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Ferroptosis is a novel type of iron- and ROS-dependent cell death and is involved in various
diseases. LncRNAs are involved and play important roles in the occurrence and
development of several cancers. However, researches about the role of ferroptosis-
related lncRNAs in glioma are relatively rare. Here, we identified nine ferroptosis-related
lncRNAs and then constructed a prognostic model by the LASSO and Cox analysis. The
model could predict overall survival with high sensitivity and specificity according to ROC
curves. In addition, the cell cycle, p53 signaling, apoptosis, and oxidative phosphorylation
pathways were obviously enriched in the pathogenesis of glioma by gene set enrichment
analysis. A nomogram was constructed by integrating several independent prognostic
clinicopathological features, and it could provide a valuable predictive tool for overall
survival. Furthermore, a strong correlation between these nine lncRNAs and
immunotherapy was found. Glioma patients in the high-risk group had higher TMB
using somatic mutation data, different immune infiltration, and higher expression of
immune checkpoints, indicating these patients might benefit from immune checkpoint
inhibitor therapy. In summary, these nine ferroptosis-related lncRNAs were promising
biomarkers for predicting overall survival and guiding immunotherapy or future immune
checkpoint inhibitor development for glioma patients.
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INTRODUCTION

Glioma is the most common primary malignant tumor of the
central nervous system in adults, accounting for approximately
80% of cases (Stupp et al., 2015; Ostrom et al., 2020). According to
the 2016 classification standards of the World Health
Organization (WHO), the pathological types of glioma can be
divided into low-grade glioma (LGG, grade 1–2) and high-grade
glioma (HGG, grade 3–4) (Louis et al., 2016). LGG has high
differentiation and a good prognosis, and the median overall
survival (OS) is 8–10 years. However, HGG has low
differentiation, high malignancy, and poor prognosis. Among
the types of HGG, the median OS of anaplastic glioma (WHO
grade 3) is 3–4 years, and the prognosis of glioblastoma (GBM,
WHO grade 4) is the worst, with a median OS of only
14.6–17 months (Smoll et al., 2013; Stupp et al., 2015; Gu
et al., 2019; Litak et al., 2019). Glioma is prone to immune
infiltration and recurrence after surgical resection, and there
are limited therapeutic options to date. Patients with glioma
suffer from a high mortality rate and poor quality of life. In
recent years, it has been reported that immune checkpoint
inhibitors (ICIs, i.e., PD-L1 inhibitors) have a certain effect in
the treatment of glioma (Ampudia-Mesias et al., 2021).

Ferroptosis is a novel form of programmed cell death that is
different from apoptosis and autophagy; ferroptosis mainly
occurs through Fe2+ or lipoxygenases, which catalyse the lipid
peroxidation of unsaturated fatty acids that are highly expressed
on the cell membrane, thereby inducing cell death (Dixon 2017;

Woo et al., 2020; Tang et al., 2021). The level of reactive oxygen
species (ROS) in tumor cells is higher than that in normal cells,
and excessive accumulation of ROS activates the apoptotic
pathway and promotes the death of tumor cells (Wang et al.,
2016; Zhao et al., 2019). Iron overload can result in ferroptosis,
which can be activated in cancer cells to fight cancer (Brown et al.,
2020). And inhibiting ferroptosis results in decreased chemo-
sensitivity (Zhang et al., 2020). The application of ferroptosis
inducers can enhance tumor sensitivity to chemotherapy and
radiotherapy, providing a more promising therapeutic strategy
for killing drug-resistant cancer cells (Hassannia et al., 2019; Zhao
et al., 2020). The most interesting finding was that the ferroptosis
inducer erastin can enhance the sensitivity of GBM cells to
temozolomide (Chen et al., 2015).

With the improvement of gene sequencing technology, long
noncoding RNAs (lncRNAs) have attracted increasing attention
because they can regulate gene expression at multiple levels, such
as the chromatin, transcription, and posttranscriptional levels,
and they can participate in various biological processes, such as
cell differentiation, cell cycle regulation, and stem cell
pluripotency maintenance (Lu Q. et al., 2020; Zhuo et al.,
2020; Jiang, et al., 2021). In recent years, multiple studies have
confirmed that regulation of the expression of lncRNAs
(i.e., LINC00618, LINC00336, PVT1, and ZFAS1) is closely
related to ferroptosis (Wang et al., 2019; Lu J. et al., 2020;
Yang et al., 2020; Wang et al., 2021; Yao, et al., 2021; Zhang
et al., 2021). Some lncRNAs (i.e., LINC00336 and ZFAS1) also act
as competitive endogenous RNAs (ceRNAs) to prevent

FIGURE 1 | A flow chart of data analysis methods and processing in this study.
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peroxidation, thereby inhibiting ferroptosis (Wang et al., 2019;
Yang et al., 2020).

Nevertheless, researches about the potential mechanism of
ferroptosis-related lncRNAs in glioma are relatively rare. Herein,
nine ferroptosis-related lncRNAs (AC062021.1, FAM66C,
MIR497HG, TMEM72-AS1, AC010729.2, FAM225B, HOXA-
AS2, LINC00662, and LINC00665) were identified to construct
a risk model in patients with glioma. This risk model aimed to
reveal the potential roles of these biomarkers in the prognosis and
treatment prospects of glioma patients and to further explore the
relationships among tumor mutational burden (TMB), immune
checkpoints, and ferroptosis-related lncRNAs. In particular, the
extra application of these biomarkers in glioma patients during
treatment with immune checkpoint inhibitors (ICIs) was also
explored.

MATERIALS AND METHODS

Data Acquisition
A flow chart of the data analysis and processing methods used in
this study is shown in Figure 1. Patient data were collected from
the Chinese Glioma Genome Atlas (CGGA) (Zhao, et al., 2021)
and The Cancer Genome Atlas (TCGA). After excluding samples

without complete clinical data, a total of 1714 samples were
obtained for final analysis, including the training CGGA693
cohort (n � 693), the validation CGGA325 cohort (n � 325),
and the validation TCGA cohort (LGG, n � 528; GBM, n � 168).
Two hundred fifty-nine ferroptosis-related genes were obtained
from the FerrDb database (Supplementary Table S1) (Zhou and
Bao 2020).

Construction of a Prognostic Model
The 259 ferroptosis-related genes and lncRNAs were analyzed in
the training CGGA693 cohort by Spearman analysis, and thus,
1051 ferroptosis-related lncRNAs were obtained under the
“absolute value of correlation coefficient≥0.3, p < 0.05”
screening condition. Next, 547 prognosis-related lncRNAs
were acquired by univariate Cox regression analysis with the
“p < 0.05”; screening condition. Then, the least absolute shrinkage
and selection operator (LASSO) regression analysis was
performed for variable screening and dimension reduction to
build a simplified and accurate model. The best lambda and
corresponding variables were usually obtained with the least
mean square. Lambda. min was 0.09938703, and
24 ferroptosis-related lncRNAs were identified. Multivariate
Cox regression analysis was further performed, and
9 ferroptosis-related lncRNAs were ultimately identified to
establish a more stable prognostic risk model. The risk score
was calculated with the regression coefficients and expression of
genes. A Sankey diagram was constructed to visualize the
relationship between the 259 ferroptosis-related genes and
lncRNAs. According to the expression levels of ferroptosis-
related lncRNAs, glioma patients were divided into high- and
low-expression groups in the CGGA693 cohort, and then,
Kaplan-Meier curves of the two groups were constructed to
further explore the value of these 9 ferroptosis-related lncRNA
prognostic biomarkers.

Assessment and Validation
According to the median risk score, glioma patients in the
training CGGA693 cohort were divided into high- and low-
risk groups. Kaplan-Meier analysis and the long-rank test were
applied to identify whether the OS rates of the two risk groups

TABLE 1 | The clinical characteristics of glioma patients in CGGA.

Characteristics Training Validation 1

CGGA693 (n = 693) CGGA325 (n = 325)

PRS type
Primary 422 229
Recurrent 271 62
Secondary 0 30

Grade
WHO II 188 103
WHO III 255 79
WHO IV 249 139

Gender
Female 295 122
Male 398 203

Age
≥ 60 83 33
<60 609 292

Follow-up state
Alive 266 96
Dead 397 220

Radiotherapy
Untreated 136 66
Treated 510 244

Chemotherapy
Untreated 161 111
Treated 486 193

IDH mutation status
Mutant 356 175
Wildtype 286 149

1p19q codeletion status
Non-codel 478 250
Codel 145 67

MGMTp methylation status
Methylated 315 157
Un-methylated 227 149

TABLE 2 | The clinical characteristics of glioma patients in TCGA.

Characteristics Validation 2

TCGA (n = 696)

Type
GBM 168
LGG 528

Follow-up state
Alive 420
Dead 273

Gender
Female 298
Male 398

Age
≥ 60 158
<60 538
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were significantly different. ROC curves (AUCs for 1-, 3-, and 5-
years OS) were used to assess the specificity and sensitivity of the
predictive model, which could be analyzed by using the
“survivalROC” R package. A risk score map, survival status
distribution map, and expression heatmap were plotted to
display the distribution of patients and the expression of
biomarkers between the low- and high-risk groups. To verify
whether the risk model was reliable for predicting OS, the same
methods were performed in two external cohorts (CGGA325 and
TCGA).

Association of Prognostic Biomarkers and
Clinicopathologic Features
To explore the relationship between ferroptosis-related
prognostic lncRNAs and clinicopathologic factors, the
expression of prognostic biomarkers among subgroups

with different statuses was analyzed, including risk
stratification, WHO grade, primary or recurrent type, IDH
mutation status, and 1p19q codeletion status. These statistical
analyses were applied to both the training and validation
cohorts.

Functional Enrichment Analysis
To elucidate the underlying biological mechanism of the present
results, gene set enrichment analysis (GSEA) was performed in
GSEA V4.1.0 based on the Molecular Signatures Database v7.4
(Subramanian et al., 2005). To explore the regulatory mechanism
of the screened candidate lncRNAs, the relationships among
miRNAs, mRNAs, and lncRNAs were evaluated, and a
potential ceRNA network in the regulation of glioma was
constructed. These 9 biomarkers were input into the DIANA
tool LncBase v.2 to predict the corresponding miRNAs
(Paraskevopoulou et al., 2016). Then, mRNAs targeted by

FIGURE 2 | Construction of the ferroptosis-related lncRNA prognostic biomarkers. (A, B) LASSO regression model. The red dots indicate the partial likelihood of
deviance values, the grey lines indicate the standard error (SE), and the two vertical dashed lines on the left and right indicate optimal values byminimum criteria and 1-SE
criteria, respectively. (C) Multivariate Cox regression analysis revealed that 9 ferroptosis-related lncRNAs were independent prognostic factors for glioma patients. (D)
Sankey diagram shows the relationship among ferroptosis-related genes, ferroptosis-related lncRNAs, and risk types.
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miRNAs were predicted with the condition of no less than
three target-predicting programs in the Encyclopedia of RNA
Interactomes (Li, et al., 2014). The differentially expressed
mRNAs (DEmRNAs) between the high- and low-risk groups
were identified by “limma” R. The final mRNAs were identified
by integrating predictive mRNAs and DEmRNAs. The ceRNA
network was constructed and visualized by Cytoscape (version:
v3.7.1) (Shannon et al., 2003). Afterward, the functional
enrichment results of these mRNAs in the ceRNA network
were obtained by gene ontology (GO), including the biological
process (BP), cellular component (CC), molecular function
(MF), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis via the “clusterProfiler” R
package. The p cut-off-value and q cut-off-value were
both 0.05.

Nomogram Construction and Assessment
Univariate and multivariate Cox regression analyses of
clinicopathological features were used to identify
independent prognostic factors. Then, a nomogram was
constructed based on these independent prognostic factors.
This nomogram could calculate the OS rates of glioma patients

at 1, 3, and 5 years, which provides valuable suggestions for
clinicians to judge the OS of glioma patients. In addition, the
concordance index (C-index) was calculated to evaluate the
predictive ability of a nomogram, and calibration curves were
used to evaluate the accuracy of the nomogram. The higher the
C-index is, the more accurate the prediction model.
Calibration curves, including 1-, 3-, and 5-years curves,
were drawn in the “rms” R package to assess whether there
was a good match between the actual probability of OS and the
predicted probability.

Immune Infiltration
The association between these ferroptosis biomarkers and six
types of immune cells (B cells, CD8+ T cells, CD4+ T cells,
neutrophils, macrophages, and dendritic cells) was identified
with the TIMER database (Li T. et al., 2020). Pearson’s
correlation coefficients and estimated p values were
calculated. Subsequently, single-sample GSEA (ssGSEA) was
performed to assess the immune response in the two risk
groups using the “gsva” R package. Additionally, the
ssGSEA scores of 13 immune cell infiltrate and 16 immune-
related functions were calculated in the two risk groups and

FIGURE 3 | Nine biomarkers in Kaplan-Meier analysis in the training CGGA693 cohort (A) AC010729.2, (B) AC062021.1, (C) FAM66C, (D) FAM225B, (E) HOXA-
AS2, (F) LINC00662, (G) LINC00665, (H) MIR497HG and (I) TMEM72-AS1.
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FIGURE 4 | Assessment of the risk score model based on ferroptosis-related prognostic biomarkers in the training CGGA693 cohort. (A) Kaplan-Meier survival
based on risk level. (B) ROC curves for predicting OS of glioma patients based on the risk score. (C–E) The risk score, survival distribution of patients with increased risk
scores, and expression heatmap of ferroptosis-related lncRNAs based on risk level.
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FIGURE 5 | Correlation between the expression level of nine ferroptosis-related lncRNAs and clinicopathological features in the training CGGA693 cohort. (A–E) Risk level,
WHO grade, PRS type, IDHmutation status, and 1p19q codeletion status. WHO:World Health Organization; P: Primary, R: Recurrent, S: Secondary Recurrent; ns: Not significant,
*p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6 |Gene set enrichment analysis (GSEA) in the training CGGA693 cohort. (A)GSEA suggested notable enrichment of pathways in the low-risk group and
(B–I) GSEA suggested significant enrichment in the high-risk group.
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displayed as a heatmap and boxplots. The immune difference
between the two risk groups was depicted in the heatmap and
violin plots. In addition, stromal scores and immune scores for
two risk groups were calculated and compared according to the
ESTIMATE algorithm (Yoshihara, et al., 2013).

Tumor Mutational Burden and Immune
Checkpoints
Tumor cells with many mutations were far different from normal cells
and thusmore easily found by the immune system. Thus, patients with
higher TMB theoretically benefit more from immunotherapy.
Mutation data acquired by Mutect software were downloaded from

the TCGA database, and TMB was calculated using R software. TMB
values were analyzed between high- and low-risk groups in the TCGA
cohort. Based on the median TMB value, glioma patients were divided
into low- and high-TMB groups. In the two TMB groups, survival
analysis and correlation analysis between TMB and
ferroptosis-related biomarkers were conducted. Moreover,
the expression levels of immune checkpoints were
compared between the two risk groups.

Statistical Analysis
The data were statistically processed by the R package. The
Wilcox test was used to compare two groups in boxplots.
Survival differences were determined by the Kaplan-Meier

FIGURE 7 | A ceRNA network in the regulation of glioma. Light blue, light green, and red colours represent miRNAs, mRNAs, and lncRNAs, respectively.
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curve and long-rank test. p < 0.05 was considered to indicate
statistically significant differences.

RESULTS

Construction of a Prognostic Model
The clinical information of the glioma patients obtained from
the CGGA and TCGA cohorts is summarized in Table 1 and
Table 2. Nine ferroptosis-related prognostic lncRNAs were
identified in the training CGGA693 cohort after serial analysis,
including Spearman analysis, univariate Cox regression
analysis, and LASSO-Cox regression analysis (Figures
2A–C). The risk score was thus calculated by the expression
of 9 ferroptosis-related lncRNAs and their corresponding

regression coefficients: Risk score � 0.9849102 *
ExpAC010729.2–0.01261145 * ExpAC062021.1 + 0.18957587 *
ExpFAM225B—0.05426328 * ExpFAM66C + 0.02465331 *
ExpHOXA-AS2 + 0.03022672 * ExpLINC00662 + 0.01995719 *
ExpLINC00665–0.00924465 * ExpMIR497HG—1.09779996 *
ExpTME72-AS1 (Supplementary Table S2). These lncRNAs
included 4 protective biomarkers (AC062021.1, FAM66C,
MIR497HG, and TMEM72-AS1) and 5 risk biomarkers
(AC010729.2, FAM225B, HOXA-AS2, LINC00662, and
LINC00665). A Sankey diagram was drawn to visualize the
association among these 259 ferroptosis-related genes,
9 ferroptosis-related lncRNAs, and OS in patients with
glioma (Figure 2D). Furthermore, survival analysis of these
biomarkers in the training CGGA693 cohort was conducted
(Figure 3).

FIGURE 8 | Construction and assessment of a nomogram in the training CGGA693 cohort. (A) Univariate Cox regression. (B) Multivariate cox regression. (C) A
prognostic nomogram was used to predict the 1-, 3-, and 5-years survival probability of patients with glioma. (D–F) Calibration curves of the nomogram at 1, 3, and
5 years. The Y-axis and X-axis represent the actual and nomogram-predicted survival probability, respectively.
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FIGURE 9 | Comparison of immune cell infiltration and functions elevated by ssGSEA between the high- and low-risk groups in the training CGGA693 cohort. (A)
Heatmap of ssGSEA scores of immune cells and functions. The ssGSEA scores of 16 immune cells (B) and 13 immune functions (C) between the high- and low-risk
groups of glioma patients in violin plots.
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Assessment and Validation
According to the median risk score, patients in the training
CGGA693 cohort were divided into two groups. The survival
analysis showed that the OS (median OS: 94.5 months) of the
low-risk group was significantly prolonged compared with that
(median OS: 22.2 months) of the high-risk group (Figure 4A,
p < 0.0001). To assess the specificity and sensitivity of this
prognostic risk model in glioma, time-independent ROC
curves were plotted, and the AUCs used to predict the 1-, 3-,
and 5-years OS of glioma patients were 0.791, 0.84, and 0.856,
respectively (Figure 4B). The risk score curve, the survival status
curve, and the expression heatmap of these prognostic
biomarkers in glioma patients are shown in Figures 4C–E.
The survival status curve showed a larger proportion of dead
patients in the high-risk group, which was consistent with the
survival analysis. The results were validated in the CGGA325 and
TCGA cohorts (Supplementary Figures S1, S2).

Association of Prognostic Biomarkers and
Clinicopathologic Features
To determine whether these ferroptosis-related prognostic
lncRNAs were associated with clinical features, expression in
different clinical groups was analyzed. There were significant
differences in the expression of 9 ferroptosis-related prognostic
lncRNAs between the high- and low-risk groups in the CGGA693
cohort (Figure 5A), which were validated in the CGGA325 cohort
(Supplementary Figure S3A) and the TCGA cohort (Supplementary
Figure S4A). Comparedwith theWHOgrade II group, the expression
of FAM66C and TMEM72-AS1 was significantly different in the
WHO grade III group, and the expression of eight prognostic
biomarkers was significantly different in the WHO grade IV
groups (CGGA693 and CGGA325 cohorts) (Figure 5B,
Supplementary Figure S3B). Compared with the primary glioma
group, the expression of AC062021.1, FAM225B, LINC00662,
LINC00665, and TMEM72-AS1 was significantly different in the
recurrent glioma group of the training CGGA693 cohort
(Figure 5C). However, only AC062021.1, HOXA-AS2, and
TMEM72-AS1 in the recurrent glioma group were significantly
different, and only AC062021.1, FAM66C, and LINC00662 were

significantly different in the secondary recurrent glioma group of
the validation CGGA325 cohort, which may be caused by the limited
sample size (Supplementary Figure S3C). There were different
expression levels of eight ferroptosis-related prognostic lncRNAs
between the groups with and without IDH gene mutations in the
CGGA693 cohort (Figure 5D), which was consistent with the
CGGA325 cohort (Supplementary Figure S3D). Similar findings
were demonstrated between the two types of groups with and without
1p19q codeletion (Figure 5E), which was validated in the CGGA325
cohort (Supplementary Figure S3E). In addition, the expression of all
9 lncRNAs was significantly different between the GBM and LGG
subgroups in TCGA cohort (Supplementary Figure S4B).

Functional Enrichment Analyses
To elucidate the underlying biological mechanism of the
differences between the two risk groups, GSEA was performed
in the CGGA693 cohort. The results showed that oxidative
phosphorylation was significantly enriched in the low-risk
group (Figure 6A). Several key pathways (cell cycle, ECM-
receptor interaction, p53 signaling, JAK-STAT signaling, focal
adhesion, regulation of actin cytoskeleton, cancer and Toll-like
receptor (TLR) signaling pathways) were significantly enriched in
the high-risk group (Figures 6B–I).

The expression correlations of lncRNA-miRNA and miRNA-
mRNA in potential ceRNA pairs in glioma were predicted to
explore the possible regulatory mechanism of lncRNAs. Only
eight of 9 lncRNAs were found to have regulatory mechanisms.
(Figure 7, Supplementary Table S3). They may play important
roles in the transcriptional regulation of glioma. GO analysis
showed that the regulation of angiogenesis was obviously
enriched in the BP term of glioma (Supplementary Figure
S5). Chen et al. reported that elevated ATF4 expression can
enhance proliferation, migration, and angiogenesis in glioma, but
the ferroptosis inducer erastin can attenuate this effect. This result
implied that ferroptosis could inhibit tumor angiogenesis (Chen,
et al., 2017). Moreover, the PI3K-Akt signaling pathway was
enriched in the KEGG term of glioma (Supplementary Figure
S5). Yi et al. found that activating the mutation of PI3K can result
in ferroptosis resistance in tumor cells, while the expression of
SREBP1 or SCD1 can inhibit the PI3K/Akt/mTOR axis by

FIGURE 10 | Patients with glioma in the high-risk group had higher immune scores (A) and higher stromal scores (B) in the CGGA693.
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FIGURE 11 | Tumor mutational burden (TMB) analysis in the TCGA cohort. (A) TMB levels of high- and low-risk groups. (B) Kaplan-Meier survival analysis between
high- and low-TMB groups divided by the median TMB. (C) Expression heatmap and (D) violin plots of 9 ferroptosis-related lncRNAs between the high- and low-level
TMB groups in the TCGA cohort.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 10 | Article 81764313

Shi et al. Ferroptosis-Related Biomarkers in Glioma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TABLE 3 | Currently ongoing clinical trials for immune checkpoint inhibitors in cancer.

Immune checkpoint Monoclonal antibody NCT number

CTLA4 Ipilimumab, tremelimumab NCT04084951
HAVCR2 (TIM3) Cobolimab (TSR-022), MBG-453, INCAGN02390 NCT04139902, NCT02608268, NCT04370704
PDCD1 (PD1) Pembrolizumab, nivolumab, tislelizumab, toripalimab, TSR-042 NCT02563002, NCT03113266, NCT03307785
TIGIT BMS-986207, AMR101, Icosapent Ethyl Oral Capsule NCT04570839, NCT03661047, NCT04682665
TNFRSF4 (OX40) PF-04518600 NCT03092856, NCT03971409
TNFRSF9 (CD137) GVAX NCT03767582
CD274 (PD-L1) Atezolizumab, durvalumab, avelumab, IMC-001 NCT04084951, NCT04230759, NCT04268368, NCT04196465
CD40 (TNFRSF5) APX005M (sotigalimab) NCT03597282, NCT03719430
CD47 PF-07257876, TTI-621, HX009 NCT04881045, NCT02890368, NCT02663518, NCT04886271
CD80 (B7-1) IMC-001 NCT04196465

FIGURE 12 | Immune checkpoint analysis in the CGGA693 cohort. (A, B) Expression of immune checkpoints between the high- and low-risk groups in the training
CGGA693 cohort.
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regulating lipid metabolism, which can sensitize the ferroptosis of
cancer cells and play an antitumor role (Yi, et al., 2020).

Nomogram Construction and Assessment
Some clinical characteristics related to the prognosis of glioma
were identified after univariate and multivariate Cox regression
analyses in the CGGA693 cohort. To improve predictive ability
and provide a quantitative tool to predict the survival outcomes of
glioma patients in clinical practice, a nomogram was constructed
based on these independent prognostic factors, including risk
level, primary or recurrent type, grade, age, and 1p19q codeletion
status (Figures 8A–C). The C-index was 0.786, which indicated
that this nomogram model had a good predictive value.
Calibration curves confirmed again that there was a good
match between the actual probability of 1-year, 3-years, and 5-
years OS and the predicted probability of the nomogram
(Figures 8D–F).

Immune Infiltration
Glioma, especially GBM, with high malignancy and a high
recurrence rate, did not respond well to traditional treatment.
Here, we studied whether these lncRNAs were associated with
immune infiltration and thus could guide their potential
application in immunotherapy in glioma. The correlation of
FAM66C and distinct immune cells was elucidated by the
TIMER database (Supplementary Figure S6). In addition,
different scores were discovered for several immune cells and
immune-related functions in the two risk groups by ssGSEA. The
heatmap of the ssGSEA score displayed distinct immune infiltration
statuses in the two risk groups of this ferroptosis-related model
(Figure 9A). In the Violin diagram,most of the 16 immune cells had
different scores between the high- and low-risk groups (Figure 9B).
Similar results were also observed for 13 immune-related functions
(Figure 9C), especially for immune checkpoints. These results
implied that comprehensive analysis of immunological cells and
functions may be essential before immunotherapy, especially before
ICI therapy. In addition, patients in the high-risk group had higher
immune scores and stromal scores (Figure 10).

Tumor Mutational Burden and Immune
Checkpoints
TMB is a novel biomarker of the response of patients withmalignant
tumors to ICIs (Ready, et al., 2019). The FDA approved high TMB
levels as one of the treatment standards for solid tumor patients to
receive medical prescriptions with ICIs. The analysis results of the
TCGA cohort showed that the risk stratification calculated from our
riskmodel was consistent with the level of TMB. Patients at high risk
had a higher TMB level than those at low risk (Figure 11A, p <
0.001), which indicated that glioma patients at high risk may benefit
from immunotherapy. Kaplan-Meier curves showed that the OS in
the high-TMB group was significantly lower than that in the low-
TMB group (Figure 11B, p < 0.001). The expression heatmap of
these 9 ferroptosis-related prognosis lncRNAs and TMB was shown
in Figure 11C. The expression of these nine lncRNAs was
significantly different between the high- and low-level TMB

groups (Figure 11D), which affirmed that TMB was associated
with the lncRNAs in our model.

Given the higher ssGSEA score of immune checkpoints and
higher TMB in the high-risk group, the expression of immune
checkpoints based on the risk level was further analyzed in detail.
The results showed that the expression levels of many immune
checkpoints in the high-risk group were significantly higher than
those in the low-risk group in the CGGA693 cohort (Figure 12).
Therefore, glioma patients with high risk in our model might
receive more benefits from ICI therapy.

DISCUSSION

The role of ferroptosis, a new form of cell death, in malignant
tumors has been gradually elucidated, and more ferroptosis-
related genes have been identified (Liang et al., 2020; Liu
et al., 2020; Zhuo et al., 2020). In recent years, ferroptosis-
related lncRNAs, which play a regulatory role in protein-
coding, have attracted increasing attention (Jiang et al., 2021;
Wu and Liu 2021; Zhang et al., 2021). After data mining and
analysis, we constructed a ferroptosis-related lncRNA risk model
with prognostic value in the CGGA693 cohort and further
verified the results in the CGGA325 and TCGA cohorts. In
addition, a nomogram was constructed to provide valuable
suggestions for clinicians to judge the OS of glioma patients.
Based on the TMB level, the immune status and expression of
immune checkpoints displayed a strong positive correlation
between the two groups in our risk model. Thus, our risk
model might be used to guide immunotherapy in patients
with glioma.

The dysregulation of 9 ferroptosis-related lncRNAs was
related to the OS of glioma patients, especially those with
wild-type IDH, 1p19q codeletion, disease recurrence, and
tumor malignancy. Some of these lncRNAs have been
previously reported to play a role in glioma and other
malignant tumors. For example, FAM225B plays an important
role in cell migration and focal adhesion and is related to the OS
of glioma patients (Li, et al., 2020; Ma and Liu 2021). HOXA-AS2
is involved in the pathogenesis of glioma and regulates glioma cell
viability, cell migration, and invasion, participating in the
occurrence of vasculogenic mimicry and apoptosis (Gao et al.,
2018; Wu et al., 2019). Wu et al. revealed that LINC00662 in the
ceRNA network (the LINC00662/miR-107/HMGB1 axis)
regulated cell proliferation and the invasion of glioma and
could serve as a therapeutic target for patients with glioma
(Wu et al., 2020). More interestingly, LINC00665 can encode a
special micropeptide (CIP2A-BP) to inhibit the progression of
three negative breast cancers or act as a ceRNA that is involved in
regulating the LINC00665/AGTR1/miR-34a-5p axis and other
biological behaviours in glioma (Guo et al., 2020; Ruan et al.,
2020; Dai et al., 2021). Additionally, MIR497HG was reported to
be associated with proliferation, migration, invasion, and lymph
node metastasis in bladder cancer and breast cancer (Zhang et al.,
2019; Zhuang et al., 2020). However, until now, there have been
no reports on the function of these lncRNAs in ferroptosis;
therefore, future in-depth work is required.
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GSEA showed that oxidative phosphorylation-related genes
were significantly enriched in the low-risk group. Oxidative
phosphorylation (OXPHOS) and glycolysis can maintain
tumor propagation by isogenic glioma stem cells (GSCs) but
the former can switch to the latter under metabolic stress
(Shibao et al., 2018). In addition, both of them can sustain the
emergence of glioma independently by detecting the metabolic
requirements of GSCs (Saga et al., 2014; Yoshida and Saya
2021). Gboxin, an oxidative phosphorylation inhibitor, exerts
specific toxicity in glioblastoma (Shi et al., 2019). Another p53
signaling pathway enriched in the high-risk group may play an
essential role in the ferroptosis-related regulation of glioma.
EX527, a Sirt-1 inhibitor, can inhibit the growth of glioma by
activating the p53 signaling pathway, which was reported to be
related to ferroptosis in lung cancer, and HOXA-AS2 may be
associated with the p53 gene in hepatocellular carcinoma (Mao
et al., 2018; Lu J. et al., 2020; Lu Q. et al., 2020; Wang et al.,
2020; Zhao et al., 2020). Therefore, ferroptosis-related
lncRNAs may play an important role in the potential
ferroptosis-related regulatory mechanism of glioma.

Several studies have shown that TMB is a very effective
prognostic marker and is associated with immune checkpoints
(PD-1, PD-L1, etc.) in many cancers, including GBM (Yarchoan
et al., 2017; Litak et al., 2019; Ready et al., 2019; Wang and Li
2019; Marabelle et al., 2020; Yin et al., 2020). The FDA approved
TMB-H as one of the treatment standards for solid tumor
patients to receive ICIs (i.e., a PD-1 inhibitor, pembrolizumab)
(Strickler et al., 2021). Our study confirmed that the TMB level
predicts the OS of glioma patients (Figure 11B) and is associated
with ferroptosis-related biomarkers (Figure 11D). Given the
important role of ICIs in diverse cancers (André et al., 2020;
Cacciotti et al., 2020; Ott et al., 2020), we further analyzed all
immune checkpoints in glioma and found that most of those
immune checkpoints, such as PD-1, PD-L1, PD-L2, CTLA4, and
TIM3, were significantly different between the two risk groups
(Figure 12). Gliomas with a high TMB may benefit from PD-1
inhibitors (Touat et al., 2020). However, gliomas usually have a
low TMB and are associated with a highly immunosuppressive
microenvironment, which may be a potential mechanism of
immunotherapy resistance (Touat et al., 2020). Moreover, ICIs
activate the body’s antitumor immune response by blocking
immune checkpoints, and the side effects (immune-related
adverse events, irAEs) induced by activating the immune
system are a major challenge in clinical practice (Postow et al.,
2018). Notably, irAEs of immunotherapy have a very high
incidence (54–76%), and different ICIs cause different toxic
effects (Xu et al., 2018). For instance, nivolumab (anti-PD-1)
usually causes endocrine toxicities; atezolizumab (anti-PD-L1)
mainly causes hypothyroidism, nausea, and vomiting;
pembrolizumab (anti-PD-1) mainly causes arthralgia,
pneumonitis, and hepatic toxicities; and iplimumab (anti-
CTLA4) mainly causes skin, gastrointestinal, and renal
toxicities. Therefore, more ICIs need further exploration to
reveal their efficacy and safety. Some ICIs (MEDI6469,
tislelizumab, sotigalimab, avelumab, and tremelimumab) of
currently ongoing clinical trials in cancers are summarized in
Table 3 and have been used in animal studies, clinical trials, or

patients with cancer (André et al., 2020; Cacciotti et al., 2020;
Herbst et al., 2020; Powles et al., 2020; Armand et al., 2021; Baas
et al., 2021; Duhen et al., 2021; Goldman et al., 2021; O’Hara et al.,
2021; Ye et al., 2021; Zhai et al., 2021). Some of the immune
checkpoints in our study do not currently have corresponding
ICIs, suggesting that ICIs could be further developed and may
play a crucial role in glioma immunotherapy in the near future.

CONCLUSION

In summary, we first identified 9 ferroptosis-related lncRNAs that
could be independent prognostic biomarkers of glioma patients
and created a prognostic risk model of glioma. This risk model
based on these nine biomarkers can predict the outcome of
patients with glioma in some clinical conditions, such as IDH
wildtype, 1p19q codeletion, and disease recurrence; in particular,
the nomogram can predict the OS rate of clinical patients, which
may provide a valuable suggestion for clinicians to judge the OS
of glioma patients. Additionally, this risk model may have
potential application value for guiding immunotherapy or
future ICI development for glioma patients.
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