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Abstract
Compositional data are commonly known as multivariate observations carrying rela-
tive information. Even though the case of vector or even two-factorial compositional
data (compositional tables) is already well described in the literature, there is still a
need for a comprehensive approach to the analysis of multi-factorial relative-valued
data. Therefore, this contribution builds around the current knowledge about compo-
sitional data a general theoretical framework for k-factorial compositional data. As
a main finding it turns out that, similar to the case of compositional tables, also the
multi-factorial structures can be orthogonally decomposed into an independent and
several interactive parts and, moreover, a coordinate representation allowing for their
separate analysis by standard analytical methods can be constructed. For the sake of
simplicity, these features are explained in detail for the case of three-factorial compo-
sitions (compositional cubes), followed by an outline covering the general case. The
three-dimensional structure is analyzed in depth in two practical examples, dealing
with systems of spatial and time dependent compositional cubes. The methodology is
implemented in the R package robCompositions.
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1 Introduction

Consider a data set where the relative structure of parts is of interest. As an example,
the age structure of all employees in a given country are to be analyzed. In this case,
the ratios between the parts shall be considered for the analysis rather than the absolute
values, which are mainly influenced by the size of the country and by other external
factors. As it will be shown later, this situation has already been studied extensively
in the classical framework of compositional data analysis (Aitchison 1982, 1986).
However, when the data structure is determined according to more than one factor,
e.g. one can study the employment structure from the perspective of age and gender
of employees, the classical theory needs to be properly adjusted in order to cope with
these more complex structures. The first attempt towards this goal has been considered
by the proposal of compositional tables, two-factorial compositions (Fačevicová et al
2018). Nevertheless, also structures formed by three or even more factors are likely to
occur in practice. For instance, in addition to gender and age, one could be interested in
analyzing the employment structure according to full-time and part-time employment.
Therefore, the manuscript introduces a general framework of dealing with multi-
factorial compositional data, hereby extending the concepts and developments for
compositional tables.

The goal of compositional data analysis is to process data which carry relative
information. This resulted in a concise methodology with a wide range of possible
applications, see, e.g., Pawlowsky-Glahn et al (2015), Filzmoser et al (2018) and
references therein. A D-part composition is defined as a vector with positive compo-
nents (parts) x = (x1, . . . , xD)′, where the real information content is in the ratios
between these parts rather than directly in the measured absolute values. In other
words, compositional data describe quantitatively relative contributions of parts on a
whole. Consequently, compositional data are scale invariant and can be represented
without any loss of information as observations with a prescribed sum of the parts,
e.g. in proportions (sum 1) or percentages (sum 100). Accordingly, the sample space
of (representations of) compositional data is traditionally considered to be the D-part
simplex SD = {

x = (x1, x2, . . . , xD)′ | xi > 0,∀i,∑i xi = κ
}
. Note that the con-

stant κ > 0, representing the sum of the compositional parts, can be chosen arbitrarily,
and it reduces the dimensionality of the sample space to D − 1. Specific features of
compositional data, particularly the scale invariance property, are captured by the
Aitchison geometry (Pawlowsky-Glahn and Egozcue 2001; Billheimer et al 2015)
with Euclidean vector space properties. For compositions x, y ∈ SD and a real con-
stant α, these properties result from defining the operations perturbation, powering,
and the Aitchison inner product,

x ⊕ y = C(x1y1, . . . , xD yD)′, α � x = C (
xα
1 , . . . , xα

D

)′
,

〈x, y〉A = 1

2D

D∑

i=1

D∑

j=1

ln
xi
x j

ln
yi
y j

,
(1)
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respectively, where C denotes closure and constitutes the equivalence classes of com-
positional data, which differ only by the sumof their parts κ . As a consequence, a direct
application of traditional multivariate statistical methods that rely on the Euclidean
geometry in the real space (Eaton 1983) is not appropriate. Even though it would be
possible to adapt them to the Aitchison geometry, it is more sensible to find a way how
to express compositional data isometrically in the (D−1)-dimensional real space and
proceed there, just by taking into account the specific interpretation of the new vari-
ables. In the compositional data analysis context this refers to isometric log-ratio (ilr)
coordinates (Egozcue et al 2003), which are orthonormal with respect to the Aitchison
geometry. The main idea is to find a system of D − 1 orthonormal basis vectors ei of
SD , where the new coordinates z = (z1, . . . , zD−1)

′ ∈ R
D−1 are obtained as

zi = 〈x, ei 〉A, for i = 1, . . . , D − 1. (2)

Since there does not exist a canonical basis on SD , an option is to use such an ilr
coordinate system which has an advantageous interpretation under the given problem
setting. From thedefinition, any ilr coordinate is a log-contrast, i.e. a linear combination
ξ1 ln x1+· · ·+ξD ln xD with

∑D
i=1 ξi = 0. One popular approach for the construction

of orthonormal coordinateswas defined inEgozcue andPawlowsky-Glahn (2005). The
aim is to construct a sequence of binary partitions of groups of compositional parts in
order to obtain coordinates that are interpretable in terms of balances between these
groups of parts. Accordingly, sequential binary partitions (SBP) are based on a system-
atical splitting of the compositional vector into two non-overlapping subcompositions,
and the generating process ends after D−1 steps when each subcomposition is formed
by only one part. The i-th step of the partition produces one vector of log-contrast

coefficients ξ i = (ξi1, . . . , ξi D)′ with ri parts ξi+ =
√

si
ri (ri+si )

at the positions cor-

responding to parts from the first subcomposition formed by this step (denoted with

+), si parts ξi− = −
√

ri
si (ri+si )

at the positions related to parts from the second sub-

composition (denoted with −), and 0 elsewhere. The coefficients are closely linked
to basis vectors through the relation ei = exp(ξ i ), and the resulting coordinates can
be obtained from Eq. (2) or, without the need of enumeration of ei , directly as the
log-contrast

zi =
D∑

j=1

ξi j ln x j , for i = 1, . . . , D − 1, (3)

or

z = V ln(x), (4)

where the contrast matrix V of order (D − 1) × D has rows formed by ξ i . With this
notation it is possible to express the ilr coordinates (balances) by
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zi =
√

ri si
ri + si

ln
g(xi1, . . . , xiri )

g(xi ′1 , . . . , xi ′si
)
, for i = 1, . . . , D − 1, (5)

where g(.) stands for the geometric mean, and the values i1, . . . , iri and i ′1, . . . , i ′si
label the parts from the first (+) and the second (−) subcomposition, respectively.
Equation (5) reveals that SBP produces coordinates in form of log-ratios between
mean representations of two groups of parts, which has led to the name “‘balances”.
Particularly, in the case of vector compositional data, balances allow for a simple
and natural interpretation, and for this reason they are frequently used in applications
(Pawlowsky-Glahn et al 2015).

Although balances form a flexible class of orthonormal coordinates for vector com-
positional data, a further challenge is to develop a coordinate representation for the
case when the whole is distributed according to two or more factors. The case of
two-factorial compositional data (Egozcue et al 2008, 2015), referred to as compo-
sitional tables, has been intensively studied in Fačevicová et al (2014, 2016, 2018),
and a general coordinate representation has been derived, which enables to decompose
compositional tables into independent and interactive parts. Accordingly, the resulting
ilr coordinates have the form of balances between two groups of parts (independent
part) and log-odds ratios (interactive part), and they respect the dimensionality of the
decomposed parts.

More specifically, compositional tables refer to a settingwhere the relative structure
of the data is determined by two factors. Accordingly, not only the relations within
each factor, but also relations between them need to be analyzed. As an example
consider an employment structure in a given country, distributed according to the age
of the employees and their gender. Three types of questions arise: Is the proportion
of females among the employees comparable to the proportion of males? Does any
of the age groups outbalance? Does the age structure of the employees depend on
their gender? The first two questions focus exclusively on one factor, suppressing the
effect of the other one. The last question, on the other hand, links information from
both factors together. When the within-factor structure is analyzed, the effect of the
other factor can be suppressed by averaging across all its levels. This results in a
standard compositional vector, and balances are then a natural way of its coordinate
representation. Particularly, consider a table formed by two factors, a row factor with
I levels, and a column factor with J levels. The whole information about the relations
among the I levels of the row factor is preserved in I − 1 coordinates of the form

zri =
√

si ti J

si + ti
ln

[
g(xi1•) · · · g(xisi •)

]1/si

[
g(xi ′1•) · · · g(xi ′ti •)

]1/ti , for i = 1, 2, . . . , I − 1, (6)

where si and ti correspond to the respective step of the SBP performed on the levels
of the row factor. The indices (i1•, . . . , isi •) and (i ′1•, . . . , i ′ti •) specify the rows, and
g(·) is the geometric mean. Similarly, relations among the J levels of the column
factor are preserved in the J − 1 balances
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zcj =
√

u jv j I

u j + v j
ln

[
g(x• j1) · · · g(x• ju j )

]1/u j

[
g(x• j ′1) · · · g(x• j ′v j )

]1/v j
, for j = 1, 2, . . . , J − 1, (7)

constructed with respect to the SBP of the levels of the column factor, where the
indices (• j1, . . . , • ju j ) and (• j ′1, . . . , • j ′v j

) specify the included columns.
The relations between two factors are traditionally described by odds ratios (Agresti

2002). This concept can be adapted to compositional tables, because the last group
of coordinates has the form of log-odds ratios between four groups of parts. These
groups are uniquely defined by row and column SBPs and represented by geometrical
means of their parts. More specifically, these (I − 1)(J − 1) odds ratio coordinates
are given by

zORi j =
√

| Ai j || Di j |
| Ai j | + | Bi j | + | Ci j | + | Di j | ln

g(xAi j )g(xDi j )

g(xBi j )g(xCi j )
(8)

for i = 1, 2, . . . , I−1 and j = 1, 2, . . . , J−1,where Ai j , . . . , Di j are indices of parts
in each group defined by the i-th and j-th step of row and column SBP, respectively,
and | Ai j |, . . . , | Di j | are the numbers of parts within these groups. The construction
and interpretation of this coordinate system is discussed in detail in Fačevicová et al
(2018).

An important feature of compositional tables is the possibility of their orthogonal
decomposition. In the special situation when there exists no relationship between
row and column factors, all parts of the compositional table would be formed by the
product of row and column marginals. This leads to the so called independence table.
The orthogonal complement to the independence table is called interaction table.
Since the previously introduced coordinate system respects this decomposition, the
independence table is characterized by row and column balances, and the interaction
table by odds ratio coordinates, and it is possible to analyze each part separately.

Even though the structure of compositional tables is already well described in
the literature, a comprehensive approach for the analysis of multi-factorial relative-
valued data is still lacking. Thus, the framework of compositional tables is extended to
a general theory to work with k-factorial compositional data. Besides other findings, it
turns out that also the multi-factorial structures can be decomposed orthogonally into
an independent and several interactive parts and,moreover, a coordinate representation
allowing for their separate analysis is provided. Although all considerations in the next
section (Sect. 2) are presented just for the case of three-factorial compositional data
(called compositional cubes in the following), they can be easily generalized to the
case of more than three factors.

The construction and interpretation of the proposed coordinate system is explained
on an illustrative example in Sects. 2.1 and 3, which also introduces the function
implemented in the R package robCompositions (Templ et al 2011). The coor-
dinates are used for the analysis of the employment structure of the European OECD
countries, and a graphical comparison of the countries as well as a spatial cluster-
ing are provided. Moreover, the main sources of differences between the clusters are
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investigated by robust principal component analysis. Based on an example of Austrian
mobility data, a strategy for the analysis of multi-factorial time series is presented in
Sect. 4. The final Sect. 5 concludes.

2 Compositional cubes

In this section we simplify the main findings derived in Fačevicová et al (2018) for
the two-factorial situation, and consequently generalize them to the multi-factorial
case. Consider a relative structure formed according to three factors with I , J and K
levels, respectively. Such a situation can be represented with a compositional cube and
written in the form

x =
⎛

⎜
⎝

x111 · · · x1J1 x11K · · · x1J K
...

. . .
... · · · ...

. . .
...

xI11 · · · xI J1 xI1K · · · xI J K

⎞

⎟
⎠ , (9)

where xi jk > 0,∀i, j, k. The vertical lines separate the levels of the third factor, called
slices in the following. Since compositional cubes form a special case of the concept of
(I · J · K )-part vector compositional data, all basic definitions can be accommodated
for this case.

The sample space of compositional cubes is a subset of the (I · J · K )-part simplex

S I J K =
⎧
⎨

⎩
x = (x111, . . . , xI J K )′ | xi jk > 0, ∀i, j, k;

I ,J ,K∑

i, j,k=1

xi jk = κ

⎫
⎬

⎭
, (10)

which includes only those (I · J · K )-part compositions, which can be recorded into
the form of a three-factorial structure with I rows, J columns and K slices. The basic
operations of the Aitchison geometry (as given in Pawlowsky-Glahn and Egozcue
2001) modify to

x ⊕ y = C(xi jk · yi jk)I ,J ,K
i, j,k=1 and α � x = C(xα

i jk)
I ,J ,K
i, j,k=1, (11)

and they result again in a compositional cube. The Euclidean vector space structure
of the Aitchison geometry is completed by defining the Aitchison inner product for
cubes

〈x, y〉A = 1

2I J K

∑

i, j,k

∑

i ′, j ′,k′
ln

xi jk
xi ′ j ′k′

ln
yi jk
yi ′ j ′k′

. (12)
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2.1 Example: employment structure

The proposed approach will be illustrated with an example where the analysis of the
employment structure in several countries is of interest. For this purpose, data from 32
European members of OECD were collected at http://stats.oecd.org. For each country
in the sample, an estimated number of employees in the year 2015 was available.
The data were structured according to gender and age of the employees and the type
of their contract. More specifically, we distinguish males (M) and females (F), young
(category 15–24),middle-aged (25–54) and older (55 +) employees, and full-time (FT)
and part-time (PT) contracts. The data at hand thus form a sample of 32 cubes with two
rows (gender), two columns (type of contract) and three slices (age), which allow for
a deeper analysis of the overall employment structure, not just from the perspective
of each factor separately, but also from the perspective of the relations/interactions
between them. Besides the global aspects of the employment, the analysis aims also at
revealing the national specifics of the countries contained in the sample. An example
of one cube from Czech Republic is displayed in Table 1, and a graphical overview of
the cubes is depicted in Fig. 1.

Obviously, the counts in the cells of the cubes depend on the population size of
the country. When the analysis of structural patterns of the employment in several
countries is of interest, the compositional approach appears as appropriate, because
the population size is not relevant in this approach.

2.2 Decomposition of compositional cubes

Egozcue et al (2008) proposed a decomposition of a compositional table into an
independent and an interactive part (still a compositional table), which are mutually
orthogonal; their perturbation again leads to the original compositional table. The
independent part mimics the independence of the factors. As in the standard case of
contingency tables, an assumption of independence means that the whole informa-
tion about the relative structure of both factors is preserved in the row and column
marginals, and each entry of the table can be obtained as their product. In the compo-
sitional case, the only difference is that the arithmetic marginals are replaced by the
geometric ones. When the factors are not independent, and the compositional table
does not equal to the independence one, another table needs to be introduced. The
interaction table, simply defined as a residual resulting from the difference between
the original and the independence tables in the sense of perturbation, preserves the
whole information about the relations between the factors and becomes mainly impor-
tant when these relations are analyzed. A similar idea can be utilized also in the case
of compositional cubes, but due to the presence of pairwise and whole interactions, it
is possible to further decompose the interactive part of the cube into additional four
cubes, each preserving information about another source of association between the
factors.

Similar to the case of compositional tables, also parts of the independence composi-
tional cube are formed by the product of row, column and slice (geometric) marginals
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Table 1 Example of one cube from the sample analyzed in Sections 2.1 and 3: employment structure in the
Czech Republic in 2015 (in thousands of employees)

Gender 15–24 25–54 55+
FT PT FT PT FT PT

Female 104.756 17.128 1618.415 90.505 317.031 56.355

Male 169.851 11.165 2127.849 22.759 467.212 38.208

Fig. 1 Graphical representation
of the cube structure used in
Sects. 2.1 and 3. The rows
represent the gender of the
employees, the columns the type
of contract (FT: full-time, PT:
part-time), and the slices
separate different age groups

x indi jk = g(xi••)g(x• j•)g(x••k), (13)

where dots in the index indicate an aggregation over the respective factors. For exam-
ple, the notation g(xi••) stands for the geometric mean of all parts in the i-th row of the
cube, i.e. (

∏J
j=1

∏K
k=1 xi jk)

1/J K . In case of perfect independence of all three factors,
the original cube would be equal to the independence one. Otherwise, all associations
between the factors are preserved in the interactive part

xint = x 	 xind. (14)

As mentioned above, the interactive part can be further decomposed. First, the
relations between row and column factors are analyzed. Aggregation over values of
the slice factor eliminates its impact and reduces the three-dimensional structure to
a system of K similar compositional tables, forming K slices of a cube. According
to Egozcue et al (2008), the interactive part of a table is extracted by a division of
its parts by the respective geometric marginals. These considerations result in the
compositional cube intrc(x) with cells

intrc(x)i jk = g(xi j•)
g(xi••)g(x• j•)

. (15)

From (15) it follows that the intrc(x) is actually formed by K equal slices (com-
positional tables). Moreover, the row and column geometric marginals (that means
compositional tables resulting from an aggregation of cube cells by geometric means
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across the respective direction) are uniform, which underlines the favorable structure
of the proposed decomposition. The system of marginals is completed in the direction
of slices, whose respective marginal table corresponds to (15). In order to extract the
pure interaction between row and slice factor, the effect of the column factor needs
to be filtered out using the geometric mean, and similarly as intrc(x), the row-slice
interaction cube intrs(x) has parts

intrs(x)i jk = g(xi•k)
g(xi••)g(x••k)

. (16)

Similar to the case of intrc(x), also this cube has uniform marginals. This property
holds for the row and slice directions and the marginal table computed across the
columns equal to (16). Finally, interactions between column and slice factors are
contained in the cube intcs(x) with cells

intcs(x)i jk = g(x• jk)
g(x• j•)g(x••k)

. (17)

Since this cube is formed by I identical rows, also row marginals equal to a table with
parts (17), however the column and slice marginals are again uniform, i.e., they are
composedby the samepositive elements.All pairwise interaction cubes are orthogonal,
but since there was always one factor omitted from the consideration, the information
about the interactive part of the original cube is still not complete. The structure of a
compositional cube is completed by considering mutual interactions between all three
factors. This corresponds to the cube

intrcs(x) = xint 	 intrc(x) 	 intrs(x) 	 intcs(x) (18)

with parts

intrcs(x)i jk = xi jkg(xi••)g(x• j•)g(x••k)
g(xi j•)g(x• jk)g(xi•k)

. (19)

Also this cube has an advantageous structure from the perspective of the marginal
tables, which are in this case uniform in all three directions. Note here that a similar
property holds also for the interactive part of a compositional table, where row and
column marginals are from their construction uniform. Such a decomposition of the
multi-factorial data can be very useful for an in-depth analysis of the data structure, as
demonstrated in Fačevicová et al (2016, 2018); Fačevicová et al (2021) for composi-
tional tables. For instance, in the example from Sect. 2.1, the cube intrc(x) preserves
interactions between the gender of employees and the type of their contract. The infor-
mation on relations between these two factors is then completed by intrcs(x), which
involves also the effect of age, which was suppressed in intrc(x). Moreover, from the
decomposition it follows that for those interactions, for which the respective cubes
in the interaction part are constructed, the respective marginals are uniform, i.e., the
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information is fully captured by these cubes and does not propagate further. Conse-
quently, vector (one-factorial) geometric marginals occur in the decomposition indeed
only in the independent part, as expected, and more-dimensional nontrivial marginals
(here in form of compositional tables) are left for bifactorial interaction cubes.

On the other hand, if each part of the decomposition is considered separately, two
challenges need to be taken into account. At first, the dimensionality of the original
cube sample space is decomposed aswell.More specifically, the overall dimensionality
I J K − 1 turns to I + J + K − 3 for the independence cube xind, (I − 1)(J − 1)
for cube intrc(x) (and similarly for the remaining cubes related to paired interactions)
and, finally, the dimensionality of the sample space of cube intrcs(x) is (I − 1)(J −
1)(K − 1). The altered dimensionality, corresponding to each of the cubes from the
decomposition, can cause computational problems when an arbitrary ilr coordinate
system (primarily designed for vector compositional data) is used for the representation
of independence and interaction cubes. For example, this can be the case for robust
statistical analysis (de Sousa et al 2021), but also in general it is desirable to assign
to each of the cubes from the decomposition such a number of coordinates (out of
the total number I J K − 1 of them) that reflects their respective dimensionality. The
second problem concerns the interpretation of the results. Even though it is usually
possible to convert the results back to the simplex, it is convenient to proceed with
the analysis in some well-interpretable coordinates. Obviously, balances, defined as a
log-ratio between two groups of parts, are not able to capture the multi-factorial nature
of the compositional cubes. Although they can help to describe the relative structure
of each factor separately, for a description of interactions we need to construct some
alternative coordinate system. The construction of such orthonormal coordinates is
presented in the following section.

2.3 Coordinate representation of compositional cubes

In this section we will focus on a possible coordinate representation of three-factorial
compositional data, compositional cubes, which simplifies substantially the construc-
tion of ilr coordinates for compositional tables proposed in Fačevicová et al (2018).
A deeper understanding of the structure of this coordinate representation allows its
generalization and application to compositional data describing relationships given by
more than three factors. In order to keep the construction as simple as possible, we
consider a vectorized version of the cube

vec(x) = (x111, x112, . . . , x1J K , x211, . . . , x2J K , . . . , xI11, . . . , xI J K )′ . (20)

As it was already suggested, balances can help to describe the relative structure
within each factor. For this purpose, the whole rows, columns and slices (each rep-
resented by the geometric mean across all levels of the remaining factors) should be
taken. After I − 1 steps of the sequential binary partition applied on the levels of the
row factor (SBPr), a system of I − 1 vectors ξ ri (of length I J K ) is obtained. The i-th

generating vector has entries ξ ri+ =
√

ti
si (si+ti )J K

at positions corresponding to parts

from the si rows of the cube x, which were in the respective step assigned to the +
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group, and ξ ri− = −
√

si
ti (si+ti )J K

at positions corresponding to parts from the ti rows

assigned to the − group, and zero elsewhere. The first group of coordinates is thus
simply formed by row balances, which characterize the structure of the row factor
when the influence of the other factors is suppressed,

zri =
√
si ti J K

si + ti
ln

[
g(xi1••) · · · g(xisi ••)

]1/si

[
g(xi ′1••) · · · g(xi ′ti ••)

]1/ti , for i = 1, 2, . . . , I − 1. (21)

An example can be seen in Sect. 3.1, where this first set of coordinates results in
balance between male and female employees, regardless of their age or type of the
contract. A similar construction can be made for column and slice factors. In the first
case, a sequential binary partition of the whole columns (SBPc) results in a system

of J − 1 vectors ξ cj with entries ξ cj+ =
√

v j
u j (u j+v j )I K

, ξ cj− = −
√

u j
v j (u j+v j )I K

and 0,

always corresponding to parts of u j columns from the + group, v j columns from the
− group, and columns not included to the respective step of SBPc. The inner structure
of the column factor is preserved through column balances

zcj =
√
u jv j I K

u j + v j
ln

[
g(x• j1•) · · · g(x• ju j •)

]1/u j

[
g(x• j ′1•) · · · g(x• j ′v j •)

]1/v j
, for j = 1, 2, . . . , J − 1, (22)

which form the second group in the coordinate system representing the whole com-
positional cube x as well as its independent part xind. The third group describes the
structure of the slice factor. A sequential binary partition of the whole slices (SBPs)

nowdetermines the final system of K−1 vectors ξ sk with entries ξ sk+ =
√

nk
mk (mk+nk )I J

,

ξ sk− = −
√

mk
nk (mk+nk )I J

and 0, corresponding tomk slices from group+, nk slices from

group −, and the remaining slices not included in the k-th step, respectively; the slice
balances are

zsk =
√
mknk I J

mk + nk
ln

[
g(x••k1) · · · g(x••kmk

)
]1/mk

[
g(x••k′

1
) · · · g(x••k′

nk
)
]1/nk , for k = 1, 2, . . . , K − 1. (23)

Note here that the row, column and slice balances form a complete coordinate
representation of xind, since their number equals the dimensionality of the indepen-
dence table. All the remaining (I − 1)(J − 1)(K − 1) coordinates, completing the
orthonormal coordinate system of xind (e.g. those given by Eqs. (24)–(27)), are zero.

When row, column and slice SBPs are defined, we can immediately construct the
remaining elements of the coordinate system of the cube x, which also correspond to
coordinates of xint. For this purpose the normalized Hadamard (entry wise) product
(◦) of the vectors ξ ri , ξ cj and ξ sk and Eq. (3) is used. The vectors ξ rci j = ξ ri ◦ ξ cj ,
i = 1, . . . , I − 1, j = 1, . . . , J − 1 determine (I − 1)(J − 1) coordinates of type
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zrci j =
√

| Ai j || Di j |
| Ai j | + | Bi j | + | Ci j | + | Di j | ln

g(xAi j )g(xDi j )

g(xBi j )g(xCi j )
, (24)

for i = 1, 2, . . . , I−1 and j = 1, 2, . . . , J−1, capturing the interactions between row
and column factors, which through the geometric mean suppress the influence of the
slice factor. Obviously, these coordinates are formed by four groups of parts (denoted
as A, B,C, D and represented by their respective geometric means), and they can be
interpreted in terms of a log-odds ratio, which is also used in a standard statistical
analysis of two-factorial data (Agresti 2002). This system of coordinates, composed
into the (I J K − 1)-component vector zrc with zrci j on the positions (I − 1)(J − 1)
corresponding to intrc(x) and zeros elsewhere, thus allows for the analysis of the
relations exclusively between row and column factors.

The Hadamard product ξ rsik of ξ ri and ξ sk , i = 1, . . . , I −1, k = 1, . . . , K −1, leads
to coordinates

zrsik =
√

| A′
ik || D′

ik |
| A′

ik | + | B ′
ik | + | C ′

ik | + | D′
ik | ln

g(xA′
ik
)g(xD′

ik
)

g(xB′
ik
)g(xC ′

ik
)
, (25)

for i = 1, 2, . . . , I −1 and k = 1, 2, . . . , K −1, which capture the information about
the relations between row and slice factors, when the influence of the column factor
is suppressed. Similar to the case of zrc, also coordinates contained in the respective
vector zrs can be interpreted in terms of a log-odds ratio and are utilized, when the
relationship between row and slice factors is of primary interest.

Finally, the Hadamard products of ξ cj and ξ sk , j = 1, . . . , J − 1, k = 1, . . . , K − 1
lead to vectors ξ csjk and coordinates

zcsjk =
√√√√ | A′′

jk || D′′
jk |

| A′′
jk | + | B ′′

jk | + | C ′′
jk | + | D′′

jk | ln
g(xA′′

jk
)g(xD′′

jk
)

g(xB′′
jk
)g(xC ′′

jk
)
, (26)

for j = 1, 2, . . . , J − 1 and k = 1, 2, . . . , K − 1. The system of these coordinates
zcs completes the odds ratio-type coordinates with those concerning relations between
column and slice factors.

To complete the original data structure, also full interactions between all three
factors need to be contained in the coordinate system. The remaining (I − 1)(J −
1)(K − 1) coordinates are determined by the Hadamard product of all three types of
vectors, ξ ri , ξ

c
j and ξ sk , i = 1, . . . , I − 1, j = 1, . . . , J − 1, k = 1, . . . , K − 1, and

have the general form

zrcsi jk = Qi jk ln
g(xA′′′

i jk
)g(xD′′′

i jk
)g(xF ′′′

i jk
)g(xG ′′′

i jk
)

g(xB′′′
i jk

)g(xC ′′′
i jk

)g(xE ′′′
i jk

)g(xH ′′′
i jk

)
, (27)
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for i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1, and k = 1, 2, . . . , K − 1, where

Qi jk =
√√√√

| A′′′
i jk || H ′′′

i jk |
| A′′′

i jk | + | B′′′
i jk | + | C ′′′

i jk | + | D′′′
i jk | + | E ′′′

i jk | + | F ′′′
i jk | + | G′′′

i jk | + | H ′′′
i jk | , (28)

is a constant ensuring orthonormality of the coordinates. Even though the interpreta-
tion of this last group of coordinates may be a bit tricky (one possible interpretation
is in terms of a log-ratio of two odds ratios), their definition is necessary to complete
the system of I J K − 1 orthonormal coordinates of the original table x. Moreover,
when a sample of compositional cubes is available, these coordinates can be used for
instance to test for the presence of full interactions.

For an easier understanding of the coordinate structure, especially the assignment
of parts into groups, Fig. 2 provides a graphical representation of each type of pro-
posed coordinates. Moreover, the specific system of generating vectors, respective
coordinates, and their interpretation is given in Sect. 3.1.

Besides the benefits of the proposed coordinate system in terms of interpretation, it
is important to point out that the coordinates reflect the dimensionality of the sample
space of the decomposed parts to which they are assigned, and thus allow to ana-
lyze these parts separately. Of course, each decomposed part is still a cube of the
same dimension as the original one (with I rows, J columns and K slices) and its
coordinate representation must contain I J K − 1 components, but the structure of
the vector of coordinates follows the one introduced for zrc of the interaction cube
intrc(x). More specifically, e.g. the cube intrc(x) is represented in the proposed sys-
tem with coordinates zrci j and the remaining coordinates defined in this section equal
zero. Accordingly, with respect to the decomposition described in Sect. 2.2, for the
coordinate representation z of the original compositional cube the following relation
holds,

z = zr + zc + zs + zrc + zrs + zcs + zrcs. (29)

Even though the interpretation of the coordinate system is determined by the initial
SBPs, any other relationship within the compositional cube is reachable through a
transformation matrix T, whose rows are formed by coefficients of the respective log-
arithmized parts of vec(x) in the desirable log-ratios. According to (4), the vectorized
form of a compositional cube vec(x) is equal (after closure) to exp(V′z). Therefore, a
system of log-contrasts representing a given compositional cube equals

z∗ = TV′z. (30)

An example of such a transformation for the coordinates constructed in Sect. 3 is
provided in Appendix.

2.4 General properties of multi-factorial compositional data

The findings from Sects. 2.2 and 2.3 can be directly extended to a general k-factorial
case. k-factorial compositional data are formed by a k-dimensional array of positive
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Fig. 2 Graphical representation of groups of parts involved in each type of coordinates forming the whole
coordinate system designed for compositional cubes

entries, representing a relative structure given by the levels of k constituting factors.
Also such a complex structure contains its independent and interactive parts, where
the independent part is equal to the product of (vector) geometrical marginals. The
sources of interactions are given by the relations between pairs, triplets, quaternions,
etc. of constituting factors, and therefore the interactive part can be further orthogonally
decomposed to objects carrying information about each of these sources. The main
principle is based on aggregation over the redundant dimensions and expression of
interactionswithin the resultant object. In the case of compositional cubeswehave seen
that pairwise interactions actually correspond to the interactive part of a compositional
table formed by geometric means computed across the levels of the third factor, see
e.g. Eq. (15). Similarly, in the case of a four-factorial compositional object, all sources
of interactions between a selected triplet of factors can be reached by a decomposition
of a cube given by an aggregation over the remaining fourth dimension.When we vary
over the fourth dimension, all pairwise and three-way interactions are extracted and,
finally, by subtraction of all these parts together with the independent one, the object
preserving the full interactions is reached (similar as in the Eq. (18)).
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Section 2.3 shows that the whole coordinate representation of a compositional cube
is determined by three systems of SBPs, separately given for the levels of row, col-
umn and slice factors. Similarly, also k-factorial compositions can be represented in
orthonormal coordinates. Balances between levels of the individual factors charac-
terize the independent part of the object. Log-contrasts obtained from the Hadamard
product of pairs, triplets, etc. of SBP basis vectors ξ and Eq. (3) then represent the
respective sources of interactions.

3 Example: employment structure—continuation

Let us go back to the employment structure data set introduced in Sect. 2.1. According
to the proposed methodology, each cube from the sample can be represented by a
system of coordinates (Sects. 3.1 and 3.2), which allows for a deeper analysis of the
structural patterns (Sect. 3.3).

3.1 Coordinate representation

Following Section 2, the row, column and slice SBPs need to be determined prior to
the construction of coordinates. For the factors “type of contract” and “gender”, only
their two levels need to be separated. Consequently, the first two generating vectors
are

ξ r1 =
√

1

12
(1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1)′

and

ξ c1 =
√

1

12
(1, 1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1)′,

where the components of these vectors correspond to the cells of the vectorized form
of the cube,

vec(x) = (x111, x112, x113, x121, x122, x123, x211, x212, x213, x221, x222, x223)
′.

There are more options for the slice SBP, where the analyst can decide which age
group has to be separated first. Here, the youngest group was firstly separated from
the remaining two groups and, in the next step, the middle-aged group (25–54 years)
from the oldest. The other options, starting with the separation of the middle-aged
or the oldest group, respectively, would lead to similar results (in terms of presence
of interaction between factors), but they would slightly alter the interpretation. In the
presented case, the generating vectors are

ξ s1 =
√
1

6
(1,−0.5,−0.5, 1,−0.5,−0.5, 1,−0.5,−0.5, 1,−0.5,−0.5)′
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and

ξ s2 =
√
1

8
(0, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1)′.

Following the construction from Sect. 2, the Hadamard product of the above derived
generating vectors leads (after their normalization) to the remaining system of vectors.
Particularly,

ξ rc11 =
√

1

12
(1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1, 1)′ ∝ ξ r1 ◦ ξ c1,

ξ rs11 =
√
1

6
(1,−0.5,−0.5, 1,−0.5,−0.5,−1, 0.5, 0.5,−1, 0.5, 0.5)′ ∝ ξ r1 ◦ ξ s1,

ξ rs12 =
√
1

8
(0, 1,−1, 0, 1,−1, 0,−1, 1, 0,−1, 1)′ ∝ ξ r1 ◦ ξ s2,

ξ cs11 =
√
1

6
(1,−0.5,−0.5,−1, 0.5, 0.5, 1,−0.5,−0.5,−1, 0.5, 0.5)′ ∝ ξ c1 ◦ ξ s1,

ξ cs12 =
√
1

8
(0, 1,−1, 0,−1, 1, 0, 1,−1, 0,−1, 1)′ ∝ ξ c1 ◦ ξ s2,

ξ rcs111 =
√
1

6
(1,−0.5,−0.5,−1, 0.5, 0.5,−1, 0.5, 0.5, 1,−0.5,−0.5)′ ∝ ξ r1 ◦ ξ c1 ◦ ξ s1,

ξ rcs112 =
√
1

8
(0, 1,−1, 0,−1, 1, 0,−1, 1, 0, 1,−1)′ ∝ ξ r1 ◦ ξ c1 ◦ ξ s2. (31)

Finally, according to Eq. (3), these vectors lead to a system of 11 orthonormal
coordinates:

zr1 = √
3 ln g(x1••)

g(x2••) zrs11 =
√

2
3 ln

g(x1•1)
√
g(x2•2)g(x2•3)

g(x2•1)
√
g(x1•2)g(x1•3)

zc1 = √
3 ln g(x•1•)

g(x•2•) zrs12 =
√

1
2 ln

g(x1•2)g(x2•3)
g(x2•2)g(x1•3)

zs1 =
√

8
3 ln

g(x••1)√
g(x••2)g(x••3)

zcs11 =
√

2
3 ln

g(x•11)
√
g(x•22)g(x•23)

g(x•21)
√
g(x•12)g(x•13)

zs2 = √
2 ln g(x••2)

g(x••3) zcs12 =
√

1
2 ln

g(x•12)g(x•23)
g(x•13)g(x•22)

zrc11 =
√

3
4 ln

g(x11•)g(x22•)
g(x12•)g(x21•) zrcs111 =

√
1
6 ln

x111x221
√
x122x123

√
x212x213

x211x121
√
x112x113

√
x222x223

zrcs112 =
√

1
8 ln

x112x222x123x213
x122x212x113x223

A graphical representation of these coordinates is provided in Fig. 3.

3.2 Interpretation

The interpretation of the coordinates can be discussed on the example of the data
from the Czech Republic, see Table 1. The set of row, column and slice balances (as
a subvector of z) corresponds to
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Fig. 3 Graphical representation of the groups of parts involved in particular coordinates. Yellow parts
constitute the numerator, green the denominator and white parts are not included in the respective log-ratio.
(Color figure online)

(
zr1, z

c
1, z

s
1, z

s
2

)′ = (0.304, 4.672,−2.487, 1.097)′.

These numbers are interpretable, as usual for balances, in terms of a dominance of
either the group of cells in the numerator (positive value) or denominator (negative
value) of the respective log-ratio. Accordingly, in the Czech Republic the proportion of
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female employees slightly dominates over the proportion of males (zr1), and full-time
contracts clearly dominate over part-time contracts (zc1). The slice balances contain
information about the age structure of the employees. Due to the high negative value
of coordinate zs1 it can be concluded that the youngest employees are outbalanced by
those from themiddle age and older groups; within these latter groups, employees aged
between 25 and 54 years prevail (coordinate zs2). More specifically, the ratio between
female and male employees is 1.19 (without the normalizing constant and logarithm),
full-time contracts prevail the part-time almost by a factor of fifteen, the group of 25
+ employees is about 4.6 times bigger than the group of youngest ones and, finally,
there are about twice more employees aged between 25 and 54 than the oldest ones
(55 +). Another possible interpretation is in terms of an average log-ratio between
the given groups of employees across all combinations of the remaining factors. E.g.,
if the coordinate zs1 is divided by its normalizing constant

√
3, it turns out that the

average log-ratio between female and male employees across all combinations of age
groups and types of contract is 0.176. An important source of information are odds
ratio coordinates, which for the Czech Republic result in

(
zrc11, z

rs
11, z

rs
12, z

cs
11, z

cs
12

)′ = (−0.965,−0.249, 0.391,−0.528, 1.128)′.

Coordinate zrc11 compares the type of contract of male and female employees, and the
negative value indicates that the proportion of males with full-time contract, com-
pared to those employed on part-time, is higher than the same proportion of females
or, alternatively, that the proportion of females is higher within employees with a
part-time contract than within those with a full-time contract. The raw odds ratio
between these four groups (formed by the geometric mean across all age groups)
equals 0.33 (exp(−0.965

√
4/3)) and the mean log-odds ratio across the age groups is

−1.12 (−0.965
√
4/3). Coordinates zrs11 and z

rs
12 compare the age structure of male and

female employees and complete the information carried by the balances zr1, z
s
1, z

s
2.

The coordinate zs1 reveals that the youngest group (15–24) is dominated by older
employees—the coordinate zrs11 adds that this dominance tends to be slightly higher
for male employees. On the other hand, the value of the coordinate zrs12 indicates that
the dominance of the age group 25–54 over 55 + tends to be higher for females. Also
the coordinates zcs11 and z

cs
12 can be interpreted in the sense of odds ratios, by comparing

the proportion between full- and part-time contracts in several age groups. The last
group of coordinates is formed by zrcs111 and zrcs112, for the Czech Republic with val-
ues 0.124 and −0.310, respectively. These coordinates inform about mutual relations
between all three factors and their interpretation becomes a bit tricky. Despite of this
complexity (comparable to the complexity of double interaction terms in regression
models), the interpretation in the sense of a double odds ratio is still possible. For
instance, it was already derived that females are employed more often part-time than
males; due to a positive value of zrcs111 it can be concluded that this relation differs
according to the age of employees, specifically it becomes less visible in the youngest
group. The proposed system of orthonormal coordinates is appropriate for the further
statistical analysis of the relations within each cube. For a more detailed interpreta-
tion, the function cubeCoordWrapper of the R package robCompositions

123



Compositional cubes: a new concept for multi-factorial…

z1^r z1^c z1^s z2^s z11^rc z11^rs z12^rs z11^cs z12^cs z111^rcs z112^rcs

−
2

0
2

4
6

Fig. 4 Boxplots of the coordinates describing the employment structure

Table 2 List of sample means, standard deviations, and 95% bootstrap confidence intervals for the mean
of the coordinates describing the employment structure

Mean SD CI Mean SD CI

zr1 0.171 0.322 (0.064, 0.271) zrs11 −0.182 0.164 (− 0.235, − 0.124)

zc1 3.246 1.289 (2.849, 3.697) zrs12 0.230 0.217 (0.158, 0.307)

zs1 − 2.102 0.638 (− 2.323, − 1.903) zcs11 − 0.591 0.490 (− 0.752, − 0.426)

zs2 1.666 0.411 (1.538, 1.809) zcs12 0.631 0.286 (0.537, 0.724)

zrc11 − 0.812 0.333 (− 0.919, − 0.701) zrcs111 0.179 0.222 (0.108, 0.255)

zrcs112 − 0.134 0.135 (− 0.182, − 0.087)

also allows to compute all coordinates without the normalizing constant and therefore
to easier quantify the respective relations.

3.3 Statistical analysis

Since a sample of 32 compositional cubes is available, this sample can be investigated
in the light of the relative structure. Due to the geographical and economical proximity
of some countries, the assumption of independence of the observations seems not to
be sufficiently met in this case, and even though the proposed coordinate system is
in general designed to allow for any statistical processing, this prevents from using
standard inference here. First of all, the behavior of the coordinates in the sample can
be described using boxplots, see Fig. 4, and 95% bootstrap confidence intervals for
the means (both computed by cubeCoordWrapper), which are collected together
with the sample mean values and standard deviations in Table 2.

The scale of the different coordinates presented as boxplots in Fig. 4 is comparable
since it always refers to the log-ratios of the employment data. It is obvious that the
countries in the sample differ mainly in the coordinate zc1, comparing the proportional-
ity of full-time and part-time contracts. Larger differences are also visible in coordinate
zs1, where negative values for all countries are obtained, and thus employees older than
25 years dominate. According to the bootstrap confidence intervals shown in Table 2,
the effects of the different factors and factor combinations represented by the coor-
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Fig. 5 Values of the coordinate zc1 representing the log-ratio between full-time and part-time contracts (left)
and the coordinate zs1, which represents the log-ratio between the youngest group of employees and the rest
(right)

dinates are all significant. Thus, not only the previously mentioned simple balances
between the factor levels but also interactions between factors strongly influence the
overall employment structure.

Besides these general statements, the coordinate representation also allows for a
graphical visualization of the regional patterns. For example, the values of the most
variable coordinates zc1 and zs1 are shown in Fig. 5. From the left map it is clearly
visible that high values of coordinate zc1, and therefore a big dominance of the full-
time contracts, are typical for countries which used to be under the influence of the
former Soviet Union. On the other hand, the highest negative values of the coordinate
zs1, and therefore the biggest prevalence of the older group of employees (25 +), are
typical for the southern countries like Italy, Greece or Spain.

Even though the simple balances zc1 and z
s
1 already carry an important piece of infor-

mation about the employment structure, they suppress the influence of the remaining
factors, as described in Sect. 2.3. The possible deviations from the independence
between factors are preserved in the coordinates zrc11—zrcs112, and the main sources of
variability in this regard can be found e.g. by using principal component analysis
(PCA) applied on this set of coordinates. Moreover, since the proposed coordinate
system respects the dimensionality of the interactive part of the cube, also a robust
version of PCA, based on the minimum covariance determinant (MCD) estimates of
location and covariance, can be used. This idea was intensively described for the case
of compositional tables in de Sousa et al (2021). Note that even though the data can
suffer from the presence of a spatial dependence, here classical PCAwas used to reveal
the main sources of variability. The geographical aspect will be of interest in the later
part of the analysis, which is devoted to clustering. The biplot based on the first two
robust principal components is shown in Fig. 6. According to this result, we can say
that the main sources of differences between the countries in the sample, in terms of
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Fig. 6 Biplot of the first two
principal components resulting
from the robust PCA, performed
on the coordinates of the
interactive part of the
compositional cube
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deviations from independence, are the coordinates zrc11 and zcs11. The left map in Fig.
7 visualizes the values of the coordinate zrc11. This coordinate is negative for every
country in the sample, and therefore the FT/PT ratio is always higher within male
employees compared to females. The biggest differences appear in the Netherlands,
Belgium, Germany, Austria and Italy; this can be caused e.g. by the popularity of
part-time contracts for female employees. On the contrary, in the countries from the
eastern part of Europe, where part-time contracts are not very popular in general (see
Fig. 5), the difference is less visible. The right map in Fig. 7 shows values of coordinate
zcs11. Also this coordinate is mostly negative, the FT/PT ratio is therefore higher for
the older group of employees (25 +). Or, conversely, we can say, that the part-time
contracts are mostly popular in the age group 15–24. This difference is mostly visible
for Denmark and the Scandinavian countries, followed by the Netherlands, Spain and
Slovenia. In the remaining countries, the effect of age on the FT/PT ratio is rather
negligible.

Robust PCA generates some clusters of countries with similar characteristics in
terms of deviations from the independence of the factors. For example, Finland, Swe-
den, Norway andDenmark have high values on the first component, Romania, Croatia,
Bulgaria and Macedonia have high values on the second principal component. A nat-
ural question is, whether it is possible to obtain geographically compact clusters of
countries with similar employment structure and what are the main features defin-
ing these clusters. For this purpose, a clustering method based on two dissimilarity
matrices was used Chavent et al (2018). In this method, the first matrix measures the
dissimilarity between the numerical variables, in our case the coordinates zrc11–z

rcs
112,

and the second provides information about neighboring countries. The result is shown
in Fig. 8. The first cluster is formed by the Scandinavian countries and Slovenia, with
high negative values for zcs11 and very low, (almost zero) values for coordinate zrcs111.
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Fig. 7 Values of the coordinate zrc11, comparing the FT/PT ratio between female and male employees (left),
and the coordinate zcs11, which compares the same ratio but between the youngest group of employees and
the rest (right)

This shows that these countries are characterized by a high popularity of part-time
contracts within the youngest group of employees (see the right map on the Fig. 7 for
comparison), which moreover holds despite their gender. The second cluster includes
countries fromWestern and Southern Europe, such as Austria, Germany, France, Italy
and Spain, with high popularity of part-time contracts for female employees. This
property is represented with high negative values of coordinate zrc11 and is clearly
visible in Fig. 7. Finally, the Baltic countries and Russia form another compact clus-
ter. They are characterized by a low difference in the ratio between female and male
employees within the middle age (25–54) and the oldest (55 +) group (zrs12 close to
zero) and also by a small difference in the same ratiowithin the employees for full-time
and part-time contracts (zrc11 close to zero).

4 Example: mobility data

In the second example, the interest is in the change of the mobility behavior of people
in Austria within the time period February 3rd until August 2nd, 2020, thus during the
first period of the COVID’19 pandemic. Mobility is measured through the radius of
gyration (ROG), a time-weighted distance of the daily movement locations of mobile
phones to the main location of the phone owner, see Heiler et al (2020a, b) for details.
The phone owners are classified with respect to gender and five age groups (15–
29, 30–44, 45–59, 60–74, 75 +). The mobility of each group is represented by the
respective median value of ROG. This dataset was already analyzed in Heiler et al
(2020a), where the relative differences in the mobility between the age groups were
studied through the clr coefficients. This compositional analysis showed an interesting
change in the behavior of the youngest (15–24) and oldest (75 +) part of the population

123



Compositional cubes: a new concept for multi-factorial…

N
O

R
F

IN
S

W
E

D
N

K
S

V
N

E
S

P
F

R
A

IT
A

N
LD

A
U

T
D

E
U

B
E

L
LU

X
G

R
C

B
G

R
M

K
D

E
S

T
LV

A
LT

U
R

U
S

R
O

U
H

R
V

H
U

N
S

V
K

C
Z

E
P

O
L

IR
L

G
B

R
C

Y
P

P
R

T
M

LT
T

U
R0.

00
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

Spatial clustering, interactive part

Fig. 8 Result of spatial clustering based on coordinates zrc11–z
rcs
112 representing the interactive part of com-

positional cubes

during the lockdown period from March 16th to April 6th, 2020 (weeks 12, 13 and
14). The current results are based on the separate analysis of males and females, when
a more complex insight can be reached by a simultaneous study of the age and gender
structure. Moreover, when the daily records are aggregated according to the part of
the week, the relative differences in mobility over weekdays and weekends can be
taken into account. The data at hand can therefore be understood as time series of
26 compositional cubes, each representing the relative mobility structure within one
week from weeks 6-31 of 2020. The row levels are formed by gender (F—female,
M—male), the columns by the parts of the week (WD—weekdays, WE—weekend),
and the slices represent the different age groups.

Prior to the main part of the analysis, the SBP of the slice factor needs to be defined.
With respect to the findings in Heiler et al (2020a), a separation of the economically
active (15–59) and non-active (60 +) population seems to be advisable in the first step.
The results of the simple clr-based analysis ofHeiler et al (2020a) help to define also the
remaining steps of the SBP: In the second step, the youngest group is separated from
those aged between 25 and 59, and the third step focuses on the relative dominance of
group 30–44 over 45–59. Finally, the relative dominance of mobility within the age
group 75 + over 60–74 is highlighted by the last step of the slice SBP.

Based on this coordinate representation, some interesting patterns and their sources
can be revealed by PCA.As themain aim of the analysis is to illustrate the principles of
working with multi-factorial compositional data, the classical approach was applied
here. Note, however, that considering the time dependent nature of the data would
lead to more accurate results. Figure 9 shows biplots based on the first four principal
components, describing 98% of the whole variability.

In order to show the whole structure of the PCA results, the loadings of all PCs are
collected in Fig. 10. However, the vast majority of the variability (98%) is explained
by the first four principal components, whose values are always mainly driven by a
single coordinate:
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Fig. 9 Biplots based on the first four principal components computed for the mobility data. The numbers
represent the week numbers in 2020

Fig. 10 Loadings of the principal components computed for the mobility data
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Fig. 11 Selected balances (without the normalizing constant) computed for the mobility data and their
development over time. The red dashed lines define the first lockdown period in Austria

• PC1—zc1, log-ratio between weekdays and weekend mobility, aggregated over all
gender and age groups,

• PC2—zs1, log-ratio between mobility of economically active and non-active pop-
ulation, aggregated over all other categories,

• PC3—zs2, log-ratio between mobility of age groups 15–29 and 30–59, aggregated
over all other categories,

• PC4—zcs11, log-odds-ratio comparing economically active and non-active mobility
ratio over weekdays and weekends, aggregated over gender.

The main source of variability is given by the ratio between weekdays and weekend
mobility (zc1). As it is visible in Fig. 11, this log-ratio was varying over the whole
studied period but it was also atypically high during weeks 11 and 12 preceding the
lockdown period. This gives an evidence on a decrease of the weekend mobility.
The second principal component helps to detect typical characteristics for the weeks
during and immediately after lockdown (weeks 12–17). When the relative mobility
of the economically active population, quantified by zs1, was among the lowest during
lockdown, mobility of the oldest group 75 + was nearly comparable to the mobility of
the population aged between 60 and 74 (coordinate zs4).Moreover, based on coordinate
zcs11, Fig. 12 shows a remarkable difference in the economically active and non-active
population mobility ratio during weekdays and weekends, when the former tends to
be higher during lockdown. The weeks from the end of the observed period (weeks
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Fig. 12 Selected odds-ratio coordinates (without the normalizing constant) computed for the mobility data
and their development over time. The red dashed lines define the first lockdown period in Austria

24–31) are nicely separated by the third principal component. The relative mobility
of the youngest group 15–29 is among the lowest in comparison to the mobility of
group 30–59 (zs2). Moreover, quite stable and high values of coordinate zrs11, comparing
the ratio between the economically active and non-active population for females and
males, are typical for this period. Finally, PC4 characterizes the behavior during the
weeks 16–22 immediately following the lockdown, with the only exception of week
20. According to the respective loadings, the exclusion of weeks 16-22 is not only
driven by relatively low values of zcs11, but also by a mixture of other phenomenons.
For these weeks we observe a high relative dominance of mobility of group 15-29 over
the mobility of those aged between 30 and 59 (zs2), and a high relative dominance of
the mobility of group 30–44 over group 45–59 (zs3).

5 Conclusions

It has been demonstrated that the concepts developed for two-factorial compositional
data can be extended to compositional cubes, and even to the general k-factorial case.
The fundamental idea is to investigate the relative data structure in terms of log-ratios
between different factors and factor levels. One advantage of such an approach is scale
invariance,which is particularly usefulwhen the reported values of the observations are
not comparable (in our example caused by different population sizes of the countries)
or if the relative structure is of main interest.

It has been shown that each compositional cube can be decomposed into its inde-
pendent and interactive parts. Furthermore, the interactive part can be decomposed
into cubes representing the pairwise factor interactions and the interaction between
all three factors. It turned out that the components of the interactive part have an
advantageous property of uniform marginals and, moreover, that the principle of the
decomposition can be directly extended to the general case of k-factorial composi-
tions. Since the commonly used systems of orthonormal coordinates are not able to
sufficiently describe themulti-factorial nature of cubes and respect the possibility of its
decomposition, an alternative system has been proposed.Moreover, this system can be
constructed in a flexible manner, basically according to the needs or expert knowledge
of the analyst: There might be a certain hypothesis on the relations between factors
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and/or factor levels, and based on the principle of sequential binary partitions (SBPs),
these combinations can be reflected by the constructed coordinates. Even though the
proposed coordinate representation allows to describe the overall relations between
factors, similar as in the case of the well developed theory for the analysis of vector
compositional data, it is also possible to use them for further analysis with standard
statistical methods, or to perform statistical inference with the coordinates, for exam-
ple, by constructing bootstrap confidence intervals for the mean, in order to determine
if the effect conveyed by the coordinate is significant. A proper coordinate representa-
tion of themulti-factorial compositional data can therefore be understood as a first step
in the analysis, possibly followed by other advanced statistical methods. For example,
regression methods with compositional regressors with or without the total (Coenders
et al 2017), or any other proper methods of one-factorial (vector) compositional data
analysis (Pawlowsky-Glahn et al 2015) can be used (after its possible adaptation to
the more complex structure of coordinates).

The idea of modeling interactions between factors using the normalized Hadamard
product of vectors, derived from SBPs at the single factor level, works equivalently for
a higher number of factors. Therefore, the approach presented here for compositional
cubes can be extended in a straightforward manner to higher-order arrays.
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Appendix

The SBPs defined in Sect. 3.1, lead to the following contrast matrix,
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The rows of the matrix correspond to coordinates z specified in Sect. 3.1, and they
are ordered in the following way,

z = (
zr1, z

c
1, z

s
1, z

s
2, z

rc
11, z

rs
11, z

rs
12, z

cs
11, z

cs
12, z

rcs
111, z

rcs
112

)′
.

The columns correspond to parts of ln [vec(x)]. Vector vec(x), the vectorized form of
the compositional cube, consists of parts

vec(x) = (x111, x112, x113, x121, x122, x123, x211, x212, x213, x221, x222, x223)
′ .

An alternative partition can be defined for the slice factor—the age of the employees.
If the relative dominance of the oldest group over the remaining two is of interest, one
can separate this group from the rest first, when defining the slice SBP. The second
step can then separate the middle-aged group (25–54 years) from the youngest, which
leads to the coordinate quantifying the relative dominance of employees aged between
25 and 54 years over those younger than 25. This strategy would alter the structure of
the generating vectors, which now result in

ξ s∗1 =
√
1

6
(−0.5,−0.5, 1,−0.5,−0.5, 1,−0.5,−0.5, 1,−0.5,−0.5, 1)′

and

ξ s∗2 =
√
1

8
(−1, 1, 0,−1, 1, 0,−1, 1, 0,−1, 1, 0)′.

The generating vectors which are not related to the values of the slice factor remain
the same as in Sect. 3.1. More specifically,

ξ r∗1 = ξ r1, ξ c∗1 = ξ c1, ξ rc∗1 = ξ rc1 .
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All the remaining vectors change as follows:

ξ rs∗11 =
√
1

6
(−0.5,−0.5, 1,−0.5,−0.5,−1, 0.5, 0.5,−1, 0.5, 0.5,−1)′ ∝ ξ r∗1 ◦ ξ s∗1 ,

ξ rs∗12 =
√
1

8
(−1, 1, 0,−1, 1, 0, 1,−1, 0, 1,−1, 0)′ ∝ ξ r∗1 ◦ ξ s∗2 ,

ξ cs∗11 =
√
1

6
(−0.5,−0.5, 1, 0.5, 0.5,−1,−0.5,−0.5, 1, 0.5, 0.5,−1)′ ∝ ξ c∗1 ◦ ξ s∗1 ,

ξ cs∗12 =
√
1

8
(−1, 1, 0,1,−1, 0,−1, 1, 0, 1,−1, 0)′ ∝ ξ c∗1 ◦ ξ s∗2 ,

ξ rcs∗111 =
√
1

6
(−0.5,−0.5, 1, 0.5, 0.5,−1, 0.5, 0.5,−1,−0.5,−0.5,1)′ ∝ ξ r∗1 ◦ ξ c∗1 ◦ ξ s∗1 ,

ξ rcs∗112 =
√
1

8
(−1, 1, 0, 1,−1, 0, 1,−1, 0,−1, 1, 0)′ ∝ ξ r∗1 ◦ ξ c∗1 ◦ ξ s∗2 .

The new system of coordinates z∗ can be obtained through the Eq. (4), with the contrast
matrix

T =

⎛
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,

or, alternativelly, as a rotation of vector z. According to (30) the rotation matrix equals

123
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.

In both situations, the coordinate system z∗, highlighting the relative dominance of
the oldest group of employees, is formed by the following eleven coordinates:

zr∗1 = √
3 ln g(x1••)

g(x2••) zrs∗11 =
√

2
3 ln
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√
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