or ADF + IR. Alternate day 
feeding was used, since it has previously been reported to cause a 
25–30% reduction in caloric intake over time.17 Measurement of 
food intake over the course of the experiment showed an average 
intake of 3.71 g per day per mouse for ad libitum fed animals, 
whereas ADF mice consumed an average of 6.78 g per fed day 
or 3.39 g per day per mouse, about a 9% decrease in caloric 
intake. The difference in our observed decrease in intake from 

Figure 1. experimental design. tumors were generated by injecting either 67NR or 4t1 cells into the mammary fat pad of balb/c mice. once tumors 
were palpable, mice were treated with IR to the primary tumor alone, treated with a dietary intervention of either ADF or CR or treated with a combi-
nation of the two and compared with control mice given no IR and an ad libitum diet.



www.landesbioscience.com Cell Cycle 1957

Evidence demonstrates that caloric restriction provides a ben-
efit in breast cancer by acting on multiple molecular targets, such 
as the insulin-like growth factor-1 receptor (IGF-1R) pathway, 
inflammatory pathways and estrogen and leptin signaling. To 
determine the pathway most important in our triple-negative 
breast cancer models, cDNA arrays were done for the 4T1 tumors 
exposed to AL, IR, CR and CR + IR. After analyzing by GO-Elite 

for all treatment conditions revealed high-grade tumors with 
central necrosis. Tumors were noted to have decreased prolif-
eration with CR alone, IR alone and an even further reduction 
with CR + IR when Ki-67 was assessed (Fig. 3A). Apoptosis was 
increased with each treatment alone, and when CR was com-
bined with IR, even more apoptosis was noted, as measured with 
bcl-2 (Fig. 3B).

Figure 2. tumor re-growth-delay curves for tumors created from two tNBC cell lines: 4t1 and 67NR cells using two different methods of caloric restric-
tion. Mice were treated with each of the following conditions for 67NR (A) cell lines: ad libitum (AL) diet, radiation (Rt), alternate day feeding (ADF) or 
ADF + Rt, and their weights were recorded (B). From the reference of the AL cohort for 67NR tumors at 1,000 mm3, Rt gave a 16% growth delay, ADF 
14%, ADF + Rt 25%. From the reference of the AL cohort for 4t1 and weights were tumors at 1,000 mm3 (C), Rt gave a 23% growth delay, ADF 30%, 
ADF + Rt 45% also recorded for this cohort (D). Using the 4t1 tumors, the ADF method was then compared with a 30% reduction in calories (CR) (E) 
using: AL, Rt, CR and CR + Rt. From the reference of the AL cohort for 4t1 tumors at 1,000 mm3, Rt gave a 23% growth delay, CR 56%, CR + Rt 82% with 
an average weight reduction (F) of 12%. Based on this, the optimal method for performing future studies would be a constant reduction of 30% of the 
caloric intake. *Denotes p < 0.05 by Student’s t-test at 1,000 mm3.
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stained the ad libitum samples with 3+ intensity and 
stained the CR + IR with 1+ intensity.

Mice were euthanized for 2,000 mm3 tumors or for 
humane endpoints such as shortness of breath due to 
the metastatic tumor burden in the lung. The tumor 
regression curves demonstrate that breathing difficul-
ties were reached significantly later in ADF or CR mice 
than in AL fed controls, indicating that metastatic 
growth is delayed with dietary restriction.

Discussion

Triple-negative breast cancers (TNBC) account for 
nearly 20% of breast malignancies and are more aggres-
sive, have poor prognosis and a higher recurrence rate. 
Caloric restriction (CR) has been shown to decrease the 
incidence and progression of spontaneous breast can-
cers in murine models and protect normal tissue dur-
ing chemotherapy. Our results show that a nutritional 
intervention represses tumor growth in an additive 
manner when combined with radiation in two differ-
ent aggressive murine models (4T1 and 67NR) of breast 
cancer. The average growth delay noted was 15–30% 
when treated with ADF alone and greater than 50% 
when treated with CR alone. In combination with IR, 
a more than additive growth delay was noted at greater 
than 80%. The significant increase in growth delay 
observed with combination therapy is a promising 
result, as it points to CR as a viable adjuvant therapy for 
breast cancer patients receiving radiation. Local control 
of disease is clearly affected, but it is also intriguing that 
the survival of the mice is increased with combination 
therapy.

Concern has been raised regarding the use of a 
dietary intervention with standard cancer therapy. 
Cancer patients, particularly those with advanced dis-
ease may be at risk of weight loss or cachexia due to 
the molecular properties of advanced disease. In addi-
tion, cancer patients may be on weight-altering chemo-
therapeutic drugs. In our study, two different regimens 

of dietary intervention were evaluated including ADF and CR. 
This demonstrated that mice placed on a regimen of alternate 
day feeding do not lose weight, while the mice on a CR diet, lost 
an average of 12% (4 g), which was a temporary loss. Similarly, 
other published data has not shown irreversible weight loss or 
cachexia caused by caloric restriction in cancer models.30 While 
one human trial examining the effects of caloric restriction in 
combination with radiation has just begun, and effects are there-
fore unknown, a series by Longo et al. shows that ten patients 
were able to undergo short-term fasting during chemotherapy, 
and this treatment actually decreased the typical side effects of 
the drugs used.15 This effect has also been shown in vitro.12,16 
Several other clinical trials testing the effects of ketogenic and 
low-carbohydrate diets on brain, lung and even cancers known 
to be associated with cachexia, including pancreatic cancer and 

version 1.2.5 (www.genmapp.org/go_elite), we used the GOID 
system to compare the CR + IR condition with controls; one 
of the five most significant pathways included the IGF pathway 
(Table 1). Since the IGF-1R pathway has been implicated as a 
possible therapeutic target for TNBCs, because its downregula-
tion leads to apoptosis, this seemed like an appropriate pathway 
to query. In addition, CR26,27 and IR28,29 are both independently 
noted in the literature to decrease members of the pathway.

Expression of members of the IGF-1R pathway, including 
IGF-1R, IRS, PIk3ca and mTOR, were evaluated. qRT-PCR 
reactions showed a reduction in all members assessed (Fig. 3C), 
which implicates this pathway in mediating the tumor regression 
noted. Immunohistochemical evaluation confirmed these results 
with representative images shown for IGF-1R (Fig. 4B) and 
GSK-3β (Fig. 4C), demonstrating that both of these proteins 

Figure 3. Molecular effects of treatment. proliferation was evaluated by Ki-67 (A), 
and bcl-2 was used to evaluate apoptosis (B) for all conditions: Ad lib, CR, IR and 
CR + IR. Combination therapy was noted to decrease proliferation and increase 
apoptosis in tumors. qRt-pCR of IGF-1R pathway molecules shows downregulation 
(C) with either CR, IR or both. *Notes statistical significance with a p < 0.05.
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At the molecular level, CR has been noted to increase apop-
tosis while augmenting anti-proliferative effects and decreasing 
DNA synthesis.33-36 Our results are congruent with that, and 

metastatic cancers, are currently enrolling patients.31,32 Carefully 
selecting proper eligibility criteria to enroll patients onto trials 
with a dietary intervention will be crucial to their success.

Figure 4. Immunohistochemical investigation of proliferation and IGF-1R pathway. proliferation was also evaluated by immunohistochemistry (IHC) 
with Ki-67 staining, which was noted to have higher proliferation in the ad libitum tumors (A) compared with the tumors treated with CR and IR. IGF-1R 
was noted to have positive staining (3+) in AL tumors and negative (1+) in CR + IR samples while the downstream target of GSK-3B revealed positive 
staining (3+) in AL tumors and 2+ staining in CR + IR tumors.
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Materials and Methods

Mice and tumor cell injections. Eighty female Balb/c mice were 
obtained from NCI Frederick at 6–8 wk of age and treated on 
a NCI Animal Care and Use Committee approved protocol. At 
14-wk-old, 20 mice were implanted with 67NR tumor cells (tri-
ple-negative locally advanced cells) to determine efficacy of the 
treatment intervention (gift from Dr Fred Miller, Prentis Cancer 
Research Center, Karmanos Cancer Institute). Sixty mice were 
then implanted with 4T1 tumor cells, which are highly meta-
static and randomized to a treatment arm (gift from Dr Patricia 
Steeg, NCI). All cells were cultured in DMEM supplemented 
with 10% FBS and pen/strep.

For implantation, mice were anesthetized, shaved, and a small 
incision (~0.5 cm) was made through the skin just anterior to the 
rear leg in order to visualize the #4 mammary fat pad, so that 
tumors could be created in situ. Five × 104 4T1 cells in 50 μL of 
sterile PBS were injected into the fat pad and the site closed with a 
staple. Tumors were measured three times per week using manual 
calipers, and their volumes were determined by the formula: 1/2 
length × width2. Mice were euthanized when the tumor reached 
2,000 mm3 or earlier if required by humane endpoints.

67NR pilot intervention. A pilot trial was first performed to 
determine if tumor regression in a locally aggressive triple-nega-
tive cell line could be noted with a dietary modification. To do 
this, after implanting 67NR cells and waiting for palpable pri-
mary tumors with an average size of 60 mm3 to develop, mice 
were placed in four treatment cohorts of five mice each. The 
conditions for the cohorts included (1) mice given ad libitum 
(AL) feeding; (2) mice treated with radiation (IR) to the primary 
tumor; (3) mice given alternate day feeding (ADF) and (4) mice 
treated with IR to the primary tumor and given ADF.

Average daily food intake per animal was determined for all 
groups by weighing food 2–3 times per week. Intake baseline was 
established at least 2 wk prior to implantation and/or altering 
feeding protocol. All animals had unrestricted access to water 
regardless of feeding protocol. Ad libitum fed (AL): AL animals 
were given unrestricted access to standard NIH31 mouse diet for 
the duration of the experiment. Alternate day feeding (ADF): 
The dietary intervention of ADF is noted in the literature to be 
equivalent to a global reduction of 30% calories. Therefore, for 
this pilot intervention, animals were fasted and fed in alternat-
ing 24 h cycles starting when tumors became palpable around 
1 wk after implant. During the fed state, mice were given ad 
libitum access to NIH31 mouse diet. Ionizing radiation (IR): 
Mammary fat pad tumors in the IR groups were irradiated when 
the tumors were palpable with an average size of 100 mm3. Mice 
were sedated, placed into a restraint jig with shielding to isolate 
the tumor, and the tumor with margin was treated with a 6 Gy 
dose for tumors generated from the 67NR cells using a Pantak 
H-320 (320 kV) Precision X-Ray.

4T1 tumor intervention. Since benefit was noted with a pilot 
trial of a locally aggressive cancer, a larger study was undertaken 
to look at the efficacy of dietary intervention in the 4T1 model, 
which is also a triple-negative cell line, but is highly metastatic. 
We chose to evaluate radiation in conjunction with two different 

show that combination therapy with CR and IR cause even more 
apoptosis and less proliferation. The ability of CR to slow tumor 
growth is likely attributable to the induction of a number of 
molecular changes on targets such as inflammation, adipokines, 
mTOR11,12 and in the insulin-like growth factor (IGF-1R) path-
way.30,37-39 Longo et al. have implied that short-term starvation, 
or 48 h fasting (comparable to ADF), reduces IGF-1 levels by 
70%, reduces glucose by 60% and increases IGFBP-1 11-fold.2 
Previous studies have suggested that fasting induces several 
metabolic changes; the major change being a shift to alterna-
tive nutrient sources and the reduction of growth factors such 
as IGF-1.33,40,41

Our cDNA array analysis confirmed the importance of the 
IGF-1R pathway in our model. Components of this pathway play 
an important role in carcinogenesis, and elevation of pathway 
components are prognostic for poor outcomes.37,42-44 Consistent 
with that notion, downregulation of the IGF-1R signaling cas-
cade leads to widespread apoptosis of cancer cells through the 
PI3K/AKT pathway.45-48 In addition, it is also known that breast 
tumors often express higher IGF-1 levels than normal breast tis-
sues counterparts.34,49,50 Genotoxic therapies for breast cancer, 
including radiation, are reported to decrease components of the 
IGF-1R signaling pathway.35,36,51,52 Our results at the molecular 
level demonstrate that various components of the IGF-1R path-
way are downregulated with CR and RT used separately and are 
further decreased by the combination of treatments. This sug-
gests that this pathway might be a driving force in the anti-pro-
liferative effect noted.

Our data suggests that nutrient restriction could be used in 
combination with radiation therapy to confer a clinical benefit. 
In fact, many novel therapeutic agents for cancer treatment target 
molecules known to also be targets of CR, such as IGF1-R, the 
PI3K/Akt pathway, mTOR and AMP-K.2,9,10,39,45,46,53 However, 
while clinical studies to test these new drugs seem promising, 
further studies may be limited by overlapping toxicity profiles of 
the agents targeted at members of those pathways being used.54 
Although CR has never been used as a treatment in oncologic 
clinical trials,15 CR is being successfully implemented with dili-
gent dietary counseling and behavior modification for other dis-
eases in trials throughout the country.44,47,55,56 CR may be an ideal 
complementary treatment modality for cancer, because it might 
alter many molecular targets concurrently, and it is free of adverse 
effects associated with multiple targeted agents.

Table 1. top 5 Go categories significantly altered with CR and Rt com-
bined

GO name Z score
AVG-log 

fold change
STDEV-log 

fold change
p 

value

Gluconeogenesis 8.385544 1.21299 0.188822 < 0.001

Insulin-like growth 
factor binding

8.385544 1.400017 0.182701 < 0.001

peptide cross-linking 7.797834 1.585857 0.574637 < 0.001

extracellular region 
part

6.449937 1.208581 0.759949 < 0.001

extracellular region 5.283875 1.287505 0.774612 < 0.001
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the National Institutes of Health.58 Slides were 8 k human slides 
printed on site using a Named Genes clone set from Research 
Genetics, spotted onto poly-l-lysine coated slides using an 
OmniGrid arrayer (GeneMachines). Hybridization and washing 
were done as previously described and slides were then scanned 
at 10 microns intervals using a Genepix® 4000 scanner (Axon 
Instruments), and images and data were stored in a database 
(mAdb) maintained by the Center for Information Technology, 
National Institutes of Health.59 The microarray data have been 
deposited in National Center for Biotechnology Information 
Gene Expression Omnibus.60

Data analysis. Data was extracted into two categories using 
the mAdb system: “all genes” and “outliers.” “All genes” were 
extracted excluding spots flagged as Bad/Not found, and spots 
with target diameters less than 50 μm or greater than 300 μm. 
Only spots with signal-to-background ratios of > 2, a minimum 
background corrected signal of 250 counts and 80% of pixels 
in the spots with intensity greater than a SD plus background 
were used excluding spots flagged as Bad/Not found. Local 
Mean Across Element Signal Intensity (LOESS) was applied 
to dye-normalization. Ratio data were analyzed by LIMMA 
statistics to obtain significant genes with selection criteria p 
≤ 0.01, Bonferroni correction by using R version 2.11.1 and 
BioConductor package limma version 3.4.3. To identify bio-
logical pathways, including miRNA which altered by IR or/and 
70% calorie restriction, pathway analysis was conducted using 
GO-Elite and GenMAPP-CS.

Tissue staining and scoring. Formalin-fixed, paraffin-
embedded tissue sections were cut at 6 μm and deparaffinized by 
standard techniques. Antigen retrieval was performed by heating 
the sections in 10 mmol/L citrate buffer pH 6.0 for 50 min with 
the use of a pressure cooker. A rabbit monoclonal antibody for 
Ki-67 at 1:600 dilution (AbCam; catalog no. ab16667) for 60 
min at room temperature. The immune complexes were visual-
ized with Mouse ABC (Vector Laboratories, Inc) and the chro-
mogenic substrate Dako Liquid DAB_Substrate-Chromogen 
Solution (Dako North America, Inc; catalog no. K3468; diami-
nobenzidine tetrahydrochloride) for 3 min. Ki-67 labeling index 
was determined by counting ≥ 500 nuclei in areas of the section 
with the highest labeling rates and was considered high when ≥ 
10% of tumor cells were stained.61 The scoring was performed 
by an experienced staff pathologist and was also interpreted with 
the Aperio Image analysis system in order to obtain the number 
and percentage of positive cells in each tumor.

Statistical analysis. Statisitical significance between tumor 
growth curves was calculated as previously described.62 Briefly, 
tumor growth data were fit using an exponential growth equa-
tion; the tumor growth time (days) for control animals was cal-
culated and then subtracted from all treated groups. SDs were 
derived and used to calculate the Student’s t-test and p values for 
the differences between the various groups. Comparisons com-
paring statisitical significance for RT-PCR anaylsis was made by 
the two-tailed Student’s t-test. A difference between groups of p 
< 0.05 was considered significant.

dietary interventions including ADF and caloric restriction, insti-
tuting a 30% reduction in calories to determine if both regimens 
would have equivalent efficacy as previously reported. Therefore, 
6 cohorts of 10 mice were evaluated in this portion of the study: 
(1) AL feeding; (2) mice treated with (IR) to the primary tumor; 
(3) mice given ADF; (4) caloric restriction (CR) or a 30% reduc-
tion in their daily intake; (5) mice treated with IR to the pri-
mary tumor and given ADF and (6) mice treated with IR to the 
primary tumor while on a CR diet. Caloric restriction (CR): At 
10-wk-old, each animal was singly housed, and baseline average 
daily food intake of NIH31 mouse diet was calculated per indi-
vidual over 2 wk. Starting 2 d after tumor implant, each animal 
was fed once per day a weighed portion equivalent to 90% of its 
individual average daily intake. Over an 18 d period, animals 
were stepped down in 5% increments every 4–5 d, ensuring 
weight loss was stabilized before each step until the animals were 
calorically restricted to 70% of baseline. IR: As described above 
12 d after implant, however, tumors generated from the 4T1 cells 
were treated to 8 Gy using a Pantak H-320 (320 kV) Precision 
X-Ray.

Clonogenic survival curves. To determine an equivalent dose 
of radiation to treat mice implanted with two different cell types, 
4T1 or 67NR cells were trypsinized and plated in 6-well plates at 
the appropriate densities and then incubated for 6–8 h at 37°C. 
Cells were then irradiated with a dose of 0, 2, 4, 6 or 8 Gy. The 
plates were then incubated for 10 d and colonies were stained 
with crystal violet. Colonies of 50 or more cells were counted, 
and the fraction of surviving cells at each dose was calculated. A 
dose of radiation was chosen to achieve a 90% cell kill in vitro. 
This tuned out to be 6 Gy for 67NR cells and 8 Gy for 4T1 cells 
as denoted in Figure S1.

RNA isolation and RT-PCR. Tumors were grossly dissected 
and immediately stabilized by placement in RNAlater (Ambion) 
per manufacturer’s instructions. Tissue was placed in TRIzol 
reagent (Invitrogen) with lysing matrix D (MP Biomedicals) 
and homogenized using manufacturer’s suggested settings for a 
FastPrep-24 machine (MP Biomedicals). Following lysis, extrac-
tion was performed using a standard phenol-chloroform method. 
Following extraction, 1 μl of 20 mg/ml glycogen (Fermentas) and 
1.5 volumes of 100% ethanol was added to each sample. Total 
RNA was then purified using RNeasy Mini columns (Qiagen) 
using standard manufacturer’s protocol. RNA concentration was 
determined and integrity was confirmed by viewing 18S and 28S 
by denaturing agarose gel electrophoresis. mRNA expression for 
IGF-1R, IRS-1, PIk3ca, mTOR, were assessed using the high 
capacity cDNA reverse transcription kit (ABI) as per manufac-
turer’s instructions. RT-PCR reactions were performed using 20 
ng of cDNA.

cDNA microarrays. RNA from primary tumors treated with 
AL, CR, IR and CR + IR were labeled with Cy3-dUTP and com-
pared with the reference RNA (Stratagene Universal Reference), 
which was labeled with Cy5-dUTP. The method was previously 
described by Khan et al.57 Microarray slides were obtained from 
the Radiation Oncology Sciences Program Microarray Lab at 
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