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ABSTRACT
Objective: Machine learning (ML) is expected to play an increasing role within primary health
care (PHC) in coming years. No peer-reviewed studies exist that evaluate the diagnostic accuracy
of ML models compared to general practitioners (GPs). The aim of this study was to evaluate
the diagnostic accuracy of an ML classifier on primary headache diagnoses in PHC, compare its
performance to GPs, and examine the most impactful signs and symptoms when making
a prediction.
Design: A retrospective study on diagnostic accuracy, using electronic health records from the
database of the Primary Health Care Service of the Capital Area (PHCCA) in Iceland.
Setting: Fifteen primary health care centers of the PHCCA.
Subjects: All patients that consulted a physician, from 1 January 2006 to 30 April 2020, and
received one of the selected diagnoses.
Main outcome measures: Sensitivity, Specificity, Positive Predictive Value, Matthews Correlation
Coefficient, Receiver Operating Characteristic (ROC) curve, and Area under the ROC curve
(AUROC) score for primary headache diagnoses, as well as Shapley Additive Explanations (SHAP)
values of the ML classifier.
Results: The classifier outperformed the GPs on all metrics except specificity. The SHAP values
indicate that the classifier uses the same signs and symptoms (features) as a physician would,
when distinguishing between headache diagnoses.
Conclusion: In a retrospective comparison, the diagnostic accuracy of the ML classifier for
primary headache diagnoses is superior to GPs. According to SHAP values, the ML classifier
relies on the same signs and symptoms as a physician when making a diagnostic prediction.

KEYPOINTS
� Little is known about the diagnostic accuracy of machine learning (ML) in the context of pri-
mary health care, despite its considerable potential to aid in clinical work. This novel research
sheds light on the diagnostic accuracy of ML in a clinical context, as well as the interpret-
ation of its predictions. If the vast potential of ML is to be utilized in primary health care, its
performance, safety, and inner workings need to be understood by clinicians.
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Introduction

On a typical day, general practitioners (GPs) make

multiple decisions when diagnosing and treating

patients. They have limited access to immediate imag-

ing diagnostics and tests and rely more on the

patient’s history and clinical examination than the

second and tertiary stages of healthcare. To establish

a diagnosis, a GP starts with the chief complaint,

makes a hypothesis with a perceptual list of

differential diagnoses, and asks the patient a series of
targeted questions to include or exclude diagnoses.
The GP then performs a clinical examination to con-
firm further or refute diagnoses while deciding if fur-
ther diagnostic tests are needed. When the GP has
reached a diagnostic conclusion, with a reasonable
degree of certainty, he makes the diagnosis. In light of
this description, a part of a GP’s role requires him to
act as a classifier of diseases. Physicians store their rea-
soning process in a free text format, often referred to
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as the clinical text note (CTN), which is a part of a
patient’s electronic health record (EHR). We conjecture
that the CTNs can be used to develop predictive
models for any step in the clinical decision-
making process.

With the increased adoption of EHRs and thus, data
availability, methods based on machine learning (ML)
have become a focus of research in health care. ML
has been shown to be a powerful tool in the medical
diagnostic process with broad future possibilities in
general practice [1]. ML has matched or exceeded
human performance in multiple visual diagnostic tasks,
such as diagnosing diabetic retinopathy from fundo-
scopy images [2,3], diagnosing radiology images [4,5],
diagnosing skin lesions [6,7], and interpreting electro-
cardiograms [8,9]. However, the use and research of
ML in a medical context is still in its early stages [10],
with surveys showing less than 10% of healthcare pro-
viders using ML to assist in daily clinical work in 2019
in Britain [11].

The literature on peer-reviewed studies comparing
the diagnostic accuracy of ML classifiers to GPs is lack-
ing. The aim of this study was to explore the perform-
ance of an ML classifier on a common clinical problem
in general practice. The null hypothesis put forward
was that an ML classifier could not match or outper-
form the diagnostic accuracy of GPs on primary head-
ache diagnoses. Headaches account for up to five
percent [12] of all clinical problems in general practice
(the majority of which are primary headaches) and are
often a tough clinical problem to diagnose correctly.
Primary headache diagnoses are made predominantly
in primary care [12], and since the input data is
extracted from CTNs, written by GPs, we chose GPs as
benchmark. The four most common primary headache
diagnoses were selected: tension-type headache (TTH),
migraine with aura (MAþ), migraine without aura (MA-
), and cluster headache (CH). Interpretability is essen-
tial in medical settings [13], and the results of the
examination of the intricacies of diagnostic ML models
are scarcely published in the medical literature.
Therefore, the impact of each clinical feature to
the model’s predictions was scrutinized with
Shapley Additive Explanations (SHAP), which are
widely used within the field of AI research to interpret
ML models [14].

Materials and methods

We conducted a retrospective study and obtained
15,024 CTNs from 13,682 patient visits to one of 15
clinics of the Primary Health Care of the Capital Area

(PHCCA), the largest provider of primary health care
(PHC) in Iceland. As an inclusion criterion, we selected
every PHC consultation where one of the four head-
ache diagnoses was made, from 1 January 2006 to 30
April 2020. A large portion of the dataset included
CTNs that contained little clinical information. Such
information-scarce notes were filtered out by creating
a medical keyword dictionary, containing the relevant
symptoms a physician asks about when making each
diagnosis. The dictionary contained words that physi-
cians use to describe different headache symptoms in
text format, for example, nausea, phonophobia, vomit-
ing, etc. and was created by manually reading a sub-
sample of the dataset (around 1% for each class) and
selecting the right keywords. The dictionary was then
applied to the whole dataset, filtering out CTNs with-
out the chosen keywords, resembling methodology
used in a similar research study [15]. Simultaneously,
93 duplicate CTNs were removed, leaving us with
2,563 information-rich CTNs, or roughly 17% of the ori-
ginal dataset. These CTNs had an accompanying head-
ache diagnosis that falls into one of the four
headache diagnosis categories mentioned above.

Eight hundred randomly selected CTNs were then
manually annotated by a physician. The annotation
method was inspired by a group of researchers who
applied similar annotations on medical text [15] and
its purpose is to assign binary and numerical values to
clinical features, representing the existence or lack of
specific signs and symptoms in the CTNs, as they are
textually referenced in the CTNs. As an example of
annotation, consider a typical, frequently seen sen-
tence in a CTNs: ‘The patient experienced photopho-
bia but no phonophobia’. The questions, ‘Does the
patient have photophobia?’ and ‘Does the patient
have phonophobia?’ are annotated as two features,
with binary values of 1 and 0. Numerical value fea-
tures were assigned a value in a specific range, for
example, a feature for blood pressure (e.g. with the
value 134/78) or a feature for temperature (e.g. with
the value 37.1 �C). This annotation process was
repeated for every clinical feature referenced in the
800 CTNs. Every sign and symptom were annotated,
including those unrelated to headache diagnoses to
reduce the annotator’s possible bias who, importantly,
was also blind to the diagnoses. Where possible, a fea-
ture was only annotated as positive if the feature was
considered abnormal. To give an example, a question
about tactile sensation in a patient’s lower extremities,
was phrased as ‘Does the patient have signs of
reduced and/or asymmetric tactile sensation in the
lower extremities?’, instead of ‘Does the patient have
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normal and/or symmetric tactile sensation in the lower
extremities?’ Therefore, if a patient had abnormal tact-
ile sensation, the binary value of 1 was assigned, and
0 if it was normal.

The annotation resulted in a dataset of 8,595 ques-
tion-answer pairs (where a clinical feature is the ques-
tion and the corresponding value is the answer),
resulting in 254 different clinical features. This dataset
was randomly split into training, validation, and test
sets. The split was 75% (training), 12.5% (validation),
and 12.5% (test) or 600, 100, and 100 CTNs in each,
respectively. Thereafter, the ML classifier was trained
on the training set, and the impact of each input fea-
ture examined using SHAP values. SHAP values are cal-
culated by knocking out every feature of the input
data, one at a time, and measuring how the predic-
tions of the classifier change. SHAP values approxi-
mate the contribution of each feature to the model
predictions, effectively revealing which features the
ML classifier considers most important when making a
prediction. A randomized grid search was performed
to optimize the hyperparameters of the ML classifier
before training, creating a four-class multi-classifier
(one class for each of the four headache diagnoses) of
type Random Forest. The validation set was used to
further finetune the hyperparameters of the ML classi-
fier. Once training was finished, the classifier’s per-
formance was compared to two groups of physicians:
three GP specialists and three physician trainees in GP.
The comparison was carried out using the test set,
which had been set aside for this purpose, and to pro-
vide an unbiased evaluation of the final model fit on
the training set. The physician validation process was
performed via a custom web interface where the
physicians reviewed the annotated features and their
value for each CTN and subsequently selected one of
the four headache diagnoses they found to be appro-
priate. Thus, the performance comparison was per-
formed on the original diagnoses, to see how the ML
classifier and the physicians compare when given the
same set of information. A 10-fold cross-validation
scheme was used to validate the results and to calcu-
late 95% confidence intervals.

Statistical analysis

The metrics used for the performance assessment
were the following: sensitivity, specificity, Positive
Predictive Value (PPV), Matthews Correlation
Coefficient (MCC), Receiver Operating Characteristics
(ROC) curve, and Area under the ROC curve (AUROC
score). A confusion matrix is a statistical presentation

of the performance of a classifier and consists of four
quadrants. Each quadrant contains a value count for
one of four performance variables: true-positive count
(TP), false-positive count (FP), true-negative count (TN)
and false-negative count (FN). The MCC is a useful
metric for imbalanced datasets since it only produces
a high score if the prediction obtained good results in
all of the four quadrants of the confusion matrix. It
ranges from �1 to 1, where 1 represents a perfect
prediction. The MCC is defined as follows:

MCC ¼ ðTP � TNÞ�ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTPþ FNÞðFNþ FPÞðTNþ FNÞp

We calculated the MCC for each diagnosis as a
dichotomous outcome. We obtained an AUROC score
by plotting the true-positive rate (TPR) against the
false-positive rate (FPR) for each diagnosis at varying
thresholds and calculating the area under the curve.
The ROC curve was plotted for each diagnosis as a
dichotomous outcome. All means are weighted if
not stated otherwise. All data analyses were done
in Python (version 3.6), in which the ML classifier
was trained and validated with the scikit-learn library
(version 0.22.1) [16].

Results

The flow of participants is shown in Figure 1. A total
of 12,368 notes were deemed as information-scarce
and filtered out. 4,913 positive features and 3,682
negative features were annotated for a total of 8,595
features, resulting in 1.33 positive features for every
negative one and 10.74 features in each CTN on aver-
age. Table 1 shows the demographic distribution of
the training, validation and test datasets, which all
have similar demographics and have women as the
majority of patients. Table 2 shows the results and
comparison of the classifier and physicians on the test
set. The classifier outperforms all physicians for all
metrics, except for specificity. The classifier’s lower
specificity for TTH draws its weighted average down
as it achieves equal or higher specificity compared to
the physicians on the other three diagnoses. The clas-
sifier achieves the best performance in the cases of
TTH, MAþ, and CH. It has the lowest performance for
MA- as it, in some cases, struggles to discern between
MA- and TTH.

Figure 2 shows the top-20 most impactful features
by SHAP values for each diagnosis. Figure 2(a) displays
the features with a significant effect on a positive CH
prediction. These features include CH’s autonomic
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symptoms: ptosis, conjunctivitis, lacrimation, runny/
stuffy nose accompanying a unilateral headache
located around a single eye. Myalgia symptoms reduce
CH’s diagnostic likelihood, as does visual disturbance,
often accompanying MAþ. In Figure 2(b), we see that
the two most impactful features of MAþ are pro-
dromal symptoms and visual disturbance, both the
hallmarks of an aura. Unilaterality and photophobia
positively impact a MAþ prediction, but less since MA-
also typically has these features. Aura can present
itself as limb numbness, which also positively affects
the prediction. In some CTNs, only the word aura was
found, without a more detailed description of the
presentation. In the case of MA-, displayed in

Figure 2(c), we see a different SHAP profile than for
MAþ. The classifier uses prodromal symptoms and vis-
ual disturbance to distinguish between MAþ and MA-.
The SHAP profile describes a unilateral headache, with
accompanying nausea, vomiting, photophobia, phono-
phobia, and without symptoms of myalgia. This
description fits well with MA-. Figure 2(d) shows the
SHAP values for TTH, where we see a pattern of
absence of symptoms. Only myalgia symptoms affect
the prediction positively.

Figure 3 shows the ROC curve for the test set
compared to the physicians. The ROC curve plots
the true-positive rate (TPR) against the false-positive
rate (FPR) and the performance of a classifier
increases as the curve moves up and to the left. A
perfect classifier covers the whole plot, achieving an
AUROC score of 1. The mean results of the special-
ists and trainee physicians are located lower and to
the right relative to the plotted line of the ML clas-
sifier on each plot, meaning the physicians achieve
a lower ratio of TPR and FPR than the classifier on
all diagnoses.

Table 1. The demographic comparison of the training, valid-
ation and test set.

Training set Validation set Test set

Total size 600 100 100
Female 434 (72.3%) 65 (65%) 72 (72%)
Mean age (min–max) 34.56 (6–90) 33.53 (8–78) 31.29 (8–77)

Figure 1. The inclusion and filtering process of the CTNs. The clinical features were created by annotating the CTNs, which were
then split into training, validation and test sets.
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Discussion

Statement of principal findings

The ML classifier outperforms the physicians on all
metrics except specificity. The MCC is arguably the
most important metric, being the only one taking all
four quadrants of the confusion matrix into account.
The ROC curves in Figure 3 also shows a superior per-
formance of the ML classifier compared to the physi-
cians mean scores. In some cases, it struggles with
discerning between TTH and MA- and the most prob-
able explanation is that some patients in our dataset
have an episodic TTH (ETTH), which often presents

itself with mixed features of MA- and TTH. Physicians
often misdiagnose these patients as having either a
simple TTH or MA- [17,18], depending on the presen-
tation of their symptoms. Additionally, the case count
of MA- is relatively low. Interestingly, the classifier per-
forms better in the case of CH, despite CH having the
lowest case count. The difference is that CH has more
distinguishing clinical features from the other three
diagnoses, illustrating an important point: ML models
are sensitive to the quality of the input data. If the
training data contains errors and biases, the models
learned will be erroneous and biased in the same
manner. However, ML methods allow us to review the
training data and correct for biases and diagnostic
errors [19], which is impossible to do for physicians.
As the quality of the training data increases, so will
the performance of the ML models.

The SHAP profile for each diagnosis fits well with
the symptoms and signs a physician would need to
evaluate when suspecting these diagnoses. The SHAP
profile of CH and the migraine diagnoses show fea-
tures that affect the model positively, while in the
case of TTH, the absence of symptoms is the main
theme which fits well with the ill-defined clinical motif
of TTH [17].

Strengths and weaknesses of the study

Our study benefits from a large dataset and bench-
marking against GPs, which is essential when validat-
ing clinical prediction models. The selection of a few
diagnoses strengthens and limits the study, as the
results are easier to interpret but lack a broader diag-
nostic application. The small sample size of non-TTH
diagnoses, and the fact that the diagnoses are
obtained from a single physician when training the
ML classifier, poses a limitation. In future studies, it
would be optimal to have multiple physicians agree-
ing on the diagnoses. Another limitation is that many
physicians store only a part of their reasoning process
in the CTNs. To counter this, roughly 84% of the CTNs
were filtered out, leaving only information-rich CTNs
before splitting the dataset into training, validation
and test sets. A large dataset also reduces the effect
of this limitation, since it is unlikely that all physicians
leave out the exact same symptoms. However, the fil-
tering does introduce a bias toward more complex
clinical cases being included. A prospective study is
needed to elucidate these limitations further. Since
unmentioned clinical features were assigned a binary
value of 0, and as physicians are more likely to register
positive symptoms than negative, a clinical feature

Table 2. The performance metrics for the classifier and physi-
cians on the test set.

ML classifier

Sensitivity Specificity PPV MCC

Cluster headache 0.83 1.00 1.00 0.91
Migraine with aura 0.92 0.99 0.92 0.90
Migraine without aura 0.67 0.99 0.86 0.73
Tension headache 0.99 0.85 0.95 0.87
Weighted average 0.95 0.88 0.94 0.86

GP Specialist 1

Cluster headache 0.83 1.00 1.00 0.91
Migraine with aura 0.92 0.95 0.73 0.79
Migraine without aura 0.80 0.92 0.53 0.61
Tension headache 0.89 0.96 0.98 0.79
Weighted average 0.88 0.95 0.88 0.77

GP Specialist 2

Cluster headache 0.67 1.00 1.00 0.81
Migraine with aura 0.58 0.96 0.70 0.59
Migraine without aura 0.90 0.87 0.45 0.58
Tension headache 0.90 0.95 0.98 0.79
Weighted average 0.86 0.94 0.85 0.73

GP Specialist 3

Cluster headache 0.83 1.00 1.00 0.91
Migraine with aura 0.67 0.99 0.89 0.74
Migraine without aura 0.50 0.95 0.56 0.48
Tension headache 0.97 0.72 0.91 0.75
Weighted average 0.90 0.78 0.88 0.73

GP Trainee 1

Cluster headache 0.83 1.00 1.00 0.91
Migraine with aura 0.92 0.99 0.92 0.90
Migraine without aura 0.70 0.93 0.54 0.56
Tension headache 0.93 0.88 0.96 0.80
Weighted average 0.89 0.91 0.90 0.78

GP Trainee 2

Cluster headache 0.83 0.95 0.56 0.65
Migraine with aura 0.42 0.99 0.83 0.55
Migraine without aura 0.80 0.79 0.31 0.41
Tension headache 0.81 0.95 0.98 0.64
Weighted average 0.78 0.91 0.76 0.58

GP Trainee 3

Cluster headache 0.83 0.98 0.71 0.75
Migraine with aura 0.50 0.99 0.86 0.62
Migraine without aura 0.70 0.90 0.44 0.49
Tension headache 0.94 0.90 0.97 0.82
Weighted average 0.87 0.91 0.86 0.75

PPV stands for Positive Predictive Value and MCC for Matthews
Correlation Coefficient.
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was only annotated as positive if it was considered
abnormal, as mentioned before. The ML classifier was
also trained with missing features marked specifically
but the results were the same. Again, a prospective
study could explore this possible limitation further.
The annotation process also limits the study with a
single GP-trainee annotating the dataset as resources
did not allow for additional annotators. Having GPs

auditing random subsamples of annotations would
have increased the quality of the annotations.

Findings in relation to other studies

We did not find any peer-reviewed papers on the
evaluation of diagnostic ML classifiers in PHC settings
in the literature, highlighting the importance of further

Figure 2. (a) Shapley Additive Explanations (SHAP) for the most impactful input features for a CH prediction. Each feature’s name
is on the left. The dots’ color represents the feature’s value, where blue color is lower than red. A blue dot means that a feature
was negative in a single CTN, that is, it was not present. Red means the opposite. On the X-axis, the impact on the prediction is
plotted, where higher score leads to increased probability of outputting a positive prediction.
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research. Studies examining online symptom checkers
(OSC) are the nearest comparison, as an ML classifier,
as described above, would be implemented similarly.
An audit study evaluated 23 symptom checkers across
770 standardized patient evaluations [20], reporting a

significant variance in the OSCs’ diagnostic perform-
ance, which was not close to matching the diagnostic
performance of human physicians. Babylon Health, a
PHC provider in Great Britain, has developed an OSC
and reported comparable diagnostic accuracy to

Figure 2. (b) Shapley Additive Explanations (SHAP) for the most impactful input features for an MAþprediction. Each feature’s
name is on the left. The dots’ color represents the feature’s value, where blue color is lower than red. A blue dot means that a
feature was negative in a single CTN, that is, it was not present. Red means the opposite. On the X-axis, the impact on the pre-
diction is plotted, where higher score leads to increased probability of outputting a positive prediction.
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human physicians in a non-peer-reviewed paper [21].
The difference in the architecture of different OSCs
complicates comparison, with many not disclosing
their inner workings and research has shown that the
design of computerized diagnostic system can have
significant impact on their effectiveness [22].

Meaning of the study

This research is a step toward developing accurate,
safe, and interpretable ML classifiers that can posi-
tively impact PHC in multiple ways. The interpretabil-
ity of clinical AI models is of essence, if clinicians are
to integrate AI solutions into their workflow. If the

Figure 2. (c) Shapley Additive Explanations (SHAP) for the most impactful input features for an MA- prediction. Each feature’s
name is on the left. The dots’ color represents the feature’s value, where blue color is lower than red. A blue dot means that a
feature was negative in a single CTN, that is, it was not present. Red means the opposite. On the X-axis, the impact on the pre-
diction is plotted, where higher score leads to increased probability of outputting a positive prediction.
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results are generalizable, any arbitrary clinical predic-
tion model could be developed, implemented as an
online service. Such a service could potentially allow
for pre-screening of patients, enable self-care and

lead to a more correct use of the health care system,
that is, patients using expensive emergency services
less, and managing self-isolating symptoms at
home [23,24].

Figure 2. (d) Shapley Additive Explanations (SHAP) for the most impactful input features for a TTH prediction. Each feature’s
name is on the left. The dots’ color represents the feature’s value, where blue color is lower than red. A blue dot means that a
feature was negative in a single CTN, that is, it was not present. Red means the opposite. On the X-axis, the impact on the pre-
diction is plotted, where higher score leads to increased probability of outputting a positive prediction.

456 S. ELLERTSSON ET AL.



Acknowledgements

The authors would like to thank Dr. Hordur Bjornsson and
Dr. Gudmundur Haukur Jorgenssen, PhD, for contributing to
the research.

Ethical approval

Authorization for this study was given by The National
Bioethics Committee in Iceland in October 2019 (reference
number VSN-19-153).

Disclosure statement

No potential conflict of interest was reported by
the author(s).

Funding

This research was funded by the Scientific fund of the
Icelandic College of General Practice.

References

[1] Buch VH, Ahmed I, Maruthappu M. Artificial intelli-
gence in medicine: current trends and future possibil-
ities. Br J Gen Pract. 2018;68(668):143–144.

[2] Gulshan V, Peng L, Coram M, et al. Development and
validation of a deep learning algorithm for detection
of diabetic retinopathy in retinal fundus photographs.
JAMA. 2016;316(22):2402–2410.

[3] Kermany DS, Goldbaum M, Cai W, et al. Identifying
medical diagnoses and treatable diseases by image-
based deep learning. Cell. 2018;172(5):1122–1131.e9.

[4] Cheng J-Z, Ni D, Chou Y-H, et al. Computer-Aided
diagnosis with deep learning architecture: applica-
tions to breast lesions in US images and pulmonary
nodules in CT scans. Sci Rep. 2016;6:24454.

[5] Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end
lung cancer screening with three-dimensional deep
learning on low-dose chest computed tomography.
Nat Med. 2019;25(6):954–961.

[6] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-
level classification of skin cancer with deep neural
networks. Nature. 2017;542(7639):115–118.

Figure 3. The ROC curve for the ML classifier, plotted for each diagnosis on the test set. The AUROC score is a measure of classi-
fier performance with a maximum value of 1. It is calculated as the area under the ROC curve. The performance of each physician
is plotted, as is the mean performance of the trainee physicians and specialists.

SCANDINAVIAN JOURNAL OF PRIMARY HEALTH CARE 457



[7] Liu Y, Jain A, Eng C, et al. A deep learning system for
differential diagnosis of skin diseases. Nat Med. 2020;
26(6):900–908.

[8] Ribeiro AH, Ribeiro MH, Paix~ao GMM, et al. Automatic
diagnosis of the 12-lead ECG using a deep neural net-
work. Nat Commun. 2020;11(1):1760.

[9] Raghunath S, Ulloa Cerna AE, Jing L, et al. Prediction
of mortality from 12-lead electrocardiogram voltage
data using a deep neural network. Nat Med. 2020;
26(6):886–891.

[10] Kueper JK, Terry AL, Zwarenstein M, et al. Artificial
intelligence and primary care research: a scoping
review. Ann Fam Med. 2020;18(3):250–258.

[11] Mistry P. Artificial intelligence in primary care. Br J
Gen Pract. 2019;69(686):422–423.

[12] Frese T, Druckrey H, Sandholzer H. Headache in gen-
eral practice: Frequency, management, and results of
encounter. Biondi-Zoccai G, editor. Int Sch Res
Notices. 2014;2014:169428.

[13] Price WN. Big data and black-box medical algorithms.
Sci Transl Med. 2018;10(471) :1-5

[14] Lundberg S, Lee S-I. A unified approach to interpret-
ing model predictions. arXiv. 2017:170507874. https://
arxiv.org/abs/1705.07874

[15] Liang H, Tsui BY, Ni H, et al. Evaluation and accurate
diagnoses of pediatric diseases using artificial intelli-
gence. Nat Med. 2019;25(3):433–438.

[16] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-
learn: machine learning in python. J Mach Learn Res.
2011;12:2825–2830.

[17] Fumal A, Schoenen J. Tension-type headache: current
research and clinical management. Lancet Neurol.
2008;7(1):70–83.

[18] Kaniecki RG. Migraine and tension-type headache: an
assessment of challenges in diagnosis. Neurology.
2002;58(9 Suppl 6):S15–S20.

[19] Singh H, Schiff GD, Graber ML, et al. The global bur-
den of diagnostic errors in primary care. BMJ Qual
Saf. 2017;26(6):484–494.

[20] Semigran HL, Linder JA, Gidengil C, et al. Evaluation
of symptom checkers for self diagnosis and triage:
audit study. BMJ. 2015;351:h3480.

[21] Razzaki S, Baker A, Perov Y, et al. A comparative study
of artificial intelligence and human doctors for the
purpose of triage and diagnosis [Internet]. Available
from: https://www.researchgate.net/publication/
326056790_A_comparative_study_of_artificial_intelli-
gence_and_human_doctors_for_the_purpose_of_tri-
age_and_diagnosis.

[22] Van de Velde S, Heselmans A, Delvaux N, et al. A sys-
tematic review of trials evaluating success factors of
interventions with computerised clinical decision sup-
port. Implement Sci. 2018;13(1):114.

[23] Madan A et al. Webgp: the virtual general practice –
PDF free download [Internet]; 2021 [cited 2021 Jan
30]. Available from: https://docplayer.net/2513124-
Webgp-the-virtual-general-practice.html.

[24] Middleton K, Butt M, Hammerla N, et al. Sorting out
symptoms: design and evaluation of the ‘babylon
check’ automated triage system. ArXiv160602041 Cs.
2016. https://arxiv.org/abs/1606.02041

458 S. ELLERTSSON ET AL.

https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://www.researchgate.net/publication/326056790_A_comparative_study_of_artificial_intelligence_and_human_doctors_for_the_purpose_of_triage_and_diagnosis
https://www.researchgate.net/publication/326056790_A_comparative_study_of_artificial_intelligence_and_human_doctors_for_the_purpose_of_triage_and_diagnosis
https://www.researchgate.net/publication/326056790_A_comparative_study_of_artificial_intelligence_and_human_doctors_for_the_purpose_of_triage_and_diagnosis
https://www.researchgate.net/publication/326056790_A_comparative_study_of_artificial_intelligence_and_human_doctors_for_the_purpose_of_triage_and_diagnosis
https://docplayer.net/2513124-Webgp-the-virtual-general-practice.html
https://docplayer.net/2513124-Webgp-the-virtual-general-practice.html
https://arxiv.org/abs/1606.02041

	Abstract
	Introduction
	Materials and methods
	Statistical analysis

	Results
	Discussion
	Statement of principal findings
	Strengths and weaknesses of the study
	Findings in relation to other studies
	Meaning of the study

	Acknowledgements
	Ethical approval
	Disclosure statement
	Funding
	References


