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� This is the first experimental study on
the thrust of flutter kick by humans.

� The thrust by humans is lower than
what is reported in aquatic animals.

� The study reports the relationship
between post-activation potentiation
and kicking performance.

� Post-activation potentiation increases
thrust, which is going to enhance the
kicking kinematics.

� Kicking kinematics will thereby
improve performance.
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Herein, we analyse by experimental techniques the human kicking thrust and measure the effect of a
warm-up routine that includes post-activation potentiation (PAP) sets on front-crawl flutter kick thrust,
kinematics, and performance. Sixteen male competitive swimmers with 22.13 ± 3.84 years of age were
randomly assigned in a crossover manner to undergo a standard warm-up (non-PAP; control condition)
and a warm-up that included PAP sets (PAP; experimental condition) consisting in 2 � 5 repetitions of
unloaded countermovement jump. Participants performed a 25 m all-out trial in front-crawl with only
flutter kicks eight min after each warm-up. Kinetics (i.e., peak thrust, mean thrust, and thrust-time inte-
gral) and kinematics (i.e., speed, speed fluctuation and kicking frequency) were experimentally collected
by an in-house customized system composed of differential pressure sensors, speedo-meter, and under-
water camera. Peak thrust (P = 0.02, d = 0.66) and mean thrust (P = 0.10, d = 0.40) were increased by 15%
in PAP compared to non-PAP. Large and significant differences were noted in speed (P = 0.01, d = 0.54)
and speed fluctuation (P = 0.02, d = 0.58), which improved by 10% in PAP compared with non-PAP. In con-
clusion, a warm-up that includes PAP sets improves kicking thrust, kinematics and performance.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Human beings encounter numerous challenges to move in
water as compared to aquatic animals. Swim acceleration is the
net resultant of drag and propulsive forces acting on a body. Sev-
eral aquatic specimens, such as dolphins, are fully adapted to max-
imize propulsion and minimize drag [1]. Since a long time ago,
substantial research using different experimental techniques, sim-
ulations, and modelling procedures have been conducted on the
thrust of aquatic specimens [2–7]. In comparison with the body
of evidence on aquatic animals thrust, the knowledge on human
thrust in water is very limited. Human locomotion in water
depends on the amount of propulsion produced by both upper-
and lower-limbs while performing arm-pulls and kicks simultane-
ously. Noteworthy, human kicking resemble to the tail movements
of cetaceans [8,9].

Human kicking contributes to approximately 10–15% of overall
speed during full swimming (i.e., arm-pulls and kicks simultane-
ously) [10,11]. Previous research has focused on the thrust produced
by upper-limbs during each arm-pull due to its larger contribution to
overall swim speed [12]. Recently, there has been an increasing inter-
est to understand the role of human kicking. However, the majority
of research studies investigated the physiological responses [13,14],
kinematics and nonlinear behaviour [12] of flutter kick, with few
studies on human flutter kick thrust. Most studies selected computa-
tional simulations [15] and analytical modelling [16]. A couple of
reports conducted experimental tests but in tethered flutter kicking
[17] and a case study of stationary flutter kicking against a wall
[18]. However until this date, there is no evidence on flutter kick
thrust using experimental methods in a more ecologic valid setting
(i.e., unrestricted swimming with swimmers displacing in water).
Therefore, remains in question if the results from aforementioned
studies using simulations, modelling, and preliminary experiments
would be representative to those conducted using experimental
methods in a more ecological valid setting. Reliable data on human
flutter kick thrust can provide deeper insights into flutter kick mech-
anisms, which in turn can have a significant impact on the perfor-
mance of competitive swimmers.

Post-activation potentiation (PAP) refers to the increase in mus-
cle isometric twitch and low frequency tetanic after a conditioning
activity [19,20]. To induce PAP, athletes perform a high intensity
resistance exercise that causes muscle contractions prior to a main
bout of exercise (e.g. a race) [21]. Once the muscles have experi-
enced a maximal contraction, potentiation occurs and would
enhance athletes’ muscle performance [22]. Fatigue and potentia-
tion are muscles’ mechanic responses after contraction, and PAP
is the prevalence of potentiation over fatigue [23]. Recently, there
has been a growing interest in determining if incorporating PAP
conditioning exercises into athletes’ warm-up will be beneficial
in improving their performance.

Previous studies demonstrated that PAP could improve plyo-
metric jumping performance [24–26], sprinting [27,28], throws,
other upper-body ballistic skills [26], and sport-specific skills
[29]; one of which was swimming. In competitive swimming,
PAP may help to enhance sprinting performance [29–31]. Plenty
of researches have been conducted on the effects of warm-up in
swimming [32,33]. It is possible to include PAP sets in the warm-
up routines of swimmers. However, the mechanism by which
PAP enables swimmers to deliver better performances is unclear.
As far as kicking is concerned, an enhancement in the magnitude
of the thrust produced may exist, which may have an effect on
kicking kinematics and therefore in performance. However, there
is no evidence on this in the literature. Thence, the aim of this
study was to analyse by experimental techniques the human kick-
ing thrust and measure the effect of a warm-up routine that
includes PAP sets on front-crawl flutter kick thrust, kinematics
and performance. It was hypothesised that following PAP sets the
kicking thrust and kinematics would improve and, therefore a per-
formance enhancement should be expected.
Subject and methods

Design

A randomised crossover research design was selected to com-
pare the differences between a standard warm-up without a PAP
set (non-PAP; control condition) and another with PAP sets (PAP;
experimental condition). All participants were required to attend
three sessions (one familiarisation and two testing sessions). Dur-
ing the first session, participants were familiarised with the testing
procedures. The first testing session took place 48 h after familiar-
ization and second testing session one week after the first testing
session. For each testing session, participants randomly performed
one of the two warm-ups (non-PAP or PAP) followed-up by a 25 m
all-out bout in front-crawl flutter kick with a push-off start from
the headwall. Latency period between end of warm-up routines
and all-out time trial was set at 8 min, as reported elsewhere [34].

Participants

Sixteen male competitive swimmers were recruited for this
study (22.13 ± 3.84 years, 72.50 ± 7.21 kg of body mass,
1.77 ± 0.04 m tall, 7.44 ± 4.11 years of competitive experience).
All swimmers raced in local competitions in the previous year.
The inclusion criteria to recruit the subject were as follows: (i)
males; (ii) competitive swimmers; (iii) competing at local, national
or international competitions in the past. Exclusion criteria
included: (i) non-competitive swimmer (e.g. water polo players);
(ii) suffering from any injury or disease in the past six months;
(iii) unable to attend the three scheduled sessions of this study.
The Institutional Review Board of the Nanyang Technological Univer-
sity approved the study (IRB-2018-04-005). All participants had been
briefed about their rights before signing a written informed consent
form. Parental and/or guardians consent were sought for under-age
participants.

Warm-up routines

Participants were randomly assigned to perform two different
warm-ups in a crossover manner: (i) non-PAP (control condition)
and (ii) PAP (experimental condition). Latency period between
each warm-up and running in-water testing was set at 8 min
[29,35]. The customized warm-up (PAP; experimental condition)
was designed based on a mix of coaches’ experience and evidence
found in the literature [32,33,36].

The total mileage for non-PAP warm-up was set at 1,400 m. The
warm-up consisted of swimming 400 m in self-selected stroke and
pace (i.e., any stroke and speed of choice), 200 m of front-crawl
drills (25 m steady/25 m fast), 200 m of flutter kick drills using a
kickboard (15 m fast/35 m steady), 4 � 100 m (2 front-crawls and
2 individual medleys with 10 s rest in between), 100 m (easy)
and 2 � 50 m (dive followed by 15 m fast/35 m easy) of front-
crawl drills.

In the PAP warm-up, participants were required to perform
700 m plus PAP sets to match the overall workload of non-PAP con-
dition. The warm-up consisted of swimming 200 m in self-selected
stroke and pace, 100 m of front-crawl drills (25 m steady/25 m
fast), 100 m of flutter kick drills using a kickboard (15 m fast/35 m
steady), 2 � 100 m (1 front-crawl and 1 individual medley with
10 s rest in-between), 50 m (easy) and 50 m (dive followed by
15 m fast/35 m easy) of front-crawl drills. To induce PAP, in-



Table 1
The effect of post-activation potentiation sets on kicking kinetics.

Non-PAP
Mean ± SD
(95CI)

PAP
Mean ± SD
(95CI)

Worthwhile change
(% of Non-PAP)

D P |d|

Peak thrust [N] 92.7 ± 15.8
(84.3–100.2)

105.2 ± 21.1
(94.8–115.9)

7.94 N
(8.56%)

15.14% 0.02 0.66

Mean Thrust [N] 35.52 ± 7.42
(32.02–36.68)

39.56 ± 12.44
(34.05–46.44)

3.71 N
(10.45%)

14.60% 0.10 0.40

Thrust-time integral [N.s] 9.89 ± 1.71
(9.04–10.67)

9.63 ± 2.44
(8.44–10.84)

1.22 N.s
(12.67%)

0.13% 0.35 0.12

PAP - post-activation potentiation, SD – standard deviation, 95CI – bootstrapped 95% confidence interval, D – percentage of individual change, P – P-value, d – Cohen’s d.
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water warm-up was followed-up by 5 min of rest before perform-
ing two sets of five maximal repetitions (two min rest between
sets) of unloaded countermovement jumps on-land [34,37].

In-water testing

All participants performed in-water testing eight min upon
completing each warm-up. The in-water testing was a 25 m all-
out trial, with water temperature at 27.5 �C, using front-crawl with
only flutter kicks while holding on to a kickboard (dimensions:
42 � 29 cm) by the front edge. Participants were instructed to exe-
cute a gentle push-off start from the headwall in order to minimise
gliding and not performing dolphin kicks.

Kinetics and kinematics were collected by an in-house cus-
tomised system composed of differential pressure sensors (Aqua-
nex, Swimming Technologies, Florida, USA), speedo-meter (Swim
speedo-meter, Swimsportec, Hildesheim, Germany) and underwa-
ter camera (Aquanex, Swimming Technology Research, Inc., USA).
Differential pressure sensors were placed between 2nd and 3rd
metatarsus of each foot. These sensors measure the change in pres-
sure between inlet and outlet (dorsal and plantar foot) and then
force is derived. The speedo-meter was set on the headwall of
the swimming pool, about 0.2 m above water surface. The string
of the speedo-meter was attached to the back of a belt worn at par-
ticipants’ hip. Underwater camera was set-up 0.5 m deep on the
headwall, providing an underwater view in the transverse plane.

A customised software (LabVIEW�, v. 2017) was used to collect
(f = 50 Hz), streaming and playback time-series data, as well as,
video signal of each trial. Data was transferred from hardware
components (pressure sensors, speedo-meter and underwater
camera) to interface by a 14-bit resolution acquisition card (NI-
6001, National Instruments, Austin, Texas, USA). Afterwards, the
data from the customised software was imported into a signal pro-
cessing software (AcqKnowledge v. 3.9.1, Biopac Systems, Santa
Barbara, USA). Eighteen flutter kicks by each lower limb (a total
of 36 flutter kicks for both lower limbs) in the mid-section of the
pool (between the 10 and 20 m marks, to eliminate the effects of
push-off start and decrease in speed at the end of the effort) were
analysed and mean values for the following kinetic and kinematic
parameters were calculated for further analysis.

Kinetic variables that were analysed included the peak thrust
(i.e., the maximal value, in N), mean thrust (in N) and thrust-
time integral (in N.s). Kinematic variables included speed (in m/
s), speed fluctuation (dimensionless) and kicking frequency (in
Hz) following the procedures reported elsewhere [12]. Speed fluc-
tuation can also be deemed as a proxy of energy cost, because it
was noted that there is an inverse relationship between the two
variables, specifically when swimming the full stroke [38,39].

Statistical analysis

Mean ± standard deviation (SD) and mean percentage of indi-
vidual change (D = PAP/NPAPx100) is reported for all dependent
variables. Uncertainty in each condition was computed by boot-
strapping 95% confidence intervals (95CI) (1,000 samples). Ran-
domisation test was run to compare differences between
conditions (paired samples, 20 permutations, 1,000 repetitions,
P � 0.05). Cohen’s d was selected as standardised effect size of
mean differences and deemed as: (i) |d|�0.2 trivial; (ii) 0.2<|d|�
0.5 medium; (iii) |d|>0.5 large. Statistical analyses were run on R.
Between-subjects worthwhile changes in control condition (non-
PAP) were computed to examine the smallest meaningful improve-
ment required when undergoing PAP. Worthwhile change was cal-
culated by having d = 0.2 as the smallest standardized effect size in
sports performance [40]. Worthwhile change was then converted
into smallest partial improvement to be expected having as refer-
ence the mean value of non-PAP (i.e., the smallest meaningful
percentage of change from control to experimental conditions;
% change = mean �worthwhile changes).
Results

Overall, there was a medium-large enhancement of the kicking
thrust undergoing the warm-up that includes PAP sets (Table 1).
Worthwhile change between subjects was expected to be 8.56%
and 10.45%, for peak thrust and mean thrust, respectively. Peak
(P = 0.02, d = 0.66) and mean (P = 0.10, d = 0.40) thrust increased
by 15.14% and 14.60%, respectively. Thus, above the 8.56% and
10.45% smallest worthwhile change thresholds. The bootstrapped
95CI of the peak thrust shifted from 84.3 to 100.2 N band to
94.8–115.9 N. Likewise, the bootstrapped 95CI of the mean thrust
shifted from 32.02 to 36.68 N to 34.05–46.44 N. Trivial changes
were noted in thrust-time integral. Therefore, there is a meaningful
improvement in kicking thrust after undergoing PAP sets.

There was also a meaningful change in kicking kinematics.
Large and significant differences were noted in speed (P = 0.01,
d = 0.54) and speed fluctuation (P = 0.02, d = 0.58) (Table 2). Both
variables improved by 10%, which is very close to (in the speed
fluctuation case) or above (in the speed case) the expected smallest
worthwhile changes. Participants were faster with a 95% confi-
dence interval after PAP sets (from 0.54 to 0.64 m/s to 0.59–
0.72 m/s). Speed fluctuation was reduced from 0.10 to 0.13 to
0.08–0.10 bootstrapped 95CI after PAP. Kicking frequency had a
medium and significant increase by 3.17% (P = 0.049, d = 0.27) from
bootstrapped 95CI of 2.26–2.52 Hz to 2.31–2.63 Hz. So, after a
warm-up that included PAP sets, participants became faster and
decreased the speed fluctuation.
Discussion

This study aimed to analyse the effect of a warm-up routine
that includes PAP sets on front-crawl flutter kick thrust, kinematics
and performance. There were significant and large improvements
in flutter kick thrust, kinematics and performance, when partici-
pants performed a warm-up that features PAP sets. Flutter kick



Table 2
The effect of post-activation potentiation sets on kicking kinematics.

Non-PAP
Mean ± SD
(95CI)

PAP
Mean ± SD
(95CI)

Worthwhile change
(% of Non-PAP)

D P |d|

Speed [m/s] 0.59 ± 0.10
(0.54–0.64)

0.66 ± 0.13
(0.59–0.72)

0.06 m/s
(9.80%)

11.60% 0.01 0.54

Speed fluctuation [dimensionless] 0.11 ± 0.04
(0.10–0.13)

0.09 ± 0.02
(0.08–0.10)

0.01
(9.61%)

9.68% 0.02 0.58

Kicking frequency [Hz] 2.40 ± 0.24
(2.26–2.52)

2.48 ± 0.32
(2.31–2.63)

0.16 Hz
(6.47%)

3.17% 0.05 0.27

PAP - post-activation potentiation, SD – standard deviation, 95CI – bootstrapped 95% confidence interval, D – percentage of individual change, P – P-value, d – Cohen’s d.
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thrust improved by 15%, whereas kinematics and performance
improved by 10%.

There is a paucity of studies investigating human flutter kick
thrust by experimental testing. In a study on tethered swimming,
in male swimmers, it was reported that peak and mean thrust were
100.1 ± 28.2 N and 35.1 ± 7.6 N, respectively [17]. Just one qualita-
tive case study of a college swimmer reported the pressure on
plantar and dorsal surfaces of the feet kicking in front-crawl at
1.03 m/s, 1.10 m/s and 1.14 m/s [41]. In another case study, it
was reported that a world-record holder, performed flutter kicks
against a force plate mounted on a headwall delivered a peak force
of 90–113 N [18]. Computational fluid dynamics of human dolphin
kick suggested a mean thrust of 100 N at 2.2 Hz [15]. Based on an
analytical procedure, mean flutter kick thrust was reported as
42 ± 4 N [16]. When fins were used, the tethered flutter kick thrust
ranged between 130 ± 23 N and 178 ± 30 N, depending on the fins’
model [42]. Peak and mean thrust data from the present study
shows a good adherence to aforementioned results. A study con-
ducted on the thrust of aquatic animals suggested that the mean
thrust by dolphins is approximately 80 N [3]. In another study,
conducted in still water, the thrust generated by great white sharks
was modelled by computational fluid dynamics to be 295 N [7].
Unsurprisingly, the magnitude of human thrust was far lower as
compared to aquatic animals.

Previous research noted that PAP can help to enhance sprinting
performance [29–31]. However, until now, the underlying mecha-
nism that led to performance improvements after performing PAP
sets remains unclear. There was a meaningful improvement in flut-
ter kick thrust after performing PAP as compared to non-PAP.
Between-subjects worthwhile change was computed as 8.56%
and 10.45% for peak thrust and mean thrust, respectively; both
improved by 15% in PAP in comparison with non-PAP. Regrettably,
the assessment of neuromuscular response concurrent to this data
collection set-up was not possible. As such, it is uncertain the neu-
romuscular mechanism by which PAP led to an increase of thrust.
However, literature points out three main neuromuscular
mechanisms explaining the PAP phenomenon. The first is the phos-
phorylation of myosin regulatory light chains. This causes the
actin-myosin to be more sensitive to calcium released from the
sarcoplasmic reticulum, during subsequent muscle contractions.
Thus, the force of each consecutive twitch contraction is increased
[43]. The second is the increased synaptic excitation within the
spinal cord. It results in increased post-synaptic potentials and
subsequent increased force [44]. The last mechanism is the
decrease of the pennation angle, enhancing the mechanical advan-
tage and increasing the force transmission to tendons and bones
[22]. The conditioning activity may also increase connective tissue
and tendons compliance [22].

The findings from the present study provide evidence that PAP
can enhance the magnitude of flutter kick thrust, which translated
into faster swim speed. The procedures reported in previous stud-
ies to elicit PAP used heavy dry-land equipment that is not avail-
able in swimming pools and is not convenient to carry.
Sarramian et al. [31] utilised medicine balls and weights to per-
form pull-ups together with weighted vests and boxes to perform
countermovement jumps. Cuenca-Fernández et al. [29] investi-
gated the influence of PAP protocols utilising multipower machines
and flywheel devices. Hence, the question on whether PAP can be
induced by performing exercises with minimal and light equip-
ment or, only the body weight, was raised. Our findings suggest
that using just participants’ body weight and performing two sets
of five maximal repetitions of unloaded countermovement jumps
is a simple, convenient and effective way to achieve better
performance.

Speed fluctuation decreased significantly after performing PAP
as compared to non-PAP. The improvement was 9.68%, near the
9.61% smallest worthwhile change estimated. Bootstrapped 95CI
bands ranged between 0.10 and 0.13 and 0.08–0.10, which is
within the 0.09–0.13 interval reported elsewhere using the same
measurement technique [12]. Speed fluctuation is strongly related
to energy cost of swimming, at least swimming full stroke (i.e.
arm-pull synchronised with kicking). Energy cost is inversely
related to swimming efficiency [45]. As such, smaller speed fluctu-
ation is related to less energy cost while swimming [38,39].
Despite these findings, whether such relationship shows the same
magnitude if assessed the energy cost of kicking and its speed fluc-
tuation, remains inconclusive. Nonetheless, one can argue that
undergoing PAP, participants became more efficient. However,
swimming efficiency is not as determinant in sprinting as in
middle- or long-distance events. It was reported that among the
US National Team, sprinters, middle-distance swimmers and
long-distance counterparts had a propelling efficiency of
47.8 ± 8.1%, 55.9 ± 10.1% and 61.5 ± 10.2%, respectively [46].

Gatta et al. [16] noted a kicking frequency of 2.4 ± 0.2 Hz swim-
ming at 1.2 m/s; whereas, Zamparo et al. [47] 1.29 ± 0.14 Hz at
0.6 m/s. National-level swimmers performing dolphin kicks fully
submerged at 1.13 m/s had a kick frequency of 1.76 Hz [48]. The
present study found that kicking frequency increased from 2.26
to 2.52 Hz to 2.31–2.63 Hz (D = 3.17%). However, this improvement
was lower than the worthwhile change needed (6.47%). Conse-
quently, P-value falls very near to the rejection threshold
(P = 0.049) and in the lower end of a medium effect size
(d = 0.27). The magnitude of these variations in kicking frequency
might have led to trivial changes in the thrust-time integral. In
the first of two 100 m dash trials, the stride frequency showed a
larger effect size after PAP [49]. It has been reported that kicking
frequency has an effect on metabolic response [50]. The increase
in speed due to higher kicking frequency can have the detrimental
effect of a larger internal mechanical work. Increased energy cost is
a consequence of a higher internal mechanical work. Therefore, the
increase in kicking frequency as a mechanical strategy to swim fas-
ter might be suitable in events where energy cost is not a key-
determinant, such as short sprints. Conversely, in longer sprints,
speed increase should be done based on a different strategy.
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Participants were faster after performing PAP (bootstrapped 95CI:
from 0.54 to 0.64 m/s to 0.59–0.72 m/s). Speed improved by 11.60%,
which was above the 9.80% worthwhile change expected. Previous
studies demonstrated that the contribution of arm-pulls to full swim
speed (i.e., arm-pulling synchronised with kicking) speed is 85–90%
[10–14]. Thus, the overall contribution of flutter kicks is 10–15%.
Interestingly, at least in young participants, kicking accounts for
60% of the speed performing the full stroke [12]. In another study,
the sum of arms-only and legs-only swimming also exceeded that
of whole body for velocity, VO2 and metabolic cost [14]. A possible
explanation for this decrease from 60% to 10–15% is a counteract
effect of kicking thrust by tangential drag force. The latter will
increase over the stroke cycle, due to an increase in speed that is
related to arm-pull. According to a simulation, such increase in tan-
gential drag cancels out the thrust effect [51]. Therefore, a 10%
improvement in kicking thrust, after performing PAP, may allow
swimmers to be faster by 1.0–1.5% during a swim race, provided
energy cost remains the same. An improvement of 1% in a swim race
that takes about 50 s, such as for instance the 100m freestyle, means
less 0.5 s in the final race time. Sarramian et al. [31] reported a mean
improvement of 1.81% in a 50 m freestyle trial in male swimmers,
after performing upper-limbs PAP. The 1.81% improvement is in tan-
dem with the current findings of about 1.0–1.5%. Moreover, a stan-
dardised effect size of d = 0.54 translates into a percentile gain of
21 places. For instance, if one is ranked 50th in the top-100, going
under PAP and everything else being equal, moves the swimmer
up to position 29th. Altogether, in elite sports, an enhancement by
1.0–1.5% is deemed as meaningful.

Overall, the inclusion of PAP sets at the end of the warm-up rou-
tine can elicit a performance enhancement. Five min after the in-
water warm-up, swimmers can perform two sets of five maximal
unloaded countermovement jumps with two min rest between sets.
This is expected to improve the kicking performance by 10% and the
overall swim performance in 1.0–1.5%. The warm-up mileages
selected are within the common practice among swimmers of this
level [32,33,36]. A review of the literature suggested a mileage of
1.0–1.5 km [36]. Different in-water mileages in the two warm-ups
aimed to match the overall workload in both condition. However,
one can argue that by applying the same warm-up mileage (e.g.,
1.4 km) in the control and experimental conditions, PAP might as
well be seen as a strategy able to change performance on that partic-
ular moment or state of fatigue. Most selected variables increased the
coefficient of variation (CV = SD/mean) from non-PAP to PAP. The
increased variability can be related to different magnitudes of
response to PAP from individual to individual, as well as, to each
one of them having an optimal latency period that can be different
to the 8 min selected for this research. As such, swimmers are
advised to determine their own optimal latency period.

While this research has shown that PAP improves kicking kinet-
ics, kinematics and performance, some limitations can be pointed
out: (i) it is still unknown if different latency periods between
PAP sets and in-water testing will yield similar results; (ii) future
studies can be conducted to provide insight on the hypothetical
changes in kicking efficiency (Strouhal number) after performing
PAP; (iii) it is still unknown if similar PAP effect can be observed
in other swim strokes (e.g., backstroke kick, dolphin kick and
breaststroke kick); (iv) it is not yet known if PAP will have the
same effect on arm-pull; and (v) experiments were conducted over
25 m, and might not be representative of the swimmer’s acute
response in longer distances.
Conclusions

In conclusion, there are meaningful improvements in kicking
thrust, kinematics and performance after undergoing a warm-up
that includes PAP sets. PAP exercise in the form of body-
weighted countermovement jump can elicit an increase in thrust,
which in turn is going to enhance the kicking kinematics and
performance.
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