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Abstract: Postbiotics are rich in a variety of bioactive components, which may have beneficial effects
in inhibiting hepatic lipid accumulation. In this study, we investigated the preventive effects of
postbiotics (POST) prepared from Lactobacillus paracasei on non-alcoholic fatty liver disease (NAFLD).
Our results showed that when mice ingested a high-fat diet (HFD) and POST simultaneously, weight
gain was slowed, epididymal white fat hypertrophy and insulin resistance were suppressed, serum
biochemical indicators related to blood lipid metabolism were improved, and hepatic steatosis
and liver inflammation decreased. Bacterial sequencing showed that POST modulated the gut
microbiota in HFD mice, increasing the relative abundance of Akkermansia and reducing the relative
abundance of Lachnospiraceae NK4A136 group, Ruminiclostridium and Bilophila. Spearman’s correlation
analysis revealed significant correlations between lipid metabolism parameters and gut microbes.
Functional prediction results showed that the regulation of gut microbiota was associated with the
improvement of metabolic status. The metabolomic analysis of the liver revealed that POST-regulated
liver metabolic pathways, such as glycerophospholipid and ether lipid metabolism, pantothenate
and CoA biosynthesis, some parts of amino acid metabolism, and other metabolic pathways. In
addition, POST regulated the gene expression in hepatocytes at the mRNA level, thereby regulating
lipid metabolism. These findings suggest that POST plays a protective role against NAFLD and may
exert its efficacy by modulating the gut microbiota and liver metabolism, and these findings may be
applied to related functional foods.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with mul-
tiple pathogeneses, including hepatic lipogenesis regeneration, oxidative stress, insulin
resistance (IR), inflammasome activation, and/or fibrogenesis [1]. NAFLD, especially the
histological phenotype of nonalcoholic steatohepatitis, can cause severe liver diseases, such
as liver cirrhosis and cancer [2]. Increases in high-fat diet (HFD) intake and the resulting
obesity show a parallel with the global increase in NAFLD [3]. NAFLD has become a severe
health concern worldwide owing to rising obesity rates. While there are several active
phase 2 and 3 trials evaluating treatments for NAFLD, no FDA-approved pharmacologic
medications are currently available [4]. Owing to the serious harm caused by NAFLD and
the lack of mitigation methods, there is an urgent need to explore new methods to prevent
and treat NAFLD.

In 2021, the International Scientific Association of Probiotics and Prebiotics (ISAPP)
officially defined postbiotics as inactivated bacteria and/or their components that exert
a positive effect on the health of the host [5]. A large number of bioactive metabolites,
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such as organic acids and exopolysaccharides, were found in postbiotic preparations of
lactic acid bacteria [6]. Based on the abundant bioactive substances in postbiotics, various
studies have recently been undertaken to establish how postbiotics operate and should be
utilized [7]. Inactivated probiotics improve insulin resistance (IR) and reduce fat gain in
HFD mice, possibly for the amelioration of NAFLD [8]. Bacterial lysates have also been
reported to improve glucose metabolism, reduce body and liver lipid levels, reduce hepatic
immune cell infiltration, and alleviate NAFLD in HFD mice [9]. Therefore, postbiotics
have great potential in the management of NAFLD owing to their richness in bioactive
substances and good stability (no live bacteria).

The hepatic portal system anatomically connects the liver and the gut. There is increas-
ing evidence that the development of NAFLD is closely related to the dysbiosis of the gut
microbiota and that the gut and liver are closely linked to metabolic function [10]. In one
study, germ-free mice developed symptoms of NAFLD after receiving a fecal transplant
in a mouse model of HFD-induced NAFLD [11]. HFD can lead to an imbalance of gut
microbiota, such that endotoxins and inflammatory factors produced in the intestine can
enter the liver through the gut-liver axis, causing inflammation, IR, and fat metabolism
dysfunction in the liver, which in turn induces NAFLD [12]. Numerous studies have shown
that probiotics and prebiotics can alleviate NAFLD by modulating gut microbiota dysbio-
sis [13]. Postbiotics may also have the potential to alleviate NAFLD. However, whether the
role of postbiotics is related to the gut microbiota remains to be further investigated.

Metabolomics can elucidate the mechanism of action of drugs at the metabolic level by
systematically identifying and quantifying metabolite levels [14]. Liquid chromatography-
mass spectrometry (LC-MS) is regarded as a suitable platform for metabolomic studies as it
is a quick metabolomic analysis method [15]. It has been previously discussed how NAFLD
causes metabolic pathways to become dysfunctional [16]. The development of NAFLD
involves various metabolite changes, and these changes and the mechanisms behind
them can be analyzed using LC-MS [17]. Therefore, there is a new method to explore the
mechanisms by which substances alleviate NAFLD. Studies have shown that Lactobacillus
paracasei can regulate liver glycerophospholipid and arachidonic acid metabolism, fatty acid
breakdown, and other metabolic pathways, thereby reducing liver lipid accumulation [18].
However, the relationship between the preventive effect of postbiotics prepared using
Lactobacillus paracasei on NAFLD and liver metabolomics remains to be studied.

In this study, we established a NAFLD mouse model using HFD and explored the
preventive effect of postbiotics (POST) prepared using Lactobacillus paracasei CCFM1224
on NAFLD. The mechanism of postbiotic protection against NAFLD was investigated by
studying liver metabolomics using LC-MS and the gut microbiome using high-throughput
sequencing. At the same time, the relationship between the lipid metabolism phenotype
and gut microbiota was revealed, which provided a reference for the development of
postbiotic products to alleviate NAFLD.

2. Results
2.1. POST Ameliorated the Obesity-Related Parameters

To investigate whether POST prevents HFD-induced obesity, it was administered
to HFD mice for 12 weeks. After ingesting the HFD, the mice had markedly increased
body weight, and significant epididymal white fat accumulation (e-WAT), whereas the
POST intervention significantly suppressed body weight gain (HFD + POST-L vs. HFD:
decreased 0.38-fold, p < 0.001; HFD + POST-H vs. HFD: decreased 0.40-fold, p < 0.001)
and e-WAT accumulation (HFD + POST-L vs. HFD: decreased 0.37-fold, p < 0.01; HFD
+ POST-H vs. HFD: decreased 0.52-fold, p < 0.001) in HFD mice, while the diameter of
e-WAT in POST intervention groups was substantially smaller than that in HFD group
(Figure 1A–D). However, the M intervention failed to improve HFD-induced weight gain
and e-WAT accumulation (Figure 1A–D). The expression of lipid metabolism genes in
e-WAT was further investigated (Figure 1E). HFD significantly promoted the expression
of peroxisome proliferator-activated receptor gamma (PPAR-γ) but significantly inhibited
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the expression of peroxisome proliferator-activated receptor alpha (PPAR-α). However,
after POST intervention, the mRNA expression of PPAR-γ (HFD + POST-L vs. HFD:
decreased 0.35-fold, p = 0.0172; HFD + POST-H vs. HFD: decreased 0.52-fold, p < 0.001)
was significantly decreased, the mRNA expression of PPAR-α (HFD + POST-L vs. HFD:
increased 0.74-fold, p = 0.0081; HFD + POST-H vs. HFD: increased 0.92-fold, p < 0.001) and
hormone-sensitive lipase (HSL) (HFD + POST-L vs. HFD: increased 0.41-fold, p = 0.0482;
HFD + POST-H vs. HFD: increased 0.49-fold, p = 0.0119) was significantly increased.
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Figure 1. POST ameliorated obesity in HFD mice. (A) Weight change over 12 weeks. (B) Total 
weight gain. (C) The e-WAT index. (D) H&E staining of e-WAT (magnification 200×). (E) Relative 
mRNA expression of PPAR-γ, PPAR-α, HSL in the e-WAT. Compared to HFD, * p < 0.05, ** p < 0.01, 
and *** p < 0.001; Compared to NFD, # p < 0.05, ## p < 0.01, and ### p < 0.001. 
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Figure 1. POST ameliorated obesity in HFD mice. (A) Weight change over 12 weeks. (B) Total
weight gain. (C) The e-WAT index. (D) H&E staining of e-WAT (magnification 200×). (E) Relative
mRNA expression of PPAR-γ, PPAR-α, HSL in the e-WAT. Compared to HFD, * p < 0.05, ** p < 0.01,
and *** p < 0.001; Compared to NFD, # p < 0.05, ## p < 0.01, and ### p < 0.001.

2.2. POST-Attenuated IR and Improved Serum Lipid Parameters

In terms of glucose metabolism regulation, according to the experimental results of
OGTT, HFD mice had higher fasting blood glucose and impaired glucose tolerance than
NFD mice, but the glucose tolerance of the POST intervention groups increased significantly
(Figure 2A). AUC was calculated to confirm this conclusion (Figure 2B). Increased serum
lipid levels are the primary features of HFD mice. Therefore, we determined the serum
lipid levels in mice to evaluate the efficacy of POST. Compared with that of NFD mice, the
serum TC, LDL-C, and LDL-C/HDL-C values of HFD mice significantly increased after
the ingestion of HFD. Compared with that of the HFD group, POST intervention signif-
icantly reduced the serum TC (HFD + POST-L vs. HFD: decreased 0.26-fold, p = 0.0023;
HFD + POST-H vs. HFD: decreased 0.25-fold, p = 0.0029), LDL-C (HFD + POST-L vs.
HFD: decreased 0.45-fold, p < 0.001; HFD + POST-H: decreased 0.48-fold, p < 0.001), and
LDL-C/HDL-C (HFD + POST-L vs. HFD: decreased 0.41-fold, p < 0.001; HFD + POST-H:
decreased 0.46-fold, p < 0.001) values, showing the ability to reduce HFD-induced hyper-
lipidemia, whereas M intervention had no such effect (Figure 2D,F,G). It is worth noting
that the serum TG and HDL-C levels of the mice in each group did not show obvious
differences (Figure 2C,E).

2.3. POST Prevented Hepatic Steatosis and Dysfunction

In the assessment of NAFLD, H&E and/or Oil Red O staining analysis, which is
evaluated by section morphology, is often used. The H&E staining results showed that the
liver tissue sections of NFD mice had regular morphology, while the liver tissue sections of
HFD mice were filled with a large number of fat vacuoles with severe steatosis (Figure 3A).
The results of Oil Red O staining also showed the same trend as H&E staining, with a
greater accumulation of lipid droplets in the liver tissue of HFD mice compared to that in
NFD mice (Figure 3B). Hepatic steatosis was suppressed in the POST intervention group
(Figure 3A,B). Qualitative histopathological analysis of liver sections revealed that mice
exhibited significant hepatic steatosis (grade 7) and inflammation (grade 1) after HFD
ingestion, while the liver steatosis (HFD + POST-L: grade 1, HFD + POST-H: grade 0)
and inflammation (HFD + POST-L: grade 0, HFD + POST-H: grade 0) were significantly
ameliorated after the POST intervention (Table 1). Hepatic steatosis is often accompanied
by hepatic impairment, and serum liver enzyme levels are sensitive indicators of liver
injury. Changes in the levels of liver enzymes (AST, ALT, and CHE) in the serum were
evaluated in all groups of mice after the histological observation of liver damage, and the
results revealed that the HFD produced a considerable increase in serum liver enzyme
levels (Figure 3C–E). Compared with HFD mice, the HFD + POST decreased the serum
liver enzyme activities in a dose-dependent manner, namely ALT (HFD + POST-L vs. HFD:
decreased 0.51-fold, p < 0.001; HFD + POST-H vs. HFD: decreased 0.54-fold, p < 0.001), AST
(HFD + POST-L vs. HFD: decreased 0.15-fold, p > 0.05; HFD + POST-H vs. HFD: decreased
0.26-fold, p = 0.0414), and CHE (HFD + POST-L vs. HFD: decreased 0.21-fold, p = 0.0043;



Int. J. Mol. Sci. 2022, 23, 13522 5 of 23

HFD + POST-H vs. HFD: decreased 0.36-fold, p < 0.001) (Figure 3C–E). However, the M
treatment failed to ameliorate hepatic steatosis and liver injury in HFD mice (Figure 3A–E).
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Figure 2. POST improves IR and serum lipid parameters in HFD mice. (A) OGTT showed changes in
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Table 1. Steatosis and inflammation scores of livers.

Groups NFD HFD HFD + M-L HFD + M-H HFD + POST-L HFD + POST-H

Macrovesicular
steatosis score 0 2 1 2 0 0

Microvesicular
steatosis score 0 3 3 3 1 0

Hypertrophy score 0 2 2 1 0 0
Total steatosis score 0 7 6 6 1 0
Inflammatory score 0 1 1 1 0 0
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Figure 3. POST improves hepatic steatosis and liver function in HFD mice. (A) H&E staining of the 
liver (magnification 200×). (B) Oil Red O staining of the liver (magnification 200×). (C–E) Serum 
content of ALT, AST, CHE. Compared to HFD, * p < 0.05, ** p < 0.01, and *** p < 0.001; Compared to 
NFD, # p < 0.05, and ### p < 0.001. 

  

Figure 3. POST improves hepatic steatosis and liver function in HFD mice. (A) H&E staining of the
liver (magnification 200×). (B) Oil Red O staining of the liver (magnification 200×). (C–E) Serum
content of ALT, AST, CHE. Compared to HFD, * p < 0.05, ** p < 0.01, and *** p < 0.001; Compared to
NFD, # p < 0.05, and ### p < 0.001.

2.4. POST Attenuated HFD-Induced Hepatic Inflammation

Inflammation is closely related to fat accumulation; therefore, we evaluated changes
in inflammation-related cytokines in the liver. Compared with the NFD group, the HFD
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group had significantly up-regulated pro-inflammatory cytokines (IL-6, p < 0.001; TNF-α,
p = 0.0018; IL-1β, p = 0.0096; Figure 4A–C). M failed to improve liver inflammation, whereas
POST significantly inhibited the elevation of IL-6 (HFD + POST-L vs. HFD: decreased 0.37-
fold, p = 0.0029; HFD + POST-H vs. HFD: decreased 0.43-fold, p < 0.001) and TNF-α (HFD
+ POST-L vs. HFD: decreased 0.25-fold, p = 0.0282; HFD + POST-H vs. HFD: decreased
0.26-fold, p = 0.0237) levels in HFD mice; additionally, a POST-H intervention significantly
decreased the IL-1β (decreased 0.32-fold, p = 0.0149) levels (Figure 4A–C).
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principal coordinates analysis (PCoA), and although the NFD group and HFD group 
were separated, they were clustered with the POST-H treatment group (Figure 5A). This 
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tween HFD and NFD mice were reduced after the POST-H treatment. Firmicutes and 
Bacteroidetes were the most prevalent phyla across all animal groups; other dominant 
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5B). HFD increased the ratio of Firmicutes to Bacteroidetes (F/B), whereas the POST-H 
supplementation significantly suppressed this change (Figure 5C). The LEfSe analysis 
bacterial group difference threshold was set as an LDA score > 3.0, α < 0.05, and a total of 
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Figure 4. POST reduces hepatic inflammation in HFD mice. The concentration of cytokines in the
liver, (A) IL-6, (B) TNF-α, (C) IL-1β. Compared to HFD, * p < 0.05, ** p < 0.01, and *** p < 0.001;
Compared to NFD, # p < 0.05, ## p < 0.01, and ### p < 0.001.

2.5. POST Altered the Gut Microbiota Composition

The regulatory effect of POST on the richness and diversity of gut microbiota was
evaluated using high-throughput sequencing. The results of Alpha diversity showed that
there was no significant difference in the shannon index and chao1 index between groups
(Supplementary Figure S1). The detection results were analyzed for beta diversity using
principal coordinates analysis (PCoA), and although the NFD group and HFD group were
separated, they were clustered with the POST-H treatment group (Figure 5A). This indicates
that the differences in species richness and species correlation in the gut between HFD and
NFD mice were reduced after the POST-H treatment. Firmicutes and Bacteroidetes were the
most prevalent phyla across all animal groups; other dominant phyla included Deferrib-
acteria, Proteobacteria, Verrucomicrobia, and Actinobacteria (Figure 5B). HFD increased the
ratio of Firmicutes to Bacteroidetes (F/B), whereas the POST-H supplementation significantly
suppressed this change (Figure 5C). The LEfSe analysis bacterial group difference threshold
was set as an LDA score > 3.0, α < 0.05, and a total of 26 genera were detected to have
differences between groups (Figure 5D,E), of which 15 genera belonged to Ruminococcaceae.
HFD altered the abundance of different genera, some of which were restored after the
POST-H intervention. In our study, we selected the top 10 highly-abundant differential
genera to analyze their expression in each group. The results showed that HFD signif-
icantly increased the relative abundance of uncultured (Lachnospiraceae), Lachnospiraceae
NK4A136 group, Other (Ruminococcaceae), Oscillibacter, Ruminiclostridium, Ruminiclostridium
9, uncultured (Ruminococcaceae), and Bilophila, but significantly decreased the relative abun-
dance of uncultured bacterium (Muribaculaceae) and Akkermansia (Figure 5F). However, the
supplementation with POST-H reversed the HFD-induced changes in genus abundance,
significantly reducing Lachnospiraceae NK4A136 group, Ruminiclostridium and Bilophila while
significantly increasing Akkermansia (Figure 5F).
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Figure 5. POST regulates gut microbiota. (A) PCoA analysis (PCoA1 = 52.5%, PCoA2 = 21.6%).
(B) phylum-level microbial relative abundance (C) The value of F/B. (D) Cladograms for LEfSe
analysis. (E) LDA scores. (F) The top 10 differential genera in relative abundance. Compared to HFD,
* p < 0.05, and ** p < 0.01; Compared to NFD, # p < 0.05, and ## p < 0.01.

2.6. Correlation Analysis and Prediction of Microbial Metabolic Function

Spearman analysis was used to determine the associations between different genera
in terms of high abundances and NAFLD symptoms (Figure 6A). Lachnospiraceae NK4A136
group, Ruminiclostridium, and Bilophila had significantly negative correlations with all lipid
metabolism parameters except TG, HDL-C, and IL-1β. Ruminiclostridium 9, uncultured
(Ruminococcaceae), Oscillibacter, and Other (Ruminococcaceae) had significantly positive cor-
relations with weight gain, AUC, TNF-α, and serum lipid indices other than HDL-C.
Uncultured (Lachnospiraceae) had a significantly positive correlation with all indices except
HDL-C and IL-1β, but Akkermansia and uncultured (Lachnospiraceae) were completely op-
posite. Uncultured bacterium (Muribaculaceae) was negatively associated with blood lipids,
AUC, weight gain, and the IL-1β and TNF-α indices.

The gut microbiota metabolism of mice was predicted by PICRUSt2. Compared with
the HFD group, lipid metabolism, amino acid metabolism and other metabolic pathways
were significantly enriched in HFD + POST-H and NFD groups, indicating that POST sup-
plementation can partially reverse the gut microbiota function of HFD mice (Figure 6B). We
further studied the tertiary KEGG pathway of lipid metabolism and amino acid metabolism
(Figure 6C), and the results showed that POST-H supplementation significantly promoted
the relevant metabolic pathways in HFD mice, including alanine, aspartate and glutamate
metabolism, cysteine and methionine metabolism, lysine biosynthesis and glycerophospho-
lipid metabolism.
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2.7. POST Modulated the Hepatic Metabolome in HFD Mice

We used LC-MS metabolomic analysis to detect the metabolic profile of the mouse
liver and further explored the mechanism of action of POST. Based on the PCA and
PLS-DA analysis results, the hepatic metabolites in the NFD, HFD, and HFD + POST-H
groups were clearly differentiated, and the POST-H intervention partially reversed the
metabolite changes caused by HFD (Figure 7A,B and Figure 8A,B). The score plot of the
OPLS-DA model illustrated a clear separation between the HFD and HFD + POST-H groups
(Figures 7C and 8C). The metabolites far from the center in the loading graph were liver
metabolites (potential biomarkers) that were markedly altered after the HFD + POST-H
intervention (Figures 7D and 8D). In this study, potential biomarker metabolites were
screened based on the VIP value (>1.0) and p-value (<0.05), which explain the differences
between the HFD + POST-H and HFD groups. In the liver, 206 potential biomarkers were
identified in the 2 ion modes. After the POST-H intervention in HFD mice, the contents of
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93 metabolites significantly increased, 42 metabolites significantly decreased in the positive
ion mode, 54 metabolites increased markedly, and 17 metabolites decreased markedly in
the negative ion mode (Figures 7E and 8E). We performed a KEGG analysis of the metabolic
pathways of hepatic differential metabolites to gain insight into the effects of POST-H on
HFD mice. The metabolic pathways significantly affected by POST-H were selected ac-
cording to their impact value (>0.05) and p-value (<0.05). The results showed that POST-H
significantly regulated glycerophospholipid metabolism, pantothenate and CoA biosynthe-
sis, cysteine and methionine metabolism, tryptophan metabolism, alanine, aspartate, and
glutamate metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and arginine
biosynthesis (Figures 7F and 8F).
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(B) PLS-DA score of the NFD, HFD and HFD + POST-H. (C) OPLS-DA score of the HFD and HFD +
POST-H. (D) S-loading plot based on OPLS-DA analysis of the HFD and HFD + POST-H. The red
points indicate that these metabolites have a VIP value of 1 or greater, and the blue points indicate that
these metabolites have a VIP value of less than 1. (E) Heat map of relative abundance of differential
metabolites in liver between HFD and HFD + POST-H. (F) The effects of POST-H on liver metabolic
pathways were analyzed based on KEGG.

2.8. POST Regulated Hepatic Lipid Metabolism Gene Expression

The mRNA expression of liver lipid metabolism genes was evaluated using qRT-
PCR to clarify the possible mechanism underlying the effects of POST. In terms of gene
expression, Figure 9 shows that HFD promotes lipid synthesis and transport in the mouse
liver, such as PPAR-γ (p < 0.001), sterol regulatory element binding proteins 1c (SREBP-1c)
(p < 0.001), fatty acid synthase coding gene (FASN; p < 0.001), fatty acid translocase CD36
(CD36) (p < 0.001), and fatty acid transport protein 5 (FATP5) (p = 0.0014), whereas inhibiting
fatty acid oxidative consumption, such as PPAR-α (p = 0.0022). However, after the POST-H
intervention in HFD mice, lipid synthesis and transport were inhibited (PPAR-γ: decreased
0.50-fold, p < 0.001; SREBP-1c: decreased 0.28-fold, p = 0.004; FASN: decreased 0.33-fold,
p < 0.001; CD36: decreased 0.43-fold, p < 0.001; FATP5: decreased 0.20-fold, p = 0.0365), and
fatty acid oxidation was restored (PPAR-α: increased 0.77-fold, p < 0.001). Notably, POST-
H also substantially raised the mRNA expression of lipolytic enzymes, such as adipose
triglyceride lipase (ATGL; increased 0.46-fold, p = 0.0133) and HSL (increased 0.68-fold,
p < 0.001) in HFD mice.
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(B) PLS-DA score of the NFD, HFD and HFD + POST-H. (C) OPLS-DA score of the HFD and HFD +
POST-H. (D) S-loading plot based on OPLS-DA analysis of the HFD and HFD + POST-H. The red
points indicate that these metabolites have a VIP value of 1 or greater, and the blue points indicate that
these metabolites have a VIP value of less than 1. (E) Heat map of relative abundance of differential
metabolites in liver between HFD and HFD + POST-H. (F) The effects of POST-H on liver metabolic
pathways were analyzed based on KEGG.
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3. Discussion

The symptoms of NAFLD include the excessive accumulation of fat in hepatocytes
or steatosis, which is the first step in its pathogenesis [19]. Probiotics have long been
recognized as a promising option for easing and/or preventing NAFLD [20]. In recent stud-
ies, postbiotics have also been identified as potential therapies for NAFLD [21]. The oral
administration of Lactobacillus plantarum L-14-prepared postbiotics significantly inhibits
adipogenesis in HFD mice, and this beneficial effect may be attributed to the exopolysac-
charides of the postbiotics [22]. Postbiotics derived from Akkermansia muciniphila have
been found to play a key role in regulating metabolic functions to prevent obesity [23]. In
our study, we found that postbiotics prepared from Lactobacillus paracasei CCFM1224 can
effectively prevent the development of NAFLD in HFD-fed mice, and this protective effect
may be achieved by modulating the gut microbiome and liver metabolomics.

In our study, hepatic steatosis was induced in HFD-fed mice [24]. It was shown that
POST considerably inhibited the body weight increase in mice fed an HFD and decreased
fat accumulation in e-WAT compared with that in the HFD group. POST might inhibit
white fat accumulation in mice by regulating the expression of lipid metabolism genes
in e-WAT. In HFD mice, adipose tissue dysfunction promotes lipolysis and subsequent
hyperlipidemia [25]. The POST intervention inhibited the HFD-induced elevation of serum
lipids and liver enzymes caused by HFD, and these indicators clearly indicated changes
in lipid metabolism and impairment of liver function [26]. In addition, POST increased
glucose tolerance in HFD mice and effectively prevented IR, which is positively correlated
with the occurrence of NAFLD [27]. The liver histological analysis also demonstrated that
POST had a hepatoprotective effect, preventing fatty liver by inhibiting steatosis. The
excessive accumulation of liver fat can cause lipotoxicity, resulting in hepatocyte damage
and inflammation [28]. Therefore, chronic liver inflammation was present in NAFLD
patients, and hepatocytes’ induction of pro-inflammatory cytokines by an excessive lipid
content resulted in NAFLD [29]. Reducing inflammation may contribute to the amelioration
of NAFLD, as evidenced by POST significantly inhibiting the HFD-induced elevation of
hepatic inflammatory cytokines in this study. Studies have shown that POST can improve
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NAFLD symptoms in HFD mice, independent of the composition of the medium itself.
However, the mechanism by which POST prevents NAFLD requires further investigation.

Gut microbiota is closely associated with NAFLD [30]. A high Firmicutes/Bacteroidetes
(F/B) ratio is a feature of the gut microbiota in obese animals [31], and the results of our
study showed that a POST-H intervention substantially suppressed the HFD-induced
elevation of the F/B ratio by reducing the Firmicutes abundance and increasing the Bac-
teroidetes abundance. Studies have shown that Lachnospiraceae is positively associated with
the development of obesity and diabetes in mice [32]. We found that a POST-H restored
the HFD-induced elevation in the Lachnospiraceae NK4A136 group, which was positively
correlated with indicators that induce NAFLD. This is similar to the results of previous
studies [33]. POST-H also suppressed the HFD-induced elevation in the relative abundance
of Bilophila and other genera in Ruminococcaceae. Bilophila is thought to be positively associ-
ated with hepatic lipid accumulation and is enriched in the gut in HFD [34]. The occurrence
of NAFLD is often accompanied by an increase in the abundance of Ruminococcaceae [35].
HFD can significantly reduce the relative abundance of Akkermansia [36], and our study
yielded similar results, whereas POST-H intervention prevented this downregulation. Re-
search has demonstrated that Akkermansia levels are negatively correlated with NAFLD
development [37]. Therefore, POST may prevent NAFLD by restoring the gut microbiota
imbalance caused by an HFD.

Metabolomics is a powerful method for the untargeted analysis of small molecules in
tissue samples [38]. Our results suggest that POST alleviates NAFLD mainly by modulating
metabolic pathways, such as glycerophospholipid and ether lipid metabolism, pantothen-
ate and CoA biosynthesis, and amino acid metabolism. As an important component of
mammalian cells, glycerophospholipids are involved in many cellular processes related
to metabolic syndromes, such as molecular transport and protein function. Studies have
shown that glycerophospholipid metabolism disorders disrupt the energy metabolism in
liver cells [39]. NAFLD is often accompanied by abnormal hepatic PC or PE levels, and
excessive PC or PE levels can cause energy metabolism disorders and cell damage [40].
POST-H intervention significantly reduced the PC and PE content in the hepatocytes of
HFD mice and regulated glycerophospholipid metabolic disorders. Ether lipid metabolism
disorders are closely related to metabolic diseases [41]. Ether phospholipids are mainly
produced in the liver, and fatty acids synthesized by ether lipids are derived from FASN-
mediated de novo lipogenesis [42]. Decreased levels of endogenous plasmalogens are
associated with the impaired expression of PPAR-α [43]. POST-H markedly increased the
levels of plasmalogens (such as 1-radyl-2-acyl-sn-glycero-3-phosphocholine) in the hepatic
ether lipid metabolism pathway in HFD mice and regulated lipid metabolism disorders.
The biosynthetic pathways of pantothenic acid and CoA play important roles in various
physiological and pathological cellular processes [44]. Pantothenic acid is a key precursor
of CoA and is involved in the synthesis of key enzymes of the TCA cycle in the body, and
a lack of pantothenic acid results in reduced ATP synthesis [45]. POST-H significantly
increased the content of related metabolites in pantothenate and CoA biosynthesis, such as
pantothenic acid and D-4′-Phosphopantothenate, and promoted energy metabolism in the
mouse liver. The POST-H intervention increased the levels of hepatic tryptophan metabo-
lites such as 5-Hydroxyindoleacetic acid, indoleacetaldehyde, and 3-Hydroxyanthranilic
acid, which have significant anti-inflammatory effects [46]. Similarly, alanine, aspartate,
and glutamate metabolism, which are central to glutamate metabolism, are closely related
to the occurrence of inflammation [47]. Methionine can promote lipoprotein synthesis,
which is conducive to the transport of fat out of the liver, thereby relieving fatty liver [48].
Studies have shown that L-cysteine can reduce lipid levels in rat serum and liver [49].
POST-H also decreased the S-Adenosylmethionine and 5′ ′-Deoxy-5′ ′- (methylthio) adeno-
sine content in the cysteine and methionine metabolism pathways, suggesting that it may
prevent NAFLD by reducing the hepatic metabolic depletion of cysteine and methionine.
Therefore, we speculated that POST might prevent NAFLD by regulating liver metabolism,
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which is also consistent with the partial prediction of intestinal microbiota in lipid and
amino acid metabolism.

Changes in liver metabolism are closely related to liver gene expression [50]. Hepa-
tocyte steatosis is typically caused by increased fatty acid synthesis and decreased fatty
acid oxidation [51]. Therefore, we investigated the expression of the genes associated
with hepatic lipid metabolism. In the development of NAFLD, PPAR-γ can stimulate
the expression of downstream FASN by regulating SREBP-1c [52], while SREBP-1c has
the ability to upregulate the gene expression of de novo adipose synthase FASN and is a
major regulator of hepatic lipogenesis [53]. CD36 is involved in fatty acid transmembrane
transport, uptake and other metabolic processes and can mediate metabolic dysregulation
of liver inflammation [54]. FATP5 is mainly distributed in liver tissue and can increase the
absorption of long-chain fatty acids [55]. ATGL is the first step in regulating lipid lipolysis,
after which HSL facilitates the removal of excess fatty acids [56,57]. The overexpression of
HSL or ATGL in the liver can promote fatty acid oxidation and improve hepatic steatosis,
which is related to the activation of the PPAR-α [58]. PPAR-α is highly expressed in the nor-
mal liver, and its expression gradually decreases with the accumulation of liver lipids [59].
In our study, POST inhibited the expression of PPAR-γ, SREBP1c, FASN, CD36 and FATP5
while promoting the expression of HSL, ATGL and PPAR-α in HFD mice. Therefore, we
speculated that the mechanism by which POST prevents NAFLD is closely related to a
decrease in fatty acid synthesis and absorption in hepatocytes and an increase in fatty
acid oxidation.

4. Materials and Methods
4.1. Postbiotics Preparation

Lactobacillus paracasei CCFM1224 was obtained from the bacterial bank of the Food
Biotechnology Research Center of Jiangnan University. Lactobacillus paracasei CCFM1224
was activated to the third generation in MRS medium. The activated seed solution was
inoculated at 2% into the postbiotic preparation medium (each liter of water contained
60 g glucose, 20 g casein peptone, 1 g yeast extract, 0.35 g MgSO4·7H2O, 0.1 g MnSO4·H2O,
and 2.6 g K2HPO4·3H2O) and was cultured for 12 h. The resulting fermentation broth
was inoculated at 5% into the postbiotic preparation medium and cultured for 30 h. The
fermentation broth was heat-treated (65 ◦C, 30 min), sonicated (crushing power 60%, total
crushing time 15 min, intermittent time 4 s), and freeze-dried to obtain postbiotic. The
resulting postbiotic (POST) and postbiotic preparation media (M) were lyophilized for
later use.

4.2. Animal Experiments

The Experimental Animal Ethics Committee of Jiangnan University approved this
study (qualified number: JN. No 20210330c1250715(056)). Male C57BL/6N mice were
acquired from Vital River Co., Ltd. (Beijing, China). The mice were acclimated for 1 week in
an SPF-rated facility with unrestricted access to water and food. Thirty mice were randomly
divided into 6 groups, with 5 mice in each group. Mice in each group were fed either
a normal-fat diet (NFD, TP23302, TROPHIC, Nantong, China) or a high-fat diet (HFD,
TP23300, TROPHIC, Nantong, China). The detailed grouping was as follows: (1) NFD:
an NFD was provided to mice; (2) HFD: an HFD was provided to mice; (3,4) HFD + M-L,
HFD + M-H: mice were fed an HFD, and there was M intervention (M-L: 200 mg/kg/day,
M-H: 800 mg/kg/day); (5,6) HFD + POST-L, HFD + POST-H: mice were fed an HFD, and
there was POST intervention (POST-L: 200 mg/kg/day, POST-H: 800 mg/kg/day). POST
and M were administered to mice by gavage at the appropriate doses dissolved in 0.2 mL of
saline once daily for 12 weeks, and the NFD and HFD groups were given the same amount
of normal saline. The mice were weighed weekly during the experiment. Blood was drawn
from the eyes, while the serum was obtained by centrifugation after standing and was
stored at -80 ◦C. The epididymal white fat (e-WAT) was weighed after dissection.
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4.3. Oral Glucose Tolerance Test (OGTT)

Before the mice were euthanized, an OGTT was conducted on all the animals. After
a 12-h fast, glucose was administered by gavage at a dose of 2 mg/g mouse weight. Six
time points were set for blood glucose measurements: before gavage and 15, 30, 60, 90,
and 120 min after gavage. Accu-Chek Active test strips (Roche Diabetes Care, Mannheim,
Germany) were used to test fresh blood samples from the tail veins of the mice. GraphPad
Prism 6 was used to determine the area under the curve (AUC) for the OGTTs.

4.4. Serum Biochemical Index Assays

A Mindray biochemical analyzer (Mindray, Shenzhen, China) was used to determine
the levels of serum biochemical markers associated with NAFLD, including total choles-
terol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), and cholinesterase (CHE).

4.5. Histological Analysis

Parts of the liver tissue and epididymal adipose tissue were cut and fixed in neutral
paraformaldehyde during dissection. The fixed tissues were dehydrated and embedded
in paraffin. Hematoxylin and eosin (H&E) were used to stain the tissue segments. Fresh
liver tissue was quickly frozen and sectioned and stained with Oil Red O. The sections
were scanned using a digital slide scanner (Pannoramic MIDI II, 3DHISTECH Ltd., Bu-
dapest, Hungary). The pathological scores of hepatic steatosis and inflammation were
performed according to the study of Liang et al. [60], and the specific criteria are shown in
Supplementary Table S1.

4.6. Liver Inflammatory Cytokine Assay

Hepatocyte cytokines, including IL-6 (DY406), TNF-α (DY410) and IL-1β (DY401),
were measured using a commercial mouse ELISA kit (R&D Systems, Minneapolis, MN,
USA), according to the manufacturer’s instructions.

4.7. Gut Microbiota Sequencing

Feces were collected before the mice were euthanized. Total DNA from fecal microor-
ganisms was isolated using a Fast DNA Stool Kit (M.P. Biomedicals, Irvine, CA, USA). The
V3-V4 region of the 16S rRNA gene was amplified using the primers 341F and 806R. Nucleic
acid gel electrophoresis was used to purify the PCR amplification products, and a PCR
purification kit (TIANgel Mini Purification Kit; TIANGEN, Beijing, China) was used to pu-
rify the amplicons on the gels. Sequencing was performed using an Illumina MiSeq PE300
platform (Illumina, San Diego, CA, USA). Quantitative Insights Into Microbial Ecology2
(QIIME2) [61] and Tax4Fun2 were used to determine the makeup of the microbes [62]. The
SILVA database was used for the alignment and taxonomical assignment of representative
sequences for each OTU. The alpha and beta diversity were analyzed using q2-diversity
to assess the diversity of the samples. Alpha diversity was characterized by the shannon
and chao1 diversity index, and beta diversity was characterized by PCoA based on the
Bray–Curtis distance between samples.

4.8. Liver Metabolomics

The internal standard L-2-chlorophenylalanine was added to a solution with a
methanol/water volume of 4:1 at 0.02 mg/mL to prepare an extract solution. Liver samples
(50 mg) were weighed, mixed with 400 µL of the extract solution, homogenized at low
temperature, and centrifuged after low-temperature ultrasonic extraction. The supernatant
was used for LC-MS analysis. Twenty microliters of each sample were mixed to prepare a
quality control sample. The instrument platform for LC-MS analysis was the UHPLC-Q
Exactive HF-X system (Thermo Scientific), and the chromatographic column was an AC-
QUITY UPLC HSS T3 (Waters Corporation, Milford, MA USA). Mobile phase A consisted
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of 95% water and 5% acetonitrile; mobile phase B consisted of 47.5% acetonitrile, 47.5%
isopropanol, and 5% water; and both mobile phases A and B contained 0.1% formic acid.
The elution gradients used for the analysis are listed in Supplementary Table S2. Mass
spectral signals of the samples were collected using positive and negative ion scans. The
mass spectrometry parameters are listed in Supplementary Table S3. Raw data were pro-
cessed using Progenesis QI (Waters Corporation, Milford, MA, USA), and mass spectral
information was then matched against a metabolic database to identify metabolites.

4.9. Quantitative Reverse Transcription PCR (qRT-PCR)

According to the product manual, total RNA was isolated from the liver using a UNlQ-
10 Column Trizol Total RNA Isolation Kit (B511321, Sangon Biotech Co., Ltd., Shanghai,
China) and complementary DNA was produced by HiScript® III RT SuperMix for qPCR
(+gDNA wiper) (R323, Vazyme Biotech Co., Ltd., Nanjing, China). The BioRad-CFX384
Touch thermocycler (Bio-Rad, Hercules, CA, USA) was used to perform quantitative real-
time polymerase chain reaction (qPCR) using ChamQ Universal SYBR qPCR Master Mix
(Q711, Vazyme Biotech Co., Ltd., Nanjing, China). The primers used for qRT-PCR are listed
in Supplementary Table S4. The results were evaluated using the 2−∆∆Ct method.

4.10. Statistical Analysis

The experimental results are expressed as mean ± standard deviation. The Shapiro–
Wilk normality test was used to test the normality of the samples. A 1-way ANOVA
was used for statistical analysis, and the significance of differences between groups was
determined using Tukey’s multiple comparison test. A p-value < 0.05 indicates a statistically
significant difference. Compared to HFD, * p < 0.05, ** p < 0.01, and *** p < 0.001; Compared
to NFD, # p < 0.05, ## p < 0.01, and ### p < 0.001.

5. Conclusions

This study demonstrated that the POST treatment ameliorated HFD-induced NAFLD
by inhibiting body weight gain and epididymal white fat accumulation, improving serum
biochemical indicators, and preventing hepatic steatosis and inflammation. Gut microbiome
and liver metabolomics revealed the key microbiota and important metabolic pathways
and biomarkers associated with NAFLD. These results suggest that POST alters the gut
microbiota composition, improves liver metabolism, and regulates the expression of hepatic
lipid metabolism-correlated genes. These findings provide a reference for identifying
postbiotics that can ameliorate NAFLD. However, the key functional components and
mechanisms of action of POST in improving NAFLD require further investigation by
targeting metabolomics and humanized mouse models of gut microbiota.
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