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Abstract

Measurements of energy balance components (energy intake, energy expenditure,

changes in energy stores) are often plagued with measurement error. Doubly-labeled water

can measure energy intake (EI) with negligible error, but is expensive and cumbersome. An

alternative approach that is gaining popularity is to use the energy balance principle, by

measuring energy expenditure (EE) and change in energy stores (ES) and then back-

calculate EI. Gold standard methods for EE and ES exist and are known to give accurate

measurements, albeit at a high cost. We propose a joint statistical model to assess the mea-

surement error in cheaper, non-intrusive measures of EE and ES. We let the unknown true

EE and ES for individuals be latent variables, and model them using a bivariate distribution.

We try both a bivariate Normal as well as a Dirichlet Process Mixture Model, and compare

the results via simulation. Our approach, is the first to account for the dependencies that

exist in individuals’ daily EE and ES. We employ semiparametric regression with free knot

splines for measurements with error, and linear components for error free covariates. We

adopt a Bayesian approach to estimation and inference and use Reversible Jump Markov

Chain Monte Carlo to generate draws from the posterior distribution. Based on the semipar-

ameteric regression, we develop a calibration equation that adjusts a cheaper, less reliable

estimate, closer to the true value. Along with this calibrated value, our method also gives

credible intervals to assess uncertainty. A simulation study shows our calibration helps pro-

duce a more accurate estimate. Our approach compares favorably in terms of prediction to

other commonly used models.

Introduction

Obesity is perhaps the most serious public health problem of the 21st century, given the preva-

lence, global reach, and widespread health, economic, and social consequences. While the

weight gain and lost is most certainly a complex interplay of a large number of factors across a

variety of domains [1], ultimately a chronic energy surplus or deficit (energy intake versus

energy expenditure) determines body weight change [2–6]. However, accurately measuring

energy balance in free-living individuals is challenging, even in small studies. Yet to design
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effective public health policies and interventions, it would be valuable to be able to assess

energy balance in nationwide surveys such as National Health and Nutrition Examination

Survey (NHANES). Clearly, instruments such as doubly labeled water (DLW) and dual-energy

X-ray absorptiometry (DXA) are too costly and burdensome to administer in large groups.

Alternatively, consumer devices designed to measure physical activity and body composition

are generally affordable, easy to use, and popular (an estimated 45 million will be sold in 2017),

[7] but have varying levels of validity and reliability [8–10].

Within the past decade mathematical models have been formulated based on the principles

of the first law of thermodynamics (rate of energy storage = rate of energy intake—rate of

energy expenditure) [11]. Developed with multiple datasets containing gold-standard mea-

sures of energy expenditure, energy intake, and changes in energy storage (e.g. body composi-

tion using a two-compartment model of fat mass and fat-free mass) during periods of

overfeeding [12] or caloric restriction [13], researchers have developed and refined a model

based on the energy balance principle [14–16]. The result is a simple, easy-to-use equation that

offers great promise in the quest for estimating energy intake using objectively measured

methods. We have recently used these energy balance equations to compare estimates of

energy intake obtained through gold-standard methods (DLW) and arm-based activity moni-

tors (Sensewear Armband, BodyMedia Inc. Pittsburgh, PA) [17]. We observed very low group

error in the estimates of energy expenditure and equation-derived energy intake using both

the DLW and armband, indicating equivalency between the measures. However, the individ-

ual error for equation-derived energy intake and expenditure was quite large, likely due to

large individual measurement error.

Therefore, a question of interest is whether measurements of energy balance obtained from

self-report instruments or even from objective measuring tools such as the Sensewear Arm-

band or other consumer devices, which are much less costly to apply, and can be calibrated to

correct for measurement error. We explore the association between measurements obtained

from accurate instruments and those obtained from noisy instruments which can be adminis-

tered to large groups. We are interested in formulating a model for energy balance by using

energy expenditure (EE) and changes in energy stores (ΔES) while accounting for dependence

between the two and measurement error. Widely accepted gold standard measurements exist

for both EE (DLW) [12, 15, 16, 18–21] and ΔES (DXA) [12, 16, 20]. Table 1 lists abbreviations

used in this article. Unfortunately, these instruments are expensive and burdensome. There

are alternative approaches [17] to quantify both EE and ΔES that while less expensive and eas-

ier to administer, are subject to bias and other errors. Our goal is to model energy balance by

using both gold standard and less precise instruments with the end goal of evaluating the error

present in the measurements and ultimately calibrating the less precise instruments, so in

future studies, researchers can calibrate their measurements of EE and/or ΔES if they are not

using a gold standard.

Table 1. List of commonly used abbreviations.

EI Energy Intake

EE Energy Expenditure

ΔES Changes in Energy Stores

FM Fat Mass

FFM Fat Free Mass

DXA Dual-energy X-ray absorptiometry

DLW Doubly Labeled Water

https://doi.org/10.1371/journal.pone.0201892.t001
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Measurement error modeling is a well developed field in statistics. Fuller made popular

linear measurement error models through his book that was the first expose on measurement

error [22]. Nonlinear models have since become more popular and widely used and an over-

view of these models is given in [23]. Berry et al. [24] proposed Bayesian measurement error

models that used p-splines to model the relationship between the latent variable and noisy

measurements. This was one of the first Bayesian approaches to a problem like this as it was

at the onset of the Markov Chain Monte Carlo revolution that allowed for Bayesian modeling

to be practical. These models were then extended by [25] and [26] by allowing for a more

flexible distribution of the latent variables than a Gaussian as well as using b-splines instead

of p-splines. They used Dirichlet Process Mixture Models to allow for more flexibility in the

structure of the latent variables, and though simulation and real data anaylsis showed it could

have a major effect if the true underlying distribution was not Gaussian. Additionally, they

allowed for non-constant variances in the error terms for noisy measurements and gold stan-

dard measurements. There is a large body of measurement error research applied to the field

of nutrition. Nusser et al. [27] developed a semiparametric approach to estimating intake dis-

tributions using noisy, 24 hour recalls of nutrient intakes. Sinha et al. [28] developed Bayesian

methods for the analysis of nutritional data that used b-splines and Dirichlet Process Mix-

tures to allow for flexibility, that would later be extended by [25] and [26]. The analysis of

semicontinous data with measurement error was explored in [29], otherwise known as the

“NCI method”, and later extended in [30] and [31]. The strong research in measurement

error modeling developed for the field of nutrition can be used as a starting point for mea-

surement error modeling in the physical activity realm. Reversible Jump MCMC was

designed as a means of model selection [32]. In the context of b-splines, model selection is

determining the number of knots and the locations of the knots. An early and practical

approach to regression using splines and Reversible Jump MCMC was given in [33], which

introduced the idea of Bayesian free-knot splines. Although the method used Reversible

Jump MCMC, it was not a “fully Bayesian” approach as it did not place priors on the spline

regression coefficients, rather it used OLS to update regression coefficients during each step

of the algorithm. A more fully Bayesian approach was given by [34] which allowed for placing

priors on the regression coefficients. For complex regression problems where such things as

discontinuities in the curve existed, the method of [34] performed better, but with smooth

functions that appear to have continuous second derivatives, the simpler to implement

method of [33] performed comparably. In these papers, the explanatory variable for which

the locations of the knots are being chosen, was assumed to be fixed and known. In this

paper, those values will be treated as latent variables which will add a layer of complexity to

the algorithm.

In this article we adopt a Bayesian semi-parametric approach. We make distributional

assumptions about error terms, but we try to be flexible when modeling the true relationship

between less precise measurements and the truth. We propose using free knot splines to model

the relationship between the less precise measurements and the truth and we build a Reversible

Jump MCMC algorithm to do so. The remainder of this article is organized as follows: in the

Methodology section we describe the data structure and assumptions about their dependen-

cies; we also briefly review two commonly used models and introduce a bivariate, Bayesian

semi-parametric model that allows for dependence between EE and ΔES. In the Simulated

Data and Simulation Study sections, we describe how we simulate complex data and how we

constructed the simulation study to assess the performance of the three models. The Results

section summarizes our findings in the simulation study. In the Calibration section, we show

how calibration could be performed using the proposed model given new data when no gold

standard measurements are available.

Modeling energy balance with measurement error
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Methodology

In this section, a new way to analyze the relationship between gold standard and less expensive

measurements that accounts for dependence between EE and ΔES is presented. First, a more

precise definition of ΔES is given as well as a practical way to calculate it in practice. Indepen-

dence assumptions are listed along with justifications that help simplify the model construc-

tion. Two simpler models are described before the proposed method: a naïve model that

assumes there is no measurement error in gold standard measurements, and a linear measure-

ment error model that assumes a linear relationship between less expensive measurements and

the true, latent values of EE and ΔES. Finally, the proposed new model using free knot splines

to model the relationship between less expensive measurements and the true, latent values of

EE and ΔES is described in further detail.

Calculation of ΔES

In the energy balance equation,

DES ¼ EI � EE; ð1Þ

ΔES is expressed in kcals, and can be positive or negative. To convert DXA measurements

of fat mass and fat free mass to kcals, we use Eq (2). Because we assume that energy stores are

characterized only as either fat mass (FM) or fat free mass (FFM), this equation provides an

exact answer if we know the values of CFM and CFFM. We let CFM = 9500 and CFFM = 1100 like

in [20], recognizing that a single value does not account for biological variation. We divide

these by the change in time (14 days ± 3 days) and multiply by CFM and CFFM to get ΔES in

kcals. For each individual, we compute

DES ¼ CFM
DFM
DT
þ CFFM

DFFM
DT

: ð2Þ

Notation

We denote observed average daily EE measured via DLW for subject i over time period j
by WEE

ij , and observed average daily ΔES measured via DXA for subject i over time period j by

WDES
ij . A positive value for ΔES indicates that more calories were taken in than expended. We

compute daily values of EE for a person by averaging the total EE for that person obtained by

DLW, because DLW gives an estimate of EE over a period of time, in this instance approxi-

mately 14 days.

When collecting data on a large population, it is feasible to administer less expensive instru-

ments on most of the subjects. However, they result in less accurate measurements. Although

there are several less precise ways to measure EE and ΔES, we keep the notation general since

in any given situation we will refer only to one specific instrument. We denote the observed

average daily EE obtained with an less precise instrument for subject i over time period j, YEE
ij ,

and the observed average daily change in energy stores measured by an less precise instrument

for subject i over time period j, YDES
ij .

Lastly, the values which we cannot observe are the usual EE and ΔES for subject i. We define

usual as a long run average (expected value) of the true EE and ΔES. Let XEE
i represent the

usual daily EE for subject i and XDES
i represent the usual daily ΔES for subject i. Note that even

if we could observe daily EE and daily ΔES for each participant with no error, there is still
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within-person variability in these two variables because people change their caloric intake and

their physical activity from day to day.

(In)Dependence assumptions

The observed data vector for subject i at time j is (WEE
ij , WDES

ij , YEE
ij , YDES

ij , zi) where Zi is a vector

of covariates measured with no error for subject i. We start by assuming independence

between individuals.

Several of the variables in the model are conditionally independent. Given the value XEE
i

(usual daily EE for subject i) and XDES
i (usual daily ΔES for subject i), and covariates Zi, we

assume that:

1. YEE
ij and YDES

ij are independent of each other,

2. YEE
ij and YDES

ij are each independent of both WEE
ij and WDES

ij ,

3. WEE
ij and WDES

ij are independent of each other.

Assumption 1. follows because given the true values X and covariates Z, knowing an less

precise measurement will give us no more information about the less precise measurement of

the other, so long as it is not self-administered. To justify assumption 2., we note that once we

know the truth X, having an unbiased measurement of X will not provide any more informa-

tion about the less precise, biased measurement of X. Assumption 3. follows from a reasoning

similar to 1.

Naïve model

The first model we consider is what we call the naïve model. This model assumes no measure-

ment error in the gold standard instrument, thus DLW and DXA give error-free measure-

ments of XEE
i and XDES

i , respectively. We also assume that the less precise measurements Y are

linearly related to the usual values and to error free covariates. Based on empirical evidence,

gender, BMI, and age all had some effect on the less precise measurement of EE. The naïve

model is:

ðYEE
ij jW

EE
ij ;Zi; θyeeÞ�

ind Nðb0;ee þ b1;eeW
EE
ij þ γeeZi; s

2

�EEÞ ð3Þ

ðYDES
ij jW

DES
ij ;Zi; θyesÞ�

ind Nðb0;es þ b1;esW
DES
ij þ γesZi; s

2

�DESÞ: ð4Þ

where the β1,� terms represents the relationship between less precise measurements and the

usual EE and ΔES and the β0 terms represent systematic biases. We let γ� = (γ1,�, γ2,�, γ3,�) and

γ1,� is the coefficient for gender, γ2,� is the coefficient for BMI, and γ3,� is the coefficient for age.

We take the standard approach and assume that the errors are normally distributed.

We choose independent priors for all model parameters for all models going forward.

Where appropriate, we select priors that are conjugate or conditionally conjugate for ease of

implementation but also to permit incorporating weak information through the prior. Prior

distributions for all models are listed in the S4 Appendix.

Linear measurement error model (LMEM)

The Linear Measurement Error Model (LMEM) recognizes that WEE and WΔES are contami-

nated with additive measurement error, and are unbiased measurements of truth, rather than

equal to truth. Therefore the model becomes hierarchical as it does not directly model the
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relationship between Y and W, but rather Y and X under the assumption that W is an unbiased

measurement for X. The relationship between Y and X is assumed to be linear, and as in the

naïve model, the model also accounts linearly for error-free covariates Z. We assume that the

measurement errors are normally distributed. To allow dependence between EE and ΔES, we

model ðXEE
i ;X

DES
i Þ with a bivariate normal distribution. More formally, the model is given by:

ðYEE
ij jX

EE
i ;Zi; θyeeÞ �

ind Nðb0;ee þ b1;eeXEE
i þ γeeZi; s

2
�EE
Þ ð5Þ

ðYDES
ij jX

DES
i ;Zi; θyesÞ�

ind Nðb0;es þ b1;esX
DES
i þ γesZi; s

2

�DES
Þ ð6Þ

ðWEE
ij jX

EE
i ;Zi; θweeÞ�

ind NðXEE
i ; s

2

nEE
Þ ð7Þ

ðWDES
ij jX

DES
i ;Zi; θwesÞ�

ind NðXDES
i ; s2

nDES
Þ ð8Þ

XEE
i ;X

DES
i jyX

� �
�
ind N

mEE

mDES

" #

;SX

 !

: ð9Þ

The full likelihood for this model and the one in the next section are givein in the S3

Appendix.

Spline measurement error model (SMEM)

We extend the LMEM for EE and ΔES in the previous section to include both non-linear and

non-parametric components. We follow the same construction of the LMEM to model the

gold standard measurements as unbiased for usual attributes and subject to normally distrib-

uted measurement errors as in (7) and (8).

We wish to understand both the biases as functions of usual value and demographic covari-

ates, as well as the measurement error in the instruments themselves. We propose modeling

the less precise measurements in a semi-parametric regression framework. Specifically, model

the functions m�(�) using free knot cubic B-splines, and model demographic covariates with a

linear component. We require monotone functions so we can take inverses for calibration

later, but this only requires the spline coefficients to be non-decreasing ie. β1� β2� . . .� βk
[35] as used in similar applications [28, 36, 37]. Our approach has three benefits. First, the

spline is flexible and can pick up an unknown relationship between X� and the less precise

measurement of the same, which is important because we never observe the truth and there-

fore it is difficult to justify a particular functional form of the relationship. Second, the use of

free knot splines eliminates the need for us to specify the number and position of the knots.

Previous methods using splines in measurement error models choose a “moderately large”

number of knots, typically at least 15 [24, 26, 28]. We use Reversible Jump MCMC (RJMCMC)

to determine the number and position of knots. This means that we treat the number of knots

in each regression equation and their knot locations as random variables. Third, the linear

component for the covariates allows for an easy interpretation of the parameters and thus the

biases in the instrument. We make a working assumption of constant variance for all
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measurement errors. Based on the above, the model specification is then:

ðYEE
ij jX

EE
i ;Zi; θyeeÞ�

ind NðseeðX
EE
i ; βeeÞ þ γeeZi; s

2

�EEÞ ð10Þ

ðYDES
ij jX

DES
i ;Zi; θyesÞ�

ind NðsesðX
DES
i ; βΔesÞ þ γesZi; s

2

�DESÞ ð11Þ

seeðX
EE
i ; βeeÞ ¼

Xkeeþ4

i¼1

bi;eeðX
EEÞbi;ee ¼ BeeðX

EEÞβee ð12Þ

sesðX
DES
i ; βΔesÞ ¼

Xkesþ4

i¼1

bi;esðX
ΔESÞbi;es ¼ BesðX

ΔESÞβes; ð13Þ

where Bee() and Bes() are n × (kee + 4) and n × (kes + 4) B-spline basis matrices that can be con-

structed using the recursion specified in [38]. We let kee and kes denote the number of knots

for the EE and ΔES splines, respectively.

There are many different types of splines, but we picked B-splines because in similar prob-

lems [25, 26, 28] it has been shown that they are numerically more stable than P-splines, for

example, which can have major effects on outcomes as compared in [25].

We allow more flexibility in the distribution of the latent variables ðXEE
i , XDES

i Þ by specifying

a Dirichlet process mixture prior for them. This allows the data to “speak for themselves”

which is ideal when the model includes latent variables. The density of ðXEE
i , XDES

i Þ can then be

modeled as an infinite mixture of normals:

ðXEE
i ;X

DES
i Þjzi ¼ h�iid N

mee;h

mes;h

" #

;Sh

 !

ð14Þ

zi�
iid CatðH; πÞ ð15Þ

Vh � Betað1;aÞ ð16Þ

VH ¼ 1 ð17Þ

ph ¼ Vh

Y

‘<h

ð1 � V‘Þ; ð18Þ

where α helps control how many components of the infinite mixture are used. We choose to

set α to 1. The parameter zi takes value for which group observation i came. Cat(H, π) is a cate-

gorical random variable such that P(zi = h) = πh, h�H. In any given problem, we can select H
such that

PH
h¼1

ph < � for some � > 0 [39], pg. 552.

Although we do not know the true form of the association between the noisy measurements

and the usual values, we do not anticipate it to be highly complex, so we would like to use as

few knots as necessary. We use ree and res to denote the knot locations. Our discrete uniform

prior on these, means that knots can only occur at the latent values of (XEE
i , XDES

i ). This was

done largely for computational convenience; we could have assigned a continuous prior for

the knot locations, but we do not believe this will adversely affect estimation because the latent

(XEE
i , XDES

i ) are updated every MCMC iteration. Notice that we have not placed priors on the

spline regression coefficients βee and βes, or the linear regression coefficients γee and γes; this is
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because we will update them using ordinary least squares (OLS). More details can be found in

the S2 Appendix.

Simulated data

In this section we describe how we simulate data to mimic “real” observations, in order to per-

form a simulation study. Our simulated data need to be sufficiently complex and incorporate

dependence in order to faithfully represent the distributions of true EE and EI, as well as gold

standard measurements and less precise measurements. We need to simulate data for all the

components in the model as well as the latent variables (XEE
i , XDES

i ). We explore estimation

with measurement errors for the gold standard and less precise measurements under three dif-

ferent scenarios: normal errors, skewed errors, bimodal errors.

For this simulation, we used three covariates: gender, age, BMI. Using a total sample size of

300, we sampled 300 Bernoulli(0.5) to determine gender. Age was simulated from Uniform

(20,40). The BMI for an individual was simulated from a Normal(27,5). Let Z be the matrix of

dimension 300 × 3 that links covariates to individuals.

We simulate (XEE
i , XEI

i ) from a mixture of 5 bivariate t-distributions. Sixty observation pairs

are simulated from five different bivariate t-distributions. The mean and standard deviation of

the two-dimensional vector for each of the five t-distributions are each different. The scale

matrix for each of the five t-distributions is constant and the degrees of freedom is equal to

five.

We let the correlation between EE and EI be 0.4376 as calculated from previous studies’

data. The values used for the vector γee = (300, 14, −7) and γes = (−200, 8, −5) for gender, BMI

and age, respectively. We compute XDES
i using the energy balance equation in (1). Fig 1 shows

histograms f or the latent variables in one simulated data set.

For the gold standard measurements, let

nEEij ¼ uEEij þ d
EE
ij

nDES
ij ¼ uDES

ij þ d
DES
ij ;

ð19Þ

where uEE represents the measurement error in DLW and uΔES represents the measurement

Fig 1. Simulated data distribution. Distribution of simulated latent variables X from one simulated data set.

https://doi.org/10.1371/journal.pone.0201892.g001
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error in DXA. Above, d
EE
ij represents the within person deviation in EE for person i during

time period j from the person’s true mean, and d
DES
ij similarly represents the within person

deviation in ΔES for person i during time period j from the person’s true mean. For the less

precise measurements there is a slightly different setup. The within person variability gets

added to each individuals’ usual values of EE and ΔES and thus is affected by the functions

m�(�). Therefore we add these within person variation terms δ to the usual X values we simu-

lated to get:

XEE
ij ¼ XEE

i þ d
EE
ij

XDES
ij ¼ XDES

i þ d
DES
ij ;

ð20Þ

and the functions m�(�) depend on X�ij.

The pairs (d
EE
ij , d

DES
ij ) are simulated jointly but independently across time and individual. We

simulate the within person variability terms (d
EE
ij , d

DES
ij ) from a bivariate normal distribution.

We assume that DLW and DXA are unbiased measurements of EE and ΔES, respectively.

These measurements are simulated according to (7) and (8) where we further brake down ν as

in (19). The u term represents the measurement error components we still need to specify and

δ represents the within person component of the error which we have already discussed. We

assume that the u terms are independent within and across individuals as well as of all δ and X.

From these simulated values, we then get simulated gold standard data WEE
ij , WDES

ij . We gen-

erate measurement errors for the gold standard measurements (and for the less precise mea-

surements) from three different distributions: normal, skewed normal, and a bimodal mixture

of two normals that is centered around 0. Parameters were chosen such that the means of all

error distributions are 0, and the variances for each distribution is the same within EE errors

and within ΔES errors.

We generate observations for less precise measurements in a similar fashion as in the last

section. We assume that the errors are independent within and across subjects as well as mutu-

ally independent with all δ, X and Z terms. We draw these errors from densities that are the

same to those in the previous section, except with larger variances.

In contrast to the gold standard measurements which we assume are unbiased, we now add

bias to the less precise measurements. The bias is introduced via the functions mee and mes. For

these simulated data, we let:

meeðX;ZÞ ¼ 2XEE
i �

4000

1þ e� 0:002XEEi � 2200
; ð21Þ

mesðX;ZÞ ¼
1000

1þ e� 0:04XDES
i
� 2000þ XDES

i : ð22Þ

Fig 2 shows mee(�) on the left and mes(�) on the right both against a y = x line for

comparison.

We then add Zi γ� to the simulated less precise measures of EE and ΔES.

Estimation

We adopt a Bayesian approach to estimation in this problem, and therefore, our goal is to esti-

mate the joint posterior distribution of all parameters and latent variables in the model. In our

case, the joint posterior distribution is p(θ, XEE, XΔES|WEE, WΔES, YEE, YΔES, Z). We use Markov

Chain Monte Carlo (MCMC) methods to approximate the posterior distribution. For the
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naïve and LMEM models, we used Just Another Gibbs Sampler (JAGS) to simulate draws

from the posterior distribution. This was simple to implement and was relatively quick to sam-

ple. In order to fit free knot splines which allow for dimension change, we must use Reversible

Jump MCMC which requires a more complex sampler. We use R and C++ for the RJMCMC

sampler. Because the algorithms are technical and not the main objectives of this paper, we

provide the algorithm for the Gibbs sampler in the S1 Appendix and the reversible jump algo-

rithm in the S2 Appendix.

Simulation study

In this section we describe a simulation study that we carried out, to check the performance of

the models we propose. We are interested in the predictive performance of the models because

our main goal is to develop a calibration tool. We are also interested in evaluating the robust-

ness of the model to departures of the errors from the standard normality assumption, which

is why we simulate errors from two alternative error distributions. We present performance

measures such as predicted mean squared error (PMSE) for the regression function in ques-

tion as well as posterior means and posterior standard deviations for parameters of interest.

Setup

We simulated 200 data sets each for normal, skewed, and bimodal errors for both 2 and 4 repli-

cate measurements per individual. The number of individuals is 300 in all cases. Preliminary

analysis suggest that the number of replicates per individual has a stronger impact on perfor-

mance than the number of individuals.

Although we would like to be as flexible as possible with our distributional assumptions on

the bivariate latent variables, we also want a model that produces estimates with low prediction

mean squared error (PMSE) given the data constraints of our application. In practice, it is

Fig 2. Nonlinear functions. Plot of nonlinear functions mee() (left) and mes() (right), and Y = X is black for reference to unbiased

measurement.

https://doi.org/10.1371/journal.pone.0201892.g002
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difficult to obtain more than two replicate measurements on an individual, at least when using

the gold standard measurements. During the simulation study, we found that the Dirichlet

Process prior on the latent variables produced unstable results in parameter estimates and low

acceptance rates of proposals in the random walk Metropolis-Hastings algorithm when we

only had two replicate observations per person. Results were stable however, when four repli-

cates per person were available. Because of this issue, we fit a fourth model using a bivariate

normal distribution for the prior of latent variables instead of the Dirichlet Process prior while

still using splines for the regression functions. We refer to this model as SMEMN. The MCMC

has a minor change in the Gibbs step (steps (a)-(c) are eliminated and step (d) no longer

depends on grouping h).

We set the values of the hyperparameters as follows: Mb0;ee
¼ Mb0;es

¼ 0,

Cb0;ee
¼ Cb0;es

¼ 100000, Mb1;ee
¼ Mb1;es

¼ 1, Cb1;ee
¼ Cb1;es

¼ 100000, Mgee
¼ Mges

¼ 0,

Cgee
¼ Cges

¼ 100000, ayee = ayes = awee = awes = byee = byes = bwee = bwes = 0.1, ψ = I2×2, d = 3, Mμ

= (2400, 0), Cμ = diag(100000, 100000), λee = λes = 1. We ran the MCMC for 3 chains of 12,000

iterations, using the first 2000 as burn in, and convergence for all models was fast as indicated

by trace plots and Gelman-Rubin diagnostics less than 1.04.

Results

Tables 2, 3 and 4 show results averaged over 200 Monte Carlo samples, for normal, skewed,

and bimodal errors, respectively. The asterisk next to the truth for the measurement error with

respect to the less precise measurements indicates that this is a Monte Carlo approximation to

the truth. Recall that we included within person variation in the functions m�(�), but in our

model we use the working assumption that the additive error term accounts for both within

person variability and measurement error. Because we cannot directly extract the value from

the function, we approximate it by generating 10,000 data sets and removing the mean func-

tion from the less precise observations, and then calculating the standard deviation of the

residual. We then averaged those standard deviation estimates to get the one reported in the

table.

Across all models and error types, the linear coefficients are estimated largely without bias.

This is not too surprising since these covariates are measured without error. This suggestst the

regression coefficient estimates will not be affected by distribution of the errors. Additionally,

the regression coefficients can be interpreted as biases inherent to the device. For example, γ1,

ee can be thought of as the the additional number of calories a device will report for a male

compared to a female, all else equal. These results could be informative and useful as a second-

ary study goal. The biases and standard errors are slightly smaller for models SMEMN and

SMEM, however. All three measurement error models perform about the same when assessing

the measurement error in the gold standard instruments. When errors are generated from a

bimodal distribution, estimated error variances are biased toward zero. This is true for the

measurement error in the less precise measurements as well. The SMEMN and SMEM models

produce similar results for the estimates of variance measurement error of less precise mea-

surements. Estimates are good for EE and ΔES when errors are normal, but biased low for ΔES

for both skewed and bimodal errors. Both the naïve model and the linear measurement error

model result in estimated measurement error standard deviations for the less precise measure-

ment that are too large under normal errors and skewed errors for EE. When the departure

from normality is significant (bimodal error distribution) unbiasedly estimating the measure-

ment error variance can be challenging.

Fig 3 shows boxplots of the log mean PMSE for each simulation for each model under each

type of error distribution for EE for 2 and 4 replicates, and Fig 4 shows the same for ΔES.
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There is a consistent decreasing pattern from simpler to most complex in terms of the models.

First, the naïve model does much worse than the same model which accounts for measurement

error. The naïve model and the linear measurement error model perform much worse than

the models with free knot splines in terms of PMSE. This is under the case where the true rela-

tionship is non-linear, but when looking at the noisy data the relationship doesn’t appear to be

highly non-linear. This suggests the methods using free knot splines are able to see potential

relationships that are difficult to see with only the noisy data. There is not a large difference

between the SMEMN and SMEM model in terms of PMSE, but the SMEM model generally

does better. There are more parameters in SMEM to help explain the scientific mechanism of

the problem, but that does not necessarily imply better prediction. The question is whether the

small improvement is worth the increase in model complexity. We think that the answer is no

for two reasons: (i) our main focus with this model is calibrating the less precise measurements

and not necessarily conducting inference at the latent variable level, and (ii) the DP approach

is reliable only situations when we have four replicates, which for gold standard measure-

ments, is unrealistic in practice. Because the main focus is to calibrate less precise measure-

ments, the simulation results are promising.

To see the structure of the nonlinear model with the fitted spline on top of the simulated

data, we provide plots from one of the 200 simulated data sets. We chose a simulated data set

with skewed errors and two replicates per person. Fig 5 shows the fitted spline between the val-

ues of EE and ΔES and the measurements obtained with the less precise measurement. The

points correspond to the individual simulated data where the y value is the mean of the two

Fig 3. PMSE for EE. Log PMSE for EE Regression faceted by measurement error distribution and number of replicates.

https://doi.org/10.1371/journal.pone.0201892.g003
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Fig 4. PMSE for ΔES. Log PMSE for ΔES Regression faceted by measurement error distribution and number of replicates.

https://doi.org/10.1371/journal.pone.0201892.g004

Fig 5. Fitted spline. Spline function for Model SMEMN with Skewed Errors.

https://doi.org/10.1371/journal.pone.0201892.g005
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replicates. The bold (red) line is the mean estimated spline function. We randomly selected

500 MCMC draws for the spline, and plotted them behind the mean. Fig 6 gives the distribu-

tion of the number of knots for the spline for both the EE and ΔES splines. The splines are not

overly complex and typically use four or fewer knots.

Calibration

The main goal of this work is to develop a calibration approach to “correct” the measurements

of EE ΔES obtained with less precise, noisy measurements. That is, given a measurement of EE

or ΔES from an less precise instrument and some demographic information, we can return a

better estimate of the true value as well as a credible interval that shows the uncertainty in the

estimate. Calibration for our models simply amounts to finding the inverse of the fitted models

as a function of Y instead of X, and Z. For a given observed value of Y and Z, and an estimate

of γ, the calibration for X is:

Xcalibrated ¼ s� 1ðy � g0ZÞ: ð23Þ

We cannot find the inverse in (23) in closed form so we find it numerically instead. To do

so, we use optimize in R for the function |s(x) − y� | where s() represents the regression

function and y� is the observed less precise measurement minus the vector of coefficients γ
multiplied by the individuals’ covariate values Z. The algorithm for our calibration for individ-

ual i is as follows:

For r = 1,. . .R

1. Calculate y�i ¼ yi � gðrÞ
0Zi, where Zi are the covariate values for individual i.

2. Use optimize for the function jsiðxÞ � y�i j to choose the value of x that will minimize the

criterion, call this xi,calibrated. Here, si(x) is the predicted value of yi for the given value x
using the MCMC draw for the spline coefficients β.(r), latent variables (XEE(r), XΔES(r)), and

knot locations (rðrÞee , rðrÞes ) from the rth draw of the chain.

Fig 6. Distribution of kee and kes. Distribution of Number of knots for Model SMEMN with Skewed Errors.

https://doi.org/10.1371/journal.pone.0201892.g006
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Since our interest lies in correcting less expensive measurements for potentially non-linear

biases and measurement error as determined jointly in the model through the use of gold stan-

dard measurements, this calibration step is of most interest to practitioners. Although parame-

ters estimates from the model may be interesting, obesity, nutrition, and physical activity

researchers often need reliable data on EI and EE to understand the effects of treatments in

controlled experiments or relationships found in exploratory analyses from observational data.

The calibration method above along with the estimated posterior distribution for the model

gives practitioners a powerful way to adjust their measurements of EI and/or EE for measure-

ment error.

As an example, suppose that we wish to calibrate three noisy measurements each from a dif-

ferent individual using Model SMEMN. We randomly select 3 individuals from the same data

set used earlier to give results for model SMEMN. Individual 1 is male, BMI of 28.6, age 20.5;

individual 2 is female, BMI of 21.5, age 30.1 and individual 3 is male, BMI 38.6 and age 22.8.

Observed less precise measurements for these individuals, their true values, as well as 95%

credible intervals for their mean calibrated truth under skewed normal errors are given in

Table 5. Fig 7 shows histograms of 1000 calibrated draws for each individual for EE and ΔES

measurements under skewed errors. Looking at the table and figure, one can see that the cali-

bration helps pull the less precise measurement closer to the truth. In all cases, the calibration

helped to improve the estimate obtained from the less precise measurement. A simple point

estimate correction may be used and an analysis could procede with these corrected measure-

ments taken as truth; a more comprehensive approach would be to use the point estimate of

EE and ΔES as well as the uncertainty given by the posterior distribution. This would allow for

an approach that fully accounts for biases and measurement error uncertainty present in the

data as to avoid making erroneous conclusions based on bad data. Running this on many of

the simulated individuals had similar results.

Discussion

In this chapter we presented a semi-parametric approach to model energy balance via its com-

ponents EE and ΔES. We assume that we have gold standards for both quantities that are unbi-

ased, as well as less precise instruments that result in biased measurements of the truth. We

propose a model where the form of the association between the unbiased and the biased mea-

surements of EE (or of ΔES) is left unspecified and uses splines to estimate that function.

This allows a flexible relationship between an less precise measurement and its unobserved

truth. We assumed that the gold standard measurements and less precise measurements are

conditionally independent given the latent vector (XEE, XΔES). We modeled the latent vector

(XEE, XΔES) using a bivariate normal distribution and a Dirichlet process. Although the Dirich-

let process is more flexible and based on a weaker assumption, it required more replicate

observations (mainly on gold standard measurements) than is feasible in practice in order to

Table 5. 95% credible interval for calibration estimate for less precise measurements for skewed errors.

Person Lower Median Upper Observed True Value

1 EE 2574.18 2666.00 2736.39 3028.89 2199.25

2 3452.51 3525.18 3619.08 4119.26 3588.12

3 2571.99 2665.46 2744.65 2555.86 2643.14

1 ΔES 25.15 42.35 60.57 142.30 64.17

2 -104.21 -82.93 -63.90 -405.74 -21.08

3 -8.41 3.91 17.83 96.06 -0.48

https://doi.org/10.1371/journal.pone.0201892.t005
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give stable results. The normality assumption was robust and resulted in stable and surpris-

ingly reasonable results given the true structure of the latent variables. Because this model pro-

duced accurate estimates even with only two replicates of gold standard measurements per

person, we believe that it is a plausibly useful model for this specific application unless more

than two replicates per person are available. The resulting estimates and PMSE show the

approach what we propose outperforms a simpler linear measurement error model and a

naïve model that does not take measurement error into consideration.

The intended use of the model presented in this paper is for device calibration. In order to

do meaningful research in the fields of physical activity, nutrition, and health, one needs accu-

rate, reliable data. The issue of obesity was highlighted in the introduction, and understanding

energy consumed versus energy expended is crucial to understanding the obesity crisis, but

collecting data on these quantities is difficult. Because measurements of EE and ΔES from less

expensive devices can often include considerable error and bias, these data can lead to errone-

ous results later in a study. Although gold standard measurements exits for EE and ΔES, they

are expensive and it is unreasonable in a large study to administer gold standard measure-

ments to everything in the study. The method presented in this paper provides a statistical

approach that allows for flexibility in the relationship between less expensive measurement

and truth in order to calibrate less expensive measurements. This way, large studies can

administer both gold standard and less expensive measurements to a small subsample, and use

the methods presented in this paper to calibrate the less expensive measurements for those

Fig 7. Calibration. Posteriors of calibrated observations. Solid vertical line shows observed value from less precise measurement and

dashed vertical line shows truth.

https://doi.org/10.1371/journal.pone.0201892.g007
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who didn’t receive gold standard measurements. This can save time and money for researchers

without having to compromise the integrity of the data. One of the uses would be to obtain a

corrected estimate of EI, by getting corrected estimates of EE and ΔES and then using the

energy balance equation. Although only a simulation study is presented, given a study with the

same data structure, estimates of the parameters in the model could be used for future device

calibration.

The main motivation for constructing this model was to account for the error and bias in

easy to administer measurements in order to calibrate less precise observations. We presented

a simple way to do this calibration given an less precise measurement for EE and ΔES and val-

ues of gender, BMI, and age. Using a Bayesian approach we are easily able to get a posterior

distribution for the mean calibrated estimate which also provides a measure of uncertainty.

Our example shows that the calibrated estimate is often an improvement compared to the

observed less precise measurement.
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