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The legacy of the use and misuse of antibiotics in recent decades has left us

with a global public health crisis: antibiotic-resistant bacteria are on the

rise, making it harder to treat infections. At the same time, evolution of

antibiotic resistance is probably the best-documented case of contemporary

evolution. To date, research on antibiotic resistance has largely ignored the

complexity of interactions that bacteria engage in. However, in natural

populations, bacteria interact with other species; for example, competition

and grazing are import interactions influencing bacterial population

dynamics. Furthermore, antibiotic leakage to natural environments can

radically alter bacterial communities. Overall, we argue that eco-evolution-

ary feedback loops in microbial communities can be modified by residual

antibiotics and evolution of antibiotic resistance. The aim of this review is

to connect some of the well-established key concepts in evolutionary

biology and recent advances in the study of eco-evolutionary dynamics

to research on antibiotic resistance. We also identify some key knowledge

gaps related to eco-evolutionary dynamics of antibiotic resistance, and

review some of the recent technical advantages in molecular microbiology

that offer new opportunities for tackling these questions. Finally, we argue

that using the full potential of evolutionary theory and active communi-

cation across the different fields is needed for solving this global crisis

more efficiently.

This article is part of the themed issue ‘Human influences on evolution,

and the ecological and societal consequences’.
1. Introduction
Human medicine and food production are heavily reliant on the effective use of

antibiotics. The rise of antimicrobial resistance in human and animal pathogens

poses a serious threat to human health and food production, respectively, as

traditionally employed antibiotics are becoming ineffective in the face of rapidly

evolving bacteria populations [1]. The increased problem of antimicrobial-

resistant bacteria is linked to the introduction of antibiotics to clinical or farming

use, and treating human/animal pathogens with antibiotics is expected to

directly affect the frequency of resistance to those antibiotics in these pathogens

[2–5]. Indeed, the evolution of antibiotic resistance is probably the best-

documented case of contemporary evolution in action (see also [6] for other

examples). Antibiotic resistance is currently considered a major threat to

human health globally [7], but very little is known about what are the ecological

and evolutionary consequences of human use of antibiotics in the wild. This is

non-trivial given that spillover of antibiotic use to natural and semi-natural

environments may have profound implications on the distribution of antibiotic

resistance genes in natural populations. As such, natural bacteria populations

may serve as environmental reservoirs of resistance determinants, but how

resistance evolves, and how resistance genes are maintained and dispersed in

the wild is poorly understood. Unravelling these mechanisms will be critical
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for predicting emerging resistant pathogens as we can expect

the existence of continuous feedback loops from clinical

and farming environments to nature and back [8]. Under-

standing the drivers of these dynamics may prove critical

for preventing and treating the antibiotic resistance problem.

Bacteria are prevalent across all habitats, with the total

number of bacterial species estimated to exceed one million

[9]. However, only some 10–20 species of bacteria are

currently known to be specialist human pathogens, while

several hundred bacteria species are considered opportunistic

pathogens that may cause human disease in certain con-

ditions [10]. Many of the bacteria associated with humans

(pathogenic, mutualists or commensals) also have other

hosts, including a wide variety of livestock and wildlife

species, or they can be found in the wider environment

(sapronotic) or both. Escherichia coli is an obvious example

of such a species [10,11]. Solving the problem of antimicrobial

resistance in a single environment, such as in the clinic, will

prove ineffective given that in bacteria, mobile genetic

elements (MGEs) and the drugs themselves move among

human, animal and environmental compartments [12].

Although anthropogenic activity has been shown to increase

the antibiotic resistance gene abundance in the environment

[13], even in the pre-antibiotic era bacteria in natural habitats

have harboured antibiotic resistance genes independently of

human activities [14–17]. Hence, the determinants of anti-

biotic resistance exist naturally [18], and an understanding

of the eco-evolutionary dynamics of antibiotic resistance in

natural communities is required for tackling the problem

from a human health and food production perspective.

The emergence and spread of antimicrobial resistance has

become an active area of research in recent years [19].

Considerable advances have been made in understanding

the mechanisms by which variable levels of antibiotics influ-

ence bacteria, and the mechanisms by which antibiotic

resistance evolves and spreads in bacterial populations (as

reviewed in [20,21], respectively). The key aim of this

review is to connect some of the well-established key

concepts in evolutionary biology and recent advances in the

study of eco-evolutionary dynamics to research on antibiotic

resistance (figure 1). We use this framework to highlight how

important the community context—e.g. competition and

grazing—that bacteria in natural populations are embedded

in, may be for how antibiotic resistance evolves and spreads

(figure 2). We further discuss how antibiotic leakage to natu-

ral environments can radically alter bacterial communities,

thereby potentially altering eco-evolutionary feedback loops

in microbial communities. We will identify major gaps in

our knowledge regarding these processes and pinpoint

future perspectives so that we can move towards a predictive

framework in the eco-evolutionary study of antibiotic resist-

ance. We will also briefly describe the recent major

advances in technology that are bringing us closer to this aim.
2. An eco-evolutionary perspective of antibiotic
resistance: key concepts and terminology

Antibiotic resistance is a global health crisis with multiple

dimensions. Generating effective solutions to this crisis

requires active collaboration and communication among

scientists representing different disciplines. Unifying the

language that we use and having a clearly defined terminology
among physicians, microbiologists, evolutionary biologists

and environmental scientists—among others—is a necessity

so that we can proceed in solving the problem of antibiotic

resistance in the most efficient manner. Below we describe

some of the key terminology we use, and advocate their use

as defined here across disciplines.

(a) Using the term evolution in the context of antibiotic
resistance

Although the increase in resistance of human pathogens to

antimicrobial agents is one of the best-documented examples

of contemporary evolution in action, the actual word ‘evol-

ution’ is rarely used in the papers describing this research

[22]. As demonstrated by Antonovics et al. [22], the word

‘evolution’ is used with different frequency by evolutionary

biologists versus researchers in the medical fields. More

often antimicrobial resistance is described to ‘emerge’,

‘arise’ or ‘spread’ rather than ‘evolve’. The ambiguous use

of terminology creates points of confusion that may simply

reflect differences in traditions among fields. However, it

may be that ‘evolution’ is considered to be a rather non-

specific term meaning ‘gradual change,’ and that ‘emergence’

more precisely incorporates the key components of the evol-

utionary process, namely, mutation, recombination and/or

horizontal transfer of resistance. It is also possible that the

failure to use the word ‘evolution’ reflects the flawed idea

that evolutionary processes are long past, slow and undetect-

able. This is worrying as it may have a direct impact on how

the public perceives the importance of evolutionary processes

in our everyday lives [22]. To avoid further confusion and to

promote concise dialogue both within the scientific commu-

nity, and between researchers and the general public, we

argue that researchers across disciplines should adopt the

term ‘evolution’ when describing the evolution of antibiotic

resistance in bacteria.

(b) Eco-evolutionary dynamics
The potential for eco-evolutionary feedback loops in deter-

mining the interaction between ecological and evolutionary

dynamics has been increasingly recognized in recent years

[23–27]. While the potential of species to adapt to ecological

conditions has long been realized, the effect of rapid evol-

utionary change on ecological dynamics is still poorly

understood. In part, this is due to the fact that traditionally

evolution has been viewed as a slow process operating at a

timescale that is very different from ecological time [28].

From such a perspective, ecological dynamics would play

out as if evolution was not occurring, as evolutionary

change would be non-significant on the ecological time-

scale. Likewise, short-term fluctuations in ecological variables

would average out over evolutionary timescales, and only the

long-term average would affect evolution [29]. However, it is

becoming increasingly clear that evolutionary change can be

extremely rapid, in the case of horizontal gene transfer (HGT)

practically instantaneous, and there are compelling examples

of this in a diversity of traits ranging from life histories to

behaviour and physiology [30]. Moreover, a rapidly increas-

ing number of studies suggest that eco-evolutionary

dynamics and feedbacks have the potential to play a promi-

nent role in the dynamics of populations and in species

interactions [25,31]. Hence, as we discuss below, adapting
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Figure 1. Schematic of eco-evolutionary feedback loop and role of sub-MIC (minimal inhibiting concentration) antibiotics directly on bacteria and indirectly on
trophic interactions. (Online version in colour.)
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an eco-evolutionary framework for the study of antibiotic

resistance offers tremendous potential for increasing our

understanding of the rapid evolution we have witnessed in

bacterial populations in antibiotic resistance.
(c) Horizontal gene transfer is a key mechanism for the
evolution of antibiotic resistance

HGT is the process where bacterial cells can exchange genetic

material. Antibiotic resistance genes are often carried on

MGEs (plasmids, transposons or integrons) that act as vectors

transferring genetic information between bacteria and even

between species boundaries. Three main mechanisms for

HGT are conjugation, transformation and transduction. In

conjugation, DNA is transferred in cell contact. Transformation
does not require cell-to-cell contact but short fragments of

naked DNA are taken up by naturally transformable bacteria.

Transduction involves transfer of DNA via bacteriophages.

Essentially, these mechanisms allow extremely rapid evol-

ution since with HGT bacteria can change their genetic

make-up practically instantly regarding a trait that has dra-

matic effect on fitness in the presence of antibiotics. While

HGT is the main mechanism by which bacteria acquire anti-

biotic resistance, another key mechanism is chromosomal

mutations. The main difference between these mechanisms

is how fast resistance adaptation occurs in bacteria.
(d) Sub-inhibitory antibiotic concentrations
Most often the aim of antibiotic usage is to kill the bacteria by

using high enough concentrations of the given antibiotic. The

key concept here is the minimal inhibiting concentration

(MIC), which is the concentration that inhibits visible
bacterial growth [32]. However, massive use of antibiotics

has created antibiotic gradients where lower than inhibiting

concentrations can also be observed in natural habitats.

Even though under these concentrations the bacterial popu-

lation does not go extinct, they can have important effects

on bacteria (see [20] for a comprehensive review on the

topic). These sub-MICs have been suggested, for example,

to select for resistance, increase the bacterial mutation rates,

increase phenotypic and genotypic variability and affect bio-

film formation, to name but a few. In addition, importantly,

sub-MICs promote the maintenance of horizontally trans-

mitted resistance genes [20]. Finally, these sub-MICs can be

especially important in the multispecies communities where

even small changes in species interaction can have cascading

community-level effects.
(e) Anthropogenic antibiotic use creates selection
for resistance in the environment

The correlation of therapeutic antibiotic use and antibiotic

resistance level in human populations is well documented

[33,34]. Although in both humans and animals, the first

target of selection on antibiotic resistance is inside the body,

anthropogenic activity results in elevated concentrations of

antibiotics in the environment as well because (i) most of

the antibiotic compound used is excreted from the body

[35]; (ii) the animal feed containing the antibiotic is not all

eaten; and (iii) there is considerable spillover from the anti-

biotic production industry [36]. Excreted antibiotics can end

up in wastewater treatment plants which are capable of

degrading the compound only partially [37]. At the same

time, wastewater treatment plants are possible hotspots of

HGT between bacterial species since bacteria coming from
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different environments are in close contact [38]. Antibiotics

from aquaculture end up directly in the aqueous environment

either from uneaten feed or via excretion. Antibiotics used in

livestock end up in the environment from the manure.

Anthropogenic activity clearly results in the situation where

antibiotic compounds are present practically everywhere in

varying concentrations and in some compartments of the

environment antibiotic concentrations can even reach thera-

peutic levels [36]. However, even sub-MICs can select for

antibiotic resistance [20], and hence the effect of large-scale

antibiotic use has created an environment where selection

pressure for antibiotic resistance is widespread. Moreover,

antibiotic resistance genes spreading by HGT can be selected

upon not only by antibiotics but also by, for example, metals

or biocides since one mobile genetic element usually contains

multiple resistance genes [21]. Indeed, the co-selection or

co-selection potential of antibiotic resistance genes with

metals [39] and biocides [40] has been verified.

The problem of human-mediated selection for antibiotic

resistance in the environment can go well beyond the threats to

human health and food production. Antibiotic use shapes the

microbial community associated not only with humans and

human-linked animals but in the environment by enrichment

of antibiotic-resistant bacteria at the expense of antibiotic-

sensitive bacteria. The possible effects of this large-scale event

for the processes driven by microbes are yet to be seen.
3. Knowledge gaps and future directions
In this section, we outline how an understanding of eco-

evolutionary dynamics could help in tackling the problem of

antibiotic resistance and what are the key gaps in knowledge

related to this.

(a) Evolutionary response to antibiotic selection in
natural environments

The essence of the antibiotic resistance problem is that bac-

terial populations react to selection pressures caused by

antibiotics by evolving resistance against antibiotics. This

phenomenon is well documented in the case of high, thera-

peutic antibiotic concentrations, and several studies have

also demonstrated how resistance evolves in the presence of

sub-MICs [41,42]. The evolutionary responses are expected
to differ, depending on whether bacteria are exposed to

high (more than MIC) or low (less than MIC) antibiotic con-

centrations. Under high antibiotic concentrations, the

antibiotic resistance gene must already be present in the

population or the evolution of resistance must be very

rapid so that the population can survive via changes in gen-

otype frequencies (susceptible die and resistant take over).

Hitting hard with high antibiotic concentrations has been

the commonly used practice when treating infections.

However, from the point of view of evolutionary theory,

the use of extreme force generates a selection scenario that

may be driving the most feared outcome, i.e. the emergence

of those pathogens that are not responsive to existing

drugs. Indeed, recently Day & Read [43] have argued that

nothing in evolutionary theory supports this as a good rule

of thumb. Instead, by taking a modelling approach, they

show that the only generality is to either use the highest tol-

erable drug dose or the lowest clinically effective dose; that is,

one of the two extremes of the therapeutic window. In the

case of selection under sub-MIC, bacteria have time to

evolve de novo mutations or acquire resistance by other

means (HGT). Under sub-MICs, the key factor determining

if the resistant type increases in frequency is the cost of resist-

ance [44]. It has been demonstrated that positive selection can

occur under extremely low antibiotic concentrations. For

example, it has been experimentally demonstrated that sub-

MICs that are at the scale of a few per cent of the MIC can

favour resistant genotypes [45].

Overall, in natural environments sub-MIC antibiotics are

one probable reason for enrichment of antibiotic-resistant

bacteria even when the concentrations are extremely low. In

addition, in the environment, there may be sub-MICs of

different antibiotics which can cause synergistic selection

pressures. However, to date, the empirical evidence for how

MICs of antibiotics act as a selective agent in natural bacterial

communities is still restricted. Obtaining reliable estimates

can be challenging, since, for example, antibiotic concen-

trations in soil can be very patchily distributed and bulk

estimates do not provide a comprehensive picture. We, how-

ever, argue that there is a pressing need for studies that

combine sampling (while taking the spatial scale into account)

and surveys of antibiotic concentrations and resistance genes

in natural environments with controlled experiments using

realistic levels of antibiotics to mimic selection pressures that

bacterial communities are faced with in nature.

(b) Antibiotic-resistant bacteria are part of ecological
communities

In natural settings, bacteria harbouring antibiotic resistance

genes are part of complex communities where they interact

with other species. However, at the moment, we are largely

missing a population-level perspective on what processes con-

strain and drive antibiotic resistance in species-rich

communities when complex species interactions are present.

For example, in the case of spread of antibiotic resistance

genes via HGT, microbial communities can be seen as gene-

sharing networks where species composition and diversity

can be a major factor determining how resistance genes

spread [46]. In the case of species diversity, some recent studies

suggest that certain species are pivotal hub-species, which pro-

mote the spread of antibiotic resistance genes, indicating that

species composition can be critical [47,48]. Understanding
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these factors can be vital since a key unanswered question con-

cerning the antibiotic resistance problem is how resistance

genes are maintained in natural populations even though

they are proposed to be costly to carry [49].

In addition to bacteria interacting with other bacteria, key

interactions in microbial communities are those between bac-

teria and their natural enemies such as protozoan predators

and the interactions between bacteria and their viral parasites

(bacteriophages). For example, in natural microbial commu-

nities, protozoans form the most abundant and diverse

group of predators feeding on bacteria. The most pronounced

effect of protozoan predators and phage parasites is the mor-

tality that they cause in bacterial populations. There is some

experimental evidence demonstrating that protozoan preda-

tion, phage parasitism and maintenance of antibiotic

resistance genes can be linked. One study shows that the plas-

mid was better maintained when the protist predator was

present [50], while another experimental study shows that

the presence of phage limits the existence conditions of the

conjugative plasmid [51]. Although the empirical evidence

is currently limited, these findings highlight the need for

understanding the potentially critical links between species

interactions and HGT. Overall, one critical knowledge gap

is that a community perspective that accounts for species

interactions might be needed to better understand the

spread of resistance genes between species and ultimately

the whole antibiotic resistance problem. For some time, it

has been known that ecological interactions can be altered

by rapid evolution (e.g. [24]). Rapid evolution in species

interactions readily happens in bacterial populations, facili-

tated by large population sizes and rapid generation times

(e.g. [52–54]). In addition, ecological and evolutionary pro-

cesses are occurring at the same timescale and several

empirical examples have demonstrated eco-evolutionary

feedbacks in bacteria communities, e.g. with protozoan and

phage consumers (e.g. [55–57]). While these simultaneous

ecological and evolutionary processes take place, bacteria

might also evolve antibiotic resistance or carry costly resist-

ance genes. There is evidence showing that plasmid

carriage can hinder phage resistance evolution in bacteria

[51]. Furthermore, Andersson & Hughes [49] propose that

the cost of resistance, when antibiotics are not present any-

more, might be so small that resistant genotypes are

outcompeted very slowly since the fitness difference between

resistant and susceptible types is very small. Furthermore, the

sometimes uncontrolled and extensive use of antibiotics has

resulted in sub-MIC antibiotic concentrations. It is feasible to

assume that these environmental concentrations of antibiotics

can alter the functioning of the microbial communities,

both on ecological and evolutionary levels [58]. Any direct evi-

dence, or even theoretical or conceptual work, on connections

between sub-MICs and eco-evolutionary feedbacks is still

missing. This information would, however, most probably

be critical in understanding how antibiotic resistance spreads

in natural bacterial communities.
(c) Molecular analysis tools enable studying eco-
evolutionary dynamics of antibiotic resistance in the
wild

Development of molecular techniques has been crucial for

increasing our understanding of the evolution of antibiotic
resistance in microbial communities. Importantly, they are

not subject to the culture bias caused by the fact that only a

small minority of bacterial species can be cultivated with

the current methodology [59]. Metagenomic analysis based

on high-throughput DNA sequencing is essential for under-

standing the eco-evolutionary dynamics of antibiotic

resistance in a community context [60]. Long-read sequen-

cing technologies such as PacBio RS [61] and Oxford

Nanopore MinION [62] are important as they facilitate the

assembly of long contigs thereby facilitating identifying geno-

mic areas under selection. Quantitative PCR is also a useful

tool for quantifying antibiotic resistance genes. Array-qPCR

is an especially efficient method for estimating the presence

and amount of antibiotic resistance genes in different

environments [63,64]. Sequencing of genomes of single cells

[65] enables a detailed genetic analysis of the microbial cell

without culturing and is therefore a vital method for studying

evolution of antibiotic resistance in natural communities.

With the recently described epicPCR method [66], it is now

possible to connect a gene with its host at a single-cell resol-

ution for gene–host analysis making it a very useful tool in

studying the genetics of antibiotic resistance dynamics. Over-

all, single-cell techniques can become extremely useful if they

are developed in the direction where several traits can be sim-

ultaneously monitored, potentially providing information

about community composition and trait evolution (e.g. in

species interaction in addition to antibiotic resistance) in a

high-throughput manner.
4. Conclusion
A large amount of research has been conducted to better

understand the emergence of antibiotic resistance, which is

recognized as a serious and global problem. However, most

of the research has not taken species interactions into account

although in natural populations bacteria are embedded in

species communities characterized by diverse interactions.

Also, antibiotic leakage to natural environments has the

potential to radically alter resistance evolution and microbial

community dynamics and structure. With this review, we

want to (i) highlight the potential importance of species inter-

actions in the evolution of antibiotic resistance; (ii) discuss

how low environmental antibiotic concentrations could

affect the evolution of antibiotic resistance and indirectly

trophic interactions; and (iii) unify some of the key terminol-

ogy between evolutionary biologists and researchers in

biomedical fields working on antibiotic resistance problem.

Establishing direct links between the fundamental axes of

eco-evolutionary dynamics and species interactions offers

an exciting future venue of research and is needed to tackle

the problem of antibiotic resistance.
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