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Abstract: The phytoextraction potential of halophytes has been broadly recognized. Nevertheless,
the impact of salt on the accumulation proprieties of cadmium (Cd) in different halophytic species,
likely linked to their salt tolerance, remains unclear. A hydroponic culture was used to investigate the
impact of salinity on Cd tolerance as well as accumulation in the distinct halophyte Salicornia fruticosa
(S. fruticosa). The plant was subjected to 0, 25, and 50 µg L−1 Cd (0-Cd, L-Cd, and H-Cd, respectively),
with or without 50, 100, and 200 mM NaCl in the nutrient solution. Data demonstrated that Cd
individually induced depletion in biomass accumulation. NaCl amplified the Cd tolerance induced
by enhanced biomass gaining and root length, which was associated with adequate transpiration,
leaf succulence, elevated levels of ascorbic acid (ASA), reduced glutathione (GSH), phytochelatins
(PCs), and proline as well as antioxidant enzymatic capacity via upregulation of peroxidases (PO),
glutathione peroxidase, ascorbate peroxidase, and superoxide dismutase. All Cd treatments decreased
the uptake of calcium (Ca) as well as potassium (K) and transport to the shoots; however, sodium
(Na) accumulation in the shoots was not influenced by Cd. Consequently, S. fruticosa retained its
halophytic properties. Based on the low transfer efficiency and high enrichment coefficient at 0–50
mM NaCl, an examination of Cd accumulation characteristics revealed that phytostabilization was the
selected phytoremediation strategy. At 100–200 mM NaCl, the high aboveground Cd-translocation
and high absorption efficiency encourage phytoremediation via phytoextraction. The results revealed
that S. fruticosa might be also potentially utilized to renovate saline soils tainted with heavy metals
(HMs) because of its maximized capacity for Cd tolerance magnified by NaCl. Cd accumulation
in S. fruticosa is mainly depending on the NaCl concentration. Future studies may be established
for other heavy metal pollutants screening, to detect which could be extracted and/or stabilized by
the S. fruticosa plant; moreover, other substrates presenting high electrical conductivity should be
identified for reclamation.

Keywords: antioxidants; halophyte; phytochelatins; Salicornia fruticosa

1. Introduction

Cadmium (Cd) is one of the most potentially toxic elements, which seriously increases
environmental pollution and affects plant life. Cd is identified as a carcinogenic inducer; it
ranks 7th among the top 10 toxicants [1]. It extensively bioaccumulates in soils and water
bodies from inappropriate anthropogenic routes such as fertilizers, pesticide impurities,
and the extensive use of ash and irrigation with waste water [2,3]. Cd is not degradable or
modifiable; thus, it is greatly persistent and accumulates in the environment [2]. Owing
to the high solubility and mobility of Cd in soil sediments, it is easily taken up by plants
and then translocates to the aerials and, hence, enters the food chain. Thus, it is vital to
restrict Cd toxicity to guarantee sustainable plant production and, because of that, the
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United States Environmental Protection Agency (USEPA) has considered the concentration
of 3 mg Cd kg−1 as the maximum allowed level in agricultural soils receiving sludge [4].

Unfortunately, most of the Egyptian coastal zones along the Mediterranean Sea, recog-
nized as marine habitats, are subjected to intense discharges of pollutants from numerous
anthropogenic activities [5]. Following industrialization, abnormal quantities of heavy
metals (HMs), recently termed as potentially toxic elements [6], such as Cd, Cu, Pb, Ni, and
Zn have been released and continue to be released into the aquatic environment through
storm water and wastewater discharges. The main sources of Cd pollution come from
batteries and electrical sources; pigments and paints; alloys and solids; fuels; plastics;
and fertilizers [7]. El-Sorogy et al. [8] have documented that the Cd levels (amounted as
19–44 µg L−1) recorded in some coastal zones along the Mediterranean Sea are higher than
the permissible limits recommended by the USEPA [9] and Egyptian laws [10]. Accordingly,
such coastal areas are simultaneously affected by salinity and heavy metal deposition. This
causes the saline coastal areas polluted with potentially toxic elements to arise as a global
environmental problem [11].

Researchers and government agencies have recently paid particular attention to the
elevated Cd concentration in the environment as a concerning issue. The current physical
and chemical practices of removing Cd contamination from the plant habitats are com-
plicated processes with high costs [12]. Alternatively, phytoremediation technology is
one of the most widely used techniques in this regard. Due to the inherent potential of
some plant species to collect certain toxic elements such as Cd from their surroundings,
the interest in utilizing such plants for substrates rehabilitation has lately been expanded.
Phytoremediator species are valued for their relatively low cost and high safety [13]. The
ideal candidates for phytoremediation are plants characterized by high productivity and
efficiency in transferring heavy metals from cultivated soil to the epigeal biomass [14].
Halophytes are characterized as plants that can survive and reproduce in environments
ranging from normal to severely saline. Monocotyledonous halophytes display optimum
growth in 50–100 mM of NaCl, whereas dicothalophytes are more tolerant as compared to
monocot species and show optimum growth in 100–200 mM NaCl [14]. Salt amendment
accomplishes the salt requirement for maximum growth, thus maintaining high-yields of
aboveground biomass for HM deposition in this part that is further harvested [15].

Interestingly, the wetland species of halophytes have proven their capability to accu-
mulate significant levels of toxic elements in their tissues [15] and remediate HMs from
salinized soil and water as well [16]. The high-tolerance aspects by halophytes of metals
most likely correlate with a progressed salt-tolerance mechanism, such as antioxidant sys-
tems [17]. Moreover, osmo-protectants production, such as proline to scavenge free radicals
as well as retrain the balance of water [17,18] and salt gland excretion onto the surface of the
leaf, thus, plays a crucial role in tolerance induction. In addition to NaCl, this mechanism
enables the extraction of inorganic contaminants [18]. Several halophytes showed improved
Cd accumulation and translocation from the roots to the shoots under NaCl conditions [14].
Numerous explorations revealed that adding salt (NaCl) to the medium increased Cd
phytoextraction [19]. For example, Sepehr et al. [20] illustrated that salinity alleviated Cd
toxicity in maize plants. It seems that moderate NaCl levels are hypothesized to enhance
plants’ growth, besides protecting against HM toxicity via modulating osmotic adjustment
and ion uptake and stimulating antioxidant mechanisms [21]. Therefore, halophytes are
the most desired plant species for remediating HMs such as Cd-contaminated salty media.

Salicornia fruticosa, termed glasswort, is an annual succulent euhalophyte belonging to
the Chenopodiaceae family. As a wetland plant, it grows on muddy seashores as well as
in saline marshes [22]. Although the plant exhibits a great tendency to grow well across
various concentrations of soil salt up to 8% [23], its HMs-remediation capability is still not
well-investigated, so there is a paucity of data on the metabolic responses to the combined
stress of Cd and NaCl. In addition, there is currently no evidence of the response to Cd
absorption, translocation, and, therefore, phytoremediation under NaCl stress. Hence, the
current research could provide a fundamental basis of interpreting the NaCl impact on Cd
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uptake, accumulation, and translocation in recently screened S. fruticosa. Furthermore, Cd
and NaCl metabolic responses, as well as the connection between Cd and metabolites in
plants under Cd stress, were studied in the absence and presence of NaCl, suggesting the
possibility of using S. fruticosa as a Cd phytoremediator.

2. Results
2.1. Phenotypic Criteria Affected by Interaction between Cd Stress and Salinity in S. fruticosa

Morphologically, plants treated with L-Cd showed initial chlorosis that worsened
when raising the concentration of Cd, before they developed necrosis with abscission as well
as leaf senescence. In the absence of Cd, 100 and 200 mM NaCl did not impact S. fruticosa
morphology. The difference was remarkable, particularly between high-salt-treated and
low-salt-treated plants receiving 50 µg L−1 of Cd. In the absence of Cd, all plants showed
high growth tendency and enhanced phenotypic criteria, in terms of aboveground biomass
and root length, throughout the experimental period for up to 200 mM NaCl (Figure 1a,b).
Treatment, with H-Cd but without NaCl, negatively impacts aboveground biomass and
root length; however, L-Cd did not affect biomass and slightly stimulated root length. The
addition of NaCl substantially enhanced root length and the development of plant biomass
and restored adequate plant growth; however, plant growth response to the Cd and NaCl
combination depends on the concentration of NaCl. High-salt-treated plants had better
growth than low-salt-treated plants.
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Figure 1. Aboveground biomass (g DW plant−1) and root length (cm) (a,b) of Salicornia fruticosa
exposed to nutrient solution containing 0, 25, and 50 µg L−1 Cd (0-Cd, L-Cd, and H-Cd, respectively)
without or with 50, 100, and 200 mM NaCl. Each value is the average of four replicates ± SE. Values
bearing different letters are significantly different at p < 0.05 based on Tukey’s test. DW: dry weight.

2.2. Water Relation Indices Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

The transpiration rate of plants treated with different salt concentrations remained un-
affected, compared with NaCl-untreated plants (Table 1). Alone, L-Cd treatment exhibited
a slight reduction in S. fruticosa transpiration rate, while H-Cd severely inhibited this trait.
Elevating salt concentration in the medium from 50 to 200 mM significantly restored the
transpiration rate of the H-Cd-treated plant, whereas no substantial effect was detected
in plants grown in L-Cd. Shoots from different salt-concentration-treated plants did not
differ in succulence (Table 1). Alone, L-Cd treatment displayed an unchanged succulence
degree for the shoots in comparison with the leaves of 0-Cd + NaCl-untreated plants,
whereas H-Cd severely reduced this trait (Table 1). NaCl co-occurrence markedly restored
shoot-succulence degree. The TOP value was sustained for plants grown along all NaCl
concentrations (Table 1). Increasing doses of Cd alone may induce consequent osmotic
stress that elicits the importance of increasing the TOP. Co-occurrence of salt effectively
reduced the TOP value to that of the corresponding salt-treated plant.
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Table 1. Transpiration rate (mL transpired H2O g−1 FW day−1), shoot succulence degree (g g−1), and
total osmotic potential (TOP; MPa) in leaves of S. fruticosa exposed to nutrient solution containing 0,
25, and 50 µg L−1 Cd (0-Cd, L-Cd and H-Cd, respectively) without or with 50, 100, and 200 mM NaCl.
Each value is the average of four replicates ± SE. Values bearing different letters are significantly
different at p < 0.05 based on Tukey’s test.

Treatments Transpiration Rate
(mL Transpired H2O g−1 FW Day−1)

Shoot Succulence Degree
(g g−1)

TOP
(MPa)

0 mM NaCl
0-Cd 30 ± 0.50 a 5.02 ± 0.04 a −24.7 ± 0.32 f

L-Cd 22 ± 0.40 b 5.00 ± 0.05 a −25.5 ± 0.22 e

H-Cd 6 ± 0.08 d 3.45 ± 0.06 c −28.3 ± 0.15 a

50 mM NaCl
0-Cd 28 ± 0.60 a 5.41 ± 0.04 a −24.7 ± 0.25 f

L-Cd 20 ± 0.90 b 5.11 ± 0.03 a −25.1 ± 0.13 e

H-Cd 11 ± 0.40 c 3.99 ± 0.05 b −27.8 ± 0.14 b

100 mM NaCl
0-Cd 30 ± 0.90 a 5.33 ± 0.04 a −24.9 ± 0.44 f

L-Cd 21 ± 0.60 b 4.99 ± 0.03 a −24.8 ± 0.24 f

H-Cd 19 ± 0.70 b 4.11 ± 0.03 b −26.4 ± 0.13 c

200 mM NaCl
0-Cd 29 ± 0.70 a 5.34 ± 0.02 a −24.8 ± 0.12 f

L-Cd 20 ± 0.60 b 5.11 ± 0.02 a −24.7 ± 0.25 f

H-Cd 22 ± 0.60 b 4.28 ± 0.01 b −25.8 ± 0.44 d

0-Cd: no cadmium added; L-Cd: low cadmium concentration; H-Cd: high cadmium concentration; FW: fresh
weight; g: gram; mL: milliliter; TOP: total osmotic potential; MPa: mega pascal.

2.3. Mineral Composition Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

All treatments of Cd alone reduced Na, K, and Ca shoot concentrations (Figure 2a–c).
A progressive decrement was detected in Ca and K accumulation, in accordance with the
higher Na accumulation as the external NaCl supply increased. However, increasing the
amount of Cd from 25 to 50 µg L−1 did not alter the accumulation of Na in the shoots. The
simultaneously imposed Cd and NaCl, compared to those submitted to Cd alone, reduced
Ca and K concentrations in the shoots further. In non-saline conditions, the concentrations
of Cd in roots and shoots elevated with the elevation in Cd supply and were substantially
elevated in the roots compared to the shoots (Figure 2d). Compared to Cd alone, the
addition of NaCl substantially enhanced the Cd concentration. Plants of S. fruticosa grown
in saline media acquired higher amounts of Cd compared with plants grown in non-saline
media (Figure 2d). Root Cd concentration was not affected by NaCl with H-Cd treatment.
L-Cd moderately increased the Cd concentration in roots with NaCl; however, elevated
NaCl concentrations did not change root Cd concentration.

2.4. Phytoremediation Parameters Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

In non-saline conditions, the bioaccumulation factor (BCF) and translocation factor
(TF) values were unaffected (Table 2). For both Cd treatments (25 or 50 µg L−1), increasing
the salt content in the medium from 100 to 200 mM increased the Cd translocated in
the shoots and decreased the Cd retained in the roots (Table 2), but, at 50 mM NaCl,
the majority of Cd was allocated in the roots rather than the shoots. Increasing the salt
concentration substantially improved the amounts of Cd deposited in the shoots. This
increase was essentially because of the elevated biomass production in the plants subjected
to the combined effect of NaCl and Cd. Furthermore, as evidenced by the elevation in TFs
as well as BCFs, NaCl treatment substantially enhanced Cd absorption and translocation.
TF was greater in plants receiving the Cd and NaCl mixture than in those receiving only Cd
(Table 2). Elevating the concentration of salt in the medium from 100 to 200 mM resulted in
more Cd transported from the roots to the shoots. Therefore, factors of translocation were
highest in plants receiving 200 NaCl. The Cd absorption efficiency (AE) of this halophyte
was measured further to assess the potential and efficacy of root Cd absorption. Under
non-saline conditions, the AE of S. fruticosa was substantially improved when raising the
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Cd stress (p < 0.05). NaCl application further elevated the AE of S. fruticosa in L-Cd and
H-Cd combined with 200 mM, compared with that in L-Cd and H-Cd without salt.
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Figure 2. Concentrations in mg g−1 DW of leaf sodium (Na), potassium (K), calcium (Ca), and
shoot and root cadmium (Cd) (a,b,c,d, respectively) in Salicornia fruticosa exposed to nutrient solution
containing 0, 25, and 50 µg L−1 Cd (0-Cd, L.-Cd, and H.-Cd, respectively) without or with 50, 100, and
200 mM NaCl. Each value is the average of four replicates ± SE. For shoot and root Cd concentration,
values of 0-Cd were removed from (d), as no Cd was detected in 0-Cd treatment. Values bearing
different letters are significantly different at p < 0.05 based on Tukey’s test. DW: dry weight.

Table 2. Effect of NaCl on some Cd phytoremediation parameters in Salicornia fruticosa: accumulated
cadmium root and shoot (µg plant−1 DW); bioaccumulation factor (BCF); translocation factor (TF);
and absorption efficiency (AE; µg g−1). Values bearing different letters are significantly different at
p < 0.05 based on Tukey’s test.

Treatments

Accumulated
Cd (µg Plant−1 DW) BCF TF

AE
(µg g−1)

Phytoremediation
Strategy

Root Shoot

0 mM NaCl
L-Cd 12.3 ± 0.10 c 4.4 ± 0.2 h 1.1± 0.07 f 0.42 ± 0.01 f 221 ± 3.5 g

Phytostabilization
H-Cd 15.0 ± 0.20 a 6.1 ± 0.2 g 1.4 ± 0.08 f 0.45 ± 0.02 f 404 ± 5.0 e

50 mM NaCl
L-Cd 11.0 ± 0.10 d 8.9 ± 0.3 f 5.3 ± 0.10 e 0.51 ± 0.03 e 340 ± 4.8 f

Phytostabilization
H-Cd 13.0 ± 0.20 b 16.0 ± 0.4 e 6.8 ± 0.20 d 0.76 ± 0.05 d 611 ± 3.2 c

100 mM NaCl
L-Cd 2.5 ± 0.05 e 23.0 ± 0.5 d 7.4 ± 0.10 c 1.08 ± 0.01 c 552 ± 3.0 d

Phytoextraction
H-Cd 2.9 ± 0.04 e 43.0 ± 0.6 c 9.9 ± 0.20 b 1.12 ± 0.06 b 907 ± 4.1 b

200 mM NaCl
L-Cd 1.4 ± 0.07 f 55.0 ± 0.9 b 11.3 ± 0.30 a 1.23 ± 0.07 a 690 ± 4.4 c

Phytoextraction
H-Cd 1.9 ± 0.05 f 62.0 ± 0.8 a 12.1 ± 0.30 a 1.23 ± 0.07 a 1303 ± 6.6 a

No Cd was detected in 0-Cd treatments, so they were not included in the table. L-Cd: low cadmium concentration;
H-Cd: high cadmium concentration; DW: dry weight.
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2.5. Non-Enzymatic Antioxidant Indices as Affected by Cd Stress and Salinity Co-Occurrence in
S. fruticosa

Plants only treated with L-Cd had a higher content of low molecular weight an-
tioxidant ascorbic acid (ASA), whereas this trait was depleted by H-Cd (Table 3). NaCl
imposition demonstrated no change in ASA content, regardless of the dose of NaCl. ASA
was strongly increased by salinity and L-Cd co-occurrence, whereas it decreased again to
values comparable to 0-Cd + NaCl-treated plants, with combined H-Cd and NaCl.

Table 3. Concentrations of ascorbic acid (ASA; µmol g−1 FW), reduced glutathione (GSH; nmol g−1

FW), phytochelatins (PCs; µmol g−1 DW), and proline (µmol g−1 FW) in leaves of Salicornia fruticosa
exposed to nutrient solution containing 0, 25, and 50 µg L−1 Cd (0-Cd, L.-Cd, and H.-Cd, respectively)
without or with NaCl 50, 100, and 200 mM. Each value is the average of four replicates ± SE. Values
bearing different letters are significantly different at p < 0.05 based on Tukey’s test.

Treatments ASA
(µmol g−1 FW)

GSH
(nmol g−1 FW)

PCs
(µmol g–1 DW)

Proline
(µmol g−1 FW)

0 mM NaCl
0-Cd 2.60 ± 0.05 e 110 ± 2.1 k 10.91 ± 0.9 g 5.2 ± 0.07 i

L-Cd 3.50 ± 0.04 d 170 ± 1.5 h 28.62 ± 0.4 f 11.6 ± 0.41 e

H-Cd 1.40 ± 0.01 h 201 ± 1.0 g 37.33 ± 0.3 a 21.0 ± 0.52 a

50 mM NaCl
0-Cd 2.51 ± 0.01 e 113 ± 2.0 j 10.51 ± 0.5 g 5.1 ± 0.01 i

L-Cd 3.90 ± 0.02 d 210 ± 1.4 f 27.03 ± 0.4 f 9.8 ± 0.21 f

H-Cd 1.60 ± 0.01 h 260 ± 2.3 e 35.11 ± 0.2 b 19.3 ± 0.30 b

100 mM NaCl
0-Cd 2.61 ± 0.03 e 116 ± 1.1 i 11.01 ± 0.5 g 4.9 ± 0.01 i

L-Cd 4.51 ± 0.03 b 269 ± 2.3 d 22.24 ± 0.4 e 8.5 ± 0.11 g

H-Cd 2.01 ± 0.01 f 304 ± 3.0 b 31.81 ± 0.8 c 16.6 ± 0.20 c

200 mM NaCl
0-Cd 2.54 ± 0.01 e 118 ±1.1 i 10.70 ± 0.2 g 5.0 ± 0.09 i

L-Cd 5.12 ± 0.03 a 297 ± 1.6 c 20.54 ± 0.2 d 7.2 ± 0.07 h

H-Cd 2.55 ± 0.01 e 366 ± 2.2 a 30.25 ± 0.7 c 15.4 ± 0.13 d

Cadmium added. L-Cd: low cadmium concentration; H-Cd: high cadmium concentration; FW: fresh weight;
DW: dry weight; g: gram.

All the study treatments significantly enhanced the reduced glutathione GSH content
(Table 3). The highest GSH content was recorded for combined NaCl and Cd treatments,
followed by that of the 0-Cd + NaCl-untreated plants, whereas the lowest GSH increment
was recorded for NaCl-treated plants without a Cd supply. In contrast to GSH (despite
their co-regulation), phytochelatins (PCs) showed a slight reduction under salinity and
Cd co-occurrence. PCs were triggered due to Cd treatment alone, whereas no substantial
change was recorded for 0-Cd + NaCl-treated plants (Table 3).

Cd treatment triggered proline accumulation. This response was Cd-dependent, with
H-Cd inducing more proline than L-Cd (Table 3). However, all NaCl-treated plants exhib-
ited a slightly nonsignificant increase in proline accumulation, compared to NaCl-untreated
plants. NaCl occurrence efficiently ameliorated Cd impact on proline accumulation, while
NaCl- and Cd-treated plants had a reduced proline content compared to plants treated only
with Cd.

2.6. Alternations in the Capacities of Enzymatic Antioxidant of S. fruticosa as Affected by Cd
Stress and Salinity Co-Occurrence

The activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), ascorbate
peroxidase (APX), and peroxidases (POs), along with an elevation in external Cd concentra-
tion (Figure 3a–c), were substantially improved. However, elevated supplementation of
NaCl showed no change in their pattern, compared to NaCl-untreated plants, during the
17-day period of experimentation. Further increase in the enzymes’ activity was recorded
for combined salinity and Cd-stressed plants. In contrast to SOD, APX, and GPX, peroxi-
dase (PO) activity was reduced significantly by NaCl and Cd co-occurrence, in accordance
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with the highest PO activity for treatments of Cd alone, and minimized PO activity in
salinized plants, for the former (Figure 3d).
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Figure 3. Activities of superoxide dismutase (SOD; U mg−1 protein g−1 FW min−1), glutathione
peroxidase (GPX; µmol mg−1 protein g−1 FW min−1), ascorbate peroxidase (APX; µmol mg−1

protein g−1 FW min−1), and peroxidase (PO; U mg−1 protein min−1) (a,b,c,d, respectively) in leaves
of Salicornia fruticosa exposed to nutrient solution containing 0, 25, and 50 µg L−1 Cd (0-Cd, L-Cd,
and H-Cd, respectively) without or with 50, 100, and 200 mM NaCl. Each value is the average of
four replicates ± SE. Values bearing different letters are significantly different at p < 0.05 based on
Tukey’s test.

3. Discussion
3.1. Phenotypic Criteria Affected by Interaction between Cd Stress and Salinity in S. fruticosa

To our knowledge, this is the first time to screen S. fruticosa for its Cd phytoremedi-
ation potential under the NaCl effect and to shed light on its operation of several basic
biochemical tolerance mechanisms that may provide an advantage to this halophyte, with
respect to heavy metals as co-environmental factors. In the current investigation, the large
aboveground canopy and deep root system of S. fruticosa qualified it for Cd phytoremedia-
tion in polluted soil. According to Eissa and Abeed [2], plants with strong, deep roots may
be employed in the phytoremediation of contaminated sites. Under our investigation, the
data showed that Cd had toxic effects on aboveground biomass and root length, but the ad-
dition of NaCl decreased the negative symptoms of Cd treatment, and this modified effect
increased with increasing NaCl concentration. Previous reports illustrated the contribution
role of salinity in modulating the deleterious responses to Cd [24]. In the present study,
S. fruticosa showed optimum growth when it was exposed to 200 mM NaCl, exhibiting
higher salt tolerance and being able to yield a high amount of extraction parts (plant tissues
for harvest), even for the H-Cd. Similarly, Ghnaya et al. [15] found that salinity, especially
that which was optimal for growth, clearly improved the growth of Sesuvium portulacastrum
under Cd stress.
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3.2. Water Relation Indices Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

Transpiration is a significant factor of the ion transport necessary for salt tolerance,
since it allows xylem ions to move from the root cells to the stem cells. Inhibition in
transpiration in plants treated with H-Cd alone influences the mobility and accumulation
of Cd in shoots; thus, Cd was retained in the roots. In consequence, high Cd accumulation
in the roots may cause Cd toxicity that inhibits the root apex growth and causes water
uptake dysfunction, which is evident by a low water content and a reduced root system [25].
Increases in transpiration and mass flow, as well as photosynthesis, provide energy and
oxygen for the active mobilization of salt. Sruthi et al. [26] suggested that heavy metals may
have higher mobility under saline conditions due to an increase in transpiration, leading to
a higher flux of metals into the plant.

NaCl-treated S. fruticosa plants exhibited degrees for shoot succulence. This capacity
to retain water content showed that salt tolerance in this species is partially attributable to
its capacity to accomplish an osmotic adjustment. Succulence tends to lower transpiration
requirements by decreasing leaf heating [27]. Salinity considerably elevated the shoot
succulence degree of S. fruticosa, which maintains its halophytic character even in the
presence of Cd. In fact, plants cultivated under 100 and 200 mM NaCl exhibited higher
shoot succulence degrees than plants grown in 50 mM NaCl, which may be explained by
the substantial Na and K accumulation in the leaves of plants treated with high elevated
salt, which was around double that of plants treated with a lower salt concentration.

The sustained total osmotic potential (TOP) value of plants grown along all NaCl
concentrations may indicate that these plants are suffering less from osmotic stress, as they
are grown in preferable salt concentrations; moreover, the high recorded succulence degrees
resulted in cell sap dilution, thereby causing an adequate TOP value. Increasing doses of Cd
alone may induce a consequential osmotic stress that elicits the importance of increasing the
total osmotic potential. Co-occurrence of salt, effectively the TOP value, thus, may direct
the whole cell energy towards normal plant growth, rather than manufacturing the costive
osmolytes that participated in the induced total osmotic potential; this was advocated by
the high Cd-induced proline in plants stressed by H-Cd alone. The alternations in the
TOP value, due to the presence or absence of Cd in saline soil, indicated the high adaptive
potentiality of S. fruticosa, and NaCl is shown to play a key role in the modulation of
plant responses to Cd. Hamed et al. [28] suggested that the indirect contribution of Na to
osmotic adjustment is a possible mechanism of resistance by Sesuvium portulacastrum to the
combination of salinity and Cd.

3.3. Mineral Composition Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

All halophytes must meet the challenge of osmotic adjustment to water stress by
the high contribution of cations and anions (Na, K, and Ca contributed 67% of the solute
concentration (molar in the shoot water) [16]. Diminishment in these inorganic fractions
causes a failure of the efficient cellular osmotic adjustment, which was shown by the
effect of Cd stress evident with the high total osmotic potential. Leaves have been shown
to accumulate high amounts of Na and Cl, compartmentalizing these ions to vacuole
lessens the osmotic potential of cells under saline conditions. Thus, Na rather than K
was the ion involved in leaf succulence, shoot development, and cell expansion. Under
0-Cd + NaCl-treated plants, Na uptake was antagonistic to K uptake. It has also been
reported that K uptake is adversely affected by NaCl exposure in Atriplex portulacoides [29].
In accordance with this, reductions in the K and Ca levels were observed in our plants
at all salinity levels. It seems, therefore, that the halophytic proprieties of S. fruticosa are
preserved in the presence of salt and Cd, and this was emphasized by the reduced K
concentrations.

3.4. Phytoremediation Parameters Affected by Cd Stress and Salinity Co-Occurrence in S. fruticosa

Cd is mainly concentrated in the roots rather than in the shoots, indicating that the
root system is the primary organ for Cd storage in S. fruticosa. The current study has
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shown that, in addition to alleviating the effects of Cd on plant growth, NaCl modified
the uptake of Cd and its transport from the roots to the shoots. Notably, higher NaCl had
no impact on Cd concentrations in the roots of S. fruticosa. We may, thus, deduce that
the S. fruticosa plant is likely to transfer greater amounts of Cd to the shoots under saline
conditions, because both higher water content and biomass possibly allow this species to
tolerate and reserve more Cd in the shoots. The total amount of Cd accumulated in the
shoots is the most important parameter to evaluate the potential of Cd extraction capacity
in plants, representing the product of the shoot biomass by their Cd concentration. The
ability of plants to translocate Cd from the roots toward the shoots was evaluated using the
translocation factor, calculated as the ratio between Cd quantities in the shoots and roots.
Higher TFs and shoot Cd accumulation (measured per plant) also suggest that greater Cd
was shifted to the shoots in S. fruticosa. This may be associated with the fact that increasing
NaCl provides more free Cl ions, which are available in the medium to mostly form Cd-Cl
complexes. Cd-Cl complexes are mostly considered phytoavailable and are easily uptaken
by plants, contributing to increased Cd absorption. At low salt concentrations, the intensity
of Cd stress tolerance is very limited for a large extent; thus, immobilization of HM in
the root system was observed, which may be considered a strategy for counteracting HM
toxicity in photosynthesizing organs [30,31], so the adopted phytoremediation strategy
could be accomplished through phytostabilization.

3.5. Non-Enzymatic Antioxidant Indices as Affected by Cd Stress and Salinity Co-Occurrence in
S. fruticosa

Proline have been associated with the capacity of halophytes to tolerate salt stress
by acting as an intracellular osmotic solute. In the current study, however, nonsignifi-
cant proline accumulation in response to salinity indicates that S. fruticosa has been able
to tackle salinity without expending energy or any damage to the plant’s organs [28].
Similar results were cited by Samiei et al. [32] for Climacoptera crassa. Moreover, Parida
and Jha [33] reported that 200 mM NaCl did not induce an increase in proline in Salicor-
nia brachiata and that proline produced under high salt treatments (400 mM) possibly
plays a more important role in protecting the enzymatic system in the cytoplast but not
in adjusting the osmotic homeostasis. Previous studies have shown a high correlation
between the intensity of Cd stress in the plant and the amount of proline production in
the halophytes, including for Juncus gerardi, Sesuvium portulacastrum, and Climacoptera
crassa [32,34,35]. Therefore, the present study shows that the increase in proline content is
one of the main mechanisms of S. fruticosa to deal mostly with heavy metal stress rather
than salinity, while heavy metal stress induced higher proline production compared to
salinity. Clemens [36] suggested that while heavy metals evoked proline accumulation in
plants, this is not directly originated from heavy metals stress, as water balance disturbance
is responsible for the accumulation of proline. Water stress mediated by HMs necessitates
proline production and biosynthesis, which are energy costive processes at the expense
of cell growth. In our study, however, salinity co-occurrence efficiently serves as an en-
ergy saver by reducing proline level. This decline could be attributed to the enhanced
exploitation of carbon skeletons to sustain growth in a toxic environment. We can deduce
that proline, herein, acts as an osmoticum rather a ROS scavenger, since similar results
were cited by Wiszniewska et al. [31]. In contrast, Lefèvre et al. [11] found higher proline
concentrations in the leaves of Cd + NaCl-treated Atriplex halimus plants than in those of
NaCl-treated ones.

Glutathione, ascorbate, and essential non-enzymatic antioxidants are also vital molecules
to scavenge ROS, which cannot be detoxified by the enzymatic system. In the present study,
salinity reduced the oxidative stress in S. fruticosa by enhancing glutathione and glutathione
reductase activity, in agreement with Han et al. [24], for the halophyte Kosteletzkya virginica.
In HM-stressed plants, glutathione has two functions: it is a primary antioxidant and
a precursor of PCs involved in HM complexation and vacuolar sequestration. In the
current research and regarding Cd + NaCl-untreated plants, the abundance of phytochelatin
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production may be explained by abundant glutathione, since glutathione is the substrate for
phytochelatin biosynthesis. In the case of combined Cd and NaCl treatments, however, this
theory does not match the present situation. NaCl induced an increase in Cd accumulation
in the shoots, though this did not lead to higher PCs content in Cd + NaCl-treated plants;
moreover, PCs content was even lower than in plants exposed to heavy metals in the
absence of NaCl, in addition to the nontoxic appearance due to Cd deposition that occurred
(Table 2), suggesting that other strategies may be adopted, herein, by the plant to cope with a
higher Cd content. The first proposed strategy was demonstrated by Lutts and Lefèvre [37]:
although the ability of synthesis PCs and the presence of functional PCs are ancestral
characters to cope with high HMs doses, HM-tolerant plants rarely use this expensive
strategy to detoxify HMs, as they instead overproduce organic acids that are efficiently
involved in the chelation and sequestration of metals to non-active compartments. Another
suggested mechanism that may be likely integrated, herein, in avoiding toxic cellular Cd in
S. fruticosa under combined Cd and salinity, is through binding with an inorganic anion,
chloride. High NaCl concentration increases the proportion of Cd fixed to the mineral
fraction (chlorides). Complexation of Cd with Cl results in Cd-Cl formation. Cd-Cl is
widely known in halophytes under combined Cd and salinity [38]. Hence, S. fruticosa with
high-salt-concentration treatment had higher chloride concentration than low-salt-treated
plants. Thus, a reduction in PCs content was more for high-salinized plants as, herein, the
chloride-binding mechanism is the substitute for chelating by organic-compound PCs. On
the other hand, Hamed et al. [28] and Ghnaya et al. [15] suggested that NaCl treatment
could eliminate the most toxic form of Cd (Cd2+) in favor of another form bound to chloride
anions. Accordingly, all previous findings suggest that the enhanced binding of Cd chloride
anions induced by NaCl could play an important role in the amelioration of Cd tolerance
by salinity and is also considered as a protective strategy against Cd in S. fruticosa. More
in-depth research on this aspect is, therefore, required to be asserted.

3.6. Enzymatic Antioxidant Capacities as Affected by Cd Stress and Salinity Co-Occurrence in
S. fruticosa

Under different stresses, plants produce various scavenging enzymes such as SOD,
APX, and GPX, which play an essential role in modulating overproduction of ROS and
keeping cellular homeostasis. Moreover, displaying non-noticeable responses in these
scavenging enzymes along the experiment period and for up to 200 mM NaCl, compared
with control NaCl-untreated plants, indicated no excess accumulation of ROS and that the
plants were not suffering from oxidative stress. For the halophytes, it was reported that the
concentration of NaCl, which first causes a significant oxidative injury and increased lipid
peroxidation, thus inducing antioxidant activity, was 400 mM in Salicornia brachiate species
and Suaeda salsa after 14 and 7 days of salinity exposure, respectively [39]. Accordingly,
this study’s salt concentration (200 mM) was relatively low, to trigger severe oxidative
stress for this halophytic species. The ROS generated from HM stress were trapped with
the co-function of antioxidant enzymes. Therefore, S. fruticosa induced the enhancement
of their activities. Salt co-occurrence imposes further elevated levels of ROS scavenger
enzymes activities, SOD, APX, and GPX, and their substrates (parallel to the increase in
their substrates ASA and GSH), revealing a powerful antioxidant system that trapped
the exacerbation of the toxic ROS. The high–salt-treated plants (100–200 mM) had much
more enzyme activity and less Cd toxicity than the low-salt-treated ones (50 mM), which
correlated with enhanced plant growth. PO in the present study showed heterogeneous
activities, whereas PO (involved in lignin biosynthesis in the plant cells) activity was acti-
vated in response to Cd stress because it prevents the entrance of HMs in plants via lignin
production, which acts as a mechanical barrier [3]. Lignification in the cell wall induced
by PO activity may involve the destruction of the photosynthetic apparatus due to aging
and senescence, revealing restriction of the growth of stressed Cd-impacted cells, which
results in aged leaves. The healthy cells displayed adequate lignin content and lessened
PO activity, which may occur in the case of 0-Cd + NaCl-treated plant leaves, implying
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that salinity may ameliorate this effect by sufficiently reducing PO activity in Cd-affected
plants. Zhou et al. [40] reported that simultaneously imposed Cd + NaCl improved the
plants’ all-senescence-related parameters, as indicated by a significant decrease in PO. The
marked increase in PO in the presence of HMs may be a valuable indicator of soils polluted
with HM, which is parallel with the results of Nimptsch et al. [41], who recommended this
enzyme as a feasible perspective biomarker for identifying HMs contamination.

4. Materials and Methods
4.1. Plant Material Collection

S. fruticosa dried stems, bearing fruits (the fruit corresponds to an utricule), were
collected from Miami Island, Alexandria (31◦16′04′′ N 29◦59′43′′ E), from the coastline’s salt
marshes along the Mediterranean in winter 2021. Seeds were extracted from dried fruits, be-
fore being preserved to be germinated during summer 2022 in pots filled with collected soil
from Salicornia’s natural habitat and irrigated on alternate days for experimental purposes.

4.2. Hydroponic Culturing

The hydroponic medium was utilized to minimize the soil’s confounding factors,
including changes in soil Cd chemistry, soil pH, and soil water potential caused by salt
addition. It was prepared using 1

4 Hoagland’s [42] and supplemented with 0, 50, 100, or
200 mM NaCl. According to Marco et al. [23], the plant exhibits a great tendency to show
optimal growth at 200 mM NaCl, but at 300 mM, it was noticeably decreased, so the applied
NaCl doses, herein, never exceed this limit (200 mM). The 2-week-old healthy plants were
grown in the nutrient solution for one week for acclimation under 20–30 ◦C temperature,
16 h light and 8 h dark photoperiodic cycle at room temperature, with 50% relative humidity
as well as light intensity of 350 µmol m−2 s−1. Four sets of five plants with identical size,
fresh weight (0.9~1.2 g per plant), and similar health conditions were grown in 250 mL
nutrient solution for each treatment. Stock solution of Cd was added to obtain the final
concentrations of 25 µg L−1 CdCl2.H2O (L-Cd) and 50 µg L−1 CdCl2.H2O (H-Cd) in the
nutrient solutions. Cd concentrations were chosen to proportionally mimic the actual Cd
concentrations along the coastline of the Mediterranean Sea; Aquatic Ecosystems of Egypt
according to El-Sorogy et al. [8]. The final Cd concentrations of the nutritive solutions
were tested by using atomic absorption spectrophotometer (AAS, PerkinElmer A Analyst
200) has a detection limit of 0.001 mg L−1. The pH of the nutrient solutions was measured
during experimentation period by pH meter and adjusted by HCl/NaOH, if required, to
maintain 6.9. Cd concentrations were added as a single dose. All flasks were sealed with a
preservative film and bumf at the plant crown to prevent water evaporation or chemical
escape and wrapped with aluminum foil to prevent algal growth. Therefore, the growth
media did not need to be replenished or changed during treatment duration (10 days). The
Cd-untreated plants received 0 µg L−1 CdCl2.H2O was mentioned as 0-Cd. Plants grown
in nutritive solutions without adding NaCl or Cd were used as controls and mentioned as
(0 mM NaCl, 0-Cd). After 10 days of treatment, plants were collected, and the roots were
submerged for 15 min in 25 mm EDTA-Na2 solution to remove Cd from the root surface.
Four plants were randomly chosen from each treatment to estimate the following criteria.

4.3. Phenotypic Criteria

Root length was recorded and expressed in cm. Afterward, plants were divided into
roots (belowground) as well as shoots including stems and leaves (aboveground). The
samples of shoots were randomly divided into two groups; one was used to evaluate the
fresh and dry biomass of the aboveground, which was immediately dried at 70 ◦C in an
oven to constant weight. The other group was used to collect green leaves, which were
rinsed with sterile distilled water and frozen in liquid nitrogen before being stored at
−80 ◦C for further analyses.
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4.4. Shoot Succulence Degree (SSD)

SSD was calculated by measuring shoot fresh weight and its dry weight. Given
values are means from 4 individual samples and four replicate experiments per treatment
factor [43].

SSD (g g−1) = Shoot fresh weight/Shoot dry weight

4.5. Transpiration Rate

The transpiration rate was assessed using the method of Llanes et al. [44]. Transpiration
was evaluated indirectly by recording alterations in the volume of a culture solution, with
the same conditions as those described for the hydroponic cultures. One plant per treatment
was placed in the holed rubber stopper of a transparent graduated cylinder having a definite
volume of solution, which was then sealed with silicone for 24 h. The amount of solution
consumed was determined after 24 h, under the same photoperiod circumstances as the
hydroponic culture to assess the volume of transpired water. The mL of transpired water per
leaf weight was estimated, and the result was reported as mL transpired H2O g−1 FW day−1.

4.6. Total Osmotic Potential (TOP) Determination

TOP was estimated. The leaf sap was prepared, using the technique proposed by
Abeed and Dawood [45], by crushing fresh leaves, followed by centrifugation for 15 min at
10,000× g, and the resulting extract was utilized to measure the osmotic potential utilizing
TridentMed’s 800 CL Osmometer. The osmotic potentials (MPa) were then calculated using
Walter’s tables [46].

4.7. Proline Determination

As illustrated by Bates et al. [47], free proline was assessed in dry leaves. Homoge-
nization of leaf samples was done in 3% sulfosalicylic acid (6 mL), before centrifugation
at 10,000× g. The supernatant (2 mL) was blended with glacial acetic acid (2 mL) as well
as ninhydrin. Sample heating was done for one hour at 100 ◦C, before cooling to room
temperature. Extraction of the reaction mixture was performed with toluene (4 mL), and
the content of free toluene was estimated to be 520 nm, which was expressed as milligrams
per gram (dry weight). A calibration curve was established using proline solutions ranging
from 0.05 to 1.5 mM, in the same medium as the one used for the extraction, and the data
were expressed as µmol g−1 FW.

4.8. Enzymatic and Non-Enzymatic Antioxidant Capacities

For non-enzymatic antioxidants such as ascorbic acid (ASA) and reduced glutathione
(GSH), the supernatant of freshly ground leaves in trichloroacetic acid was used to quantify
ASA and GSH, using procedures developed by Jagota and Dani [48] and Ellman [49], respec-
tively. According to Nahar et al. [50], phytochelatins (PCs) were calculated by subtracting
the quantity of GSH from non-protein thiols, which were produced by combining the
supernatant of crushed leaves and sulfosalicylic acid with Ellman’s reaction mixture [49].

The homogenization of each treatment’s fresh leaves was done in a mortar and pes-
tle with sodium phosphate buffer 0.05 M (pH 7.5). The centrifugation of homogenate
was done for 20 min at 10,000 r/min, and the supernatant was used to analyze leaf en-
zymatic potential, as identified by scanning Glutathione peroxidase (GPX/EC.1.11.1.9,
µmol mg−1 protein g−1 FW min−1), ascorbate peroxidase (APX; EC1.11.1.11, µmol mg−1

protein g−1 FW min−1), and (SOD/EC.1.15.1.1, µmol mg−1 protein g−1 FW min−1), by the
methods of Flohé and Günzler [51], Abeed et al. [52], and Abeed et al. [53], respectively.
The peroxidase activity (PO, U mg−1 protein min−1) was quantified following enzyme
extraction from leaves, as described by Ghanati et al. [54]. The PO activity was assessed
according to the absorbance increase at 470 nm, utilizing 168 mM guaiacol in H2O2 (30 mM)
and phosphate buffer (100 mM). The absorbance change was altered to units (U), using
26.6 mM−1 cm−1 extinction coefficient.
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4.9. Cation Assay

Grounding desiccated samples was performed until obtaining a fine powder with a
pestle as well as porcelain mortar, before being digested in a 4:1 (v/v) solution of HNO3-
HClO4. The K and Na content in the homogenate were measured following the flame
emission method (Carl-Zeiss DR LANGE M7D flame photometer, Carl-Zeiss AG, Jena,
Germany) [45]. Instrument detection limits in mg g−1 DW were 0.23 and 0.15 for Na and K,
respectively, while the method quantitation limits in mg g−1 DW were 1.02 and 0.96 for Na
and K, respectively.

An atomic absorption/flame emission spectrophotometer (Shimadzu-model AA-630-
02, Shimadzu Corporation, Kyoto, Japan) was used to measure the amounts of Ca and Cd
in the same homogenate.

Quality assurance and quality control (QA/QC) for Cd internal standards (CPAchem,
Bogomilovo, Bulgaria) were used while standardizing the equipment with certified refer-
ence material (SRM 1547, peach leaves), as adopted by Eissa and Abeed [2]. Given values
are means from 4 individual samples and four replicate experiments per each treatment
factor. The calibration curve was prepared from the cadmium atomic absorption standard
solution of 1000 µg mL−1 Cd in 1% HNO3 (Sigma Aldrich, St. Louis, MO, USA). The
peach leaves as a reference material (SRM 1547) were measured at the same time for quality
assurance. The recovery rate was 90%–105%. Instrument detection limits in mg g−1 DW
were 0.40 and 0.04 for Ca and Cd, respectively, and the method quantitation limits in
mg g−1 DW were 2.2 and 0.55 and 0.52 for Ca and Cd roots and shoots, respectively.

4.10. Cd Accumulation Characteristics

The halophyte S. fruticosa phytoremediation potential was estimated according to [55,56],
via calculation of the following indicators:

1. Bioconcentration factor (BCF) and enrichment factor = Cd concentration in the
plant/Cd concentration in external medium;

2. Translocation factor (TF) = Cd concentration in the shoot/Cd concentration in the root;
3. Cd absorption efficiency (AE) = Cd accumulation in the whole plant/root biomass.

4.11. Statistical Analysis

The obtained data were collected from four randomly chosen plants/replicates/treatments
inserted into plot mean basis analysis and evaluated utilizing the 21st version of SPSS
software. The one-way evaluation of variance was followed by a post hoc test (Tukey’s
multiple range tests). The level of statistical significance was set at (p < 0.05).

5. Conclusions

Since S. fruticosa is a euhalophyte, with salinity-tolerance capabilities that may in-
directly lead to Cd tolerance. Without Cd, the variations in most of the investigated
parameters between low-salt-affected and high-salt-affected plants were insignificant, ow-
ing primarily to the beneficial osmotic potential of salt. Cd toxicity was substantially more
severe in low-salt-treated plants than in high-salt-treated plants. Cd toxicity mechanisms in
S. fruticosa include significant disruption of plant–water interactions as well as the activation
of aging and senescence-mediated enzymes’ peroxidase (PO). S. fruticosa demonstrated an
adequate transpiration rate and shoot succulent degree, which may aid in the maintenance
of plant water content, as well as a large amount of aboveground biomass production and
deep rooting and efficient management of oxidative stress via elevated levels of AsA + GSH
and enzyme activity modulation. Furthermore, S. fruticosa sequesters heavy metals intercel-
lularly, rather than in the vacuole, as shown by the decreased PCs by salinity, indicating
a positive role in phytoextraction. The salt-induced increase in Cd tolerance refers to the
possibility of utilizing S. fruticosa for Cd phytoextraction. In the current investigation, the
efficacy of employing S. fruticosa to remediate and enhance Cd-contaminated saline media
is restricted to the kind of heavy metal and the dosages used. More research should be
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focused on the effectiveness of S. fruticosa in removing additional heavy metals from saline
soils and/or from other substrates presenting a high electrical conductivity.
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