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Abstract: Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues
and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can
be glycosylated in different ways due to post-translational modification of the protein in different
cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from
lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells
and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared
with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear
discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum
contributions of the spectral features were determined and their contribution to the spectrum of each
separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for
successful separation of the spectra of different ACEs. However, more spectral information could be
obtained from analysis of 50 spectral features. Band assignment showed that several features did
not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate
contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of
tissue-specific ACEs.

Keywords: angiotensin I-converting enzyme; SERS; nanostructured surface; full spectra assignment;
linear discriminant analysis; tissue-specificity; glycosylation

1. Introduction

Raman spectroscopy is a common and well developed technical analytical method for
biomedical applications [1,2]. However, this method has a limitation due to the low quan-
tum yield, especially in the case of proteins. The discovery of the surface-enhanced Raman
scattering (SERS) effect helped to increase the sensitivity and removed this limitation [3]
through the use of nanostructured substrates. The development of the theory of the method
and technologies for the formation of SERS substrates has led to the appearance of a number
of substrates of a different nature [4–14]. The SERS method has been successfully applied
for the study of serum albumin, serum glycated albumin, myoglobin, butyrylcholinesterase,
and angiotensin-converting enzyme from seminal fluid [8,9,11,15–17], thus demonstrating
perspectives of the method for analyzing a wide range of proteins. It should be especially
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noted that SERS can be applied for glycated human albumin biosensing [8]. Glycation
is usually caused by an excess of sugar in the blood due to diabetes. The SERS method
allowed discrimination of glycated and non-glycated albumin both in buffer and in the
blood plasma.

Glycosylation is one of the most common of over 300 known post-translational mod-
ifications. For many proteins, glycosylation is an essential step in the synthesis, playing
important roles in various biological processes, such as the regulation of protein folding
and sorting, cell proliferation and differentiation, cell–cell recognition, protein–protein com-
munication, adhesion, migration, and immune responses [18]. The multifaceted process of
glycan synthesis is influenced by a large number of factors, including the compartmental-
ization of glycosyltransferases, the supply and transport of sugars and sugar nucleotides.
These processes can change during the development of various pathologies, e.g., can-
cer, which affects the final structure of glycans [19]. These aberrant glycans can serve as
biomarkers [20]. Even in healthy tissues, the pattern of glycosylation of the same protein
can vary greatly depending on the type of cell in which the protein was synthesized. This
feature can help to identify the origin of a protein [21–24].

To find out whether different glycosylation of the same protein could affect SERS
spectra, we have chosen angiotensin I-converting enzyme (ACE, EC 3.4.15.1, CD143) as
a model protein. ACE is a highly glycosylated type I protein expressed on the surface
of endothelial, epithelial, neuroepithelial cells, as well as cells of the immune system
(macrophages and dendritic cells) [25,26]. ACE is also present in the biological fluids of the
organism, including blood, as a soluble form which originates by proteolytic cleavage of
juxtamembrane sequence of the protein and loss of its transmembrane anchor [25]. The
level of ACE in the blood can serve as a marker of some pathologies [27–30].

ACE produced in different cells is coded by the same gene [26]. However, enzymatic
and immunological ACE properties can vary due to different glycosylation [31–34]. Human
ACE contains 17 potential N-glycosylation sites, 10 of which are located on the N domain
of the enzyme, and seven on the C domain [35]. However, the exact position of really
occupied sites, as well the structure of glycans, is only partly characterized. Nevertheless,
it was shown that ACE produced in various cells may differ in the number of actually
glycosylated sites and in the structure of oligosaccharide chains [32,34,36–38]. Thus, ACE
from human seminal fluid was shown to contain seven oligosaccharide chains, five of
which were complex-type glycans while two appeared to be mannose-type [37]. The mass
spectrometry of tryptic hydrolyzates of ACEs isolated from different human organs made
it possible to reveal several N-glycosylation sites which are really occupied by glycans, as
well as to demonstrate the presence of different glycan structures in different ACEs [32,34].
Such variability in the pattern of glycosylation of ACE from different tissues affects the
surface structure of the ACE globule and, therefore, the pattern of ACE recognition by
monoclonal antibodies to different epitopes on ACE surface [32–34,39].

We considered Raman spectroscopy as a promising method capable of distinguishing
differently glycosylated ACEs produced in different cells. For this purpose, we used
machine learning methods. Machine learning and statistical analysis methods can be
adapted (trained) for many tasks, including spectroscopy. In Lussier’s work [40], the
authors review the classic models used in mass, NMR, and Raman spectroscopy, as well
as the problems solved with their help. Studies have demonstrated that a SERS-based
detection platform can discriminate bacteria species using linear discriminant analysis
(LDA) [41]. The spectra of different proteins were successfully separated using basic
machine learning models [42]. A similar approach was further applied for the classification
and interpretation of Raman spectra of proteins [43]. All of them show good performance
in quantitative and discriminant analysis of organic substances. It is also worth mentioning
that the overall quality of the analysis directly depends on the data and methods of its
preprocessing. Common spectra preprocessing techniques are applicable [44] while an
artificial method of increasing the sample size could be more advanced [45].
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Classification methods are widely used for separation [46] and feature importance
search [47] for further interpretation of these values. Specifically, LDA allows us to present
data in an optimal low-dimensional space, where studied samples can be efficiently sepa-
rated. Therefore, it is a powerful tool for multicollinear analysis of multidimensional data
such as spectroscopy.

In this work, we obtained SERS spectra of three purified ACEs: ACE from lungs,
mainly produced by endothelial cells of lung capillaries, ACE from heart, produced by
endothelial heart cells and, probably, by miofibroblasts, and ACE from seminal fluid,
produced by epithelial cells of prostate and epididymis. These SERS spectra of three
different ACE types were distinguished using linear discriminant analysis.

2. Materials and Methods
2.1. ACE Isolation from Different Sources

The work was carried out in accordance with The Code of Ethics of World Medical
Association (Declaration of Helsinki) and was approved by the Institutional Review Boards
of the Bakulev Center of Cardiovascular Surgery, and the N.A. Lopatkin Research Institute
of Urology and Interventional Radiology. None of the donors were from the vulnerable
populations and all donors or next of kin provided written informed consent that was freely
given. Seminal fluid, lung and heart tissues were used as sources of somatic two-domain
ACEs. Lung and heart ACEs were purified from tissue homogenates using anion-exchange
chromatography on DEAE-Toyopearl 650M and then lisinopril affinity chromatography as
in [48,49]. Seminal fluid ACE was obtained by lisinopril affinity chromatography. Before
landing on the SERS substrate, all ACE preparations were desalted by extensive washing
with 1 µM ZnCl2 solution on 100 kDa filtration membranes (GE Healthcare, Sartorius Corp.,
Bohemia, NY, USA). Zinc salt was added to maintain the active conformation of ACE
during desalination.

2.2. ACE Characterization

ACE activity in all samples was determined using fluorimetric assay with synthetic
peptide Benzyloxycarbonyl-L-Phe-L-His-L-Leu (Bachem, Torrance, CA, USA) in 50 mM
phosphate buffer, pH 7.5, containing 150 mM NaCl and 1 µM ZnCl2. Briefly, 20 µL aliquots
of samples were added to 100 µL of 2,4 mM Benzyloxycarbonyl-Phe-His-Leu, incubated
for the appropriate time at 37 ◦C and then the product of enzymatic hydrolysis, His-Leu,
was quantified fluorimetrically via complexing with o-phtaldialdehyde [50].

Purified ACEs were proved to be homogeneous according to electrophoresis in 7.5%
SDS-PAGE [51]. Protein concentrations were determined according to the modified Lowry
method [52]. Purified ACE preparations were stored at −18 ◦C.

2.3. SERS Substrate Fabrication and Characterization

The substrates were formed using electron-beam evaporation in a URM 3.279.072
(Quartz Ltd., Kaliningrad, Russia) vacuum chamber according to the method described
in [4]; 4N high-purity 3 mm granulated silver (99.99% Moscow special alloys processing
plant, Russia) was used. Silver was deposited on glass slides (Heinz Herenz Medizinalbe-
darf GmbH, Hamburg, Germany) preliminarily purified with isopropyl alcohol (99.6%
Sigma Aldrich, Burlington, MA, USA) and plasma on the residual atmosphere directly in
the vacuum chamber at pressure 10−3 Torr, whereas operating pressure was 10−6 Torr. The
residual atmosphere mainly consisted of nitrogen, which was used to ignite the plasma for
additionally cleaning the substrates on which silver films were deposited.

As a result of sputtering, silver films 100 nm thick were obtained. The thickness control
during application was carried out using optical transmission control at a wavelength of
545 nm.
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2.4. SERS Measurements

The SERS spectra were measured using an Alpha 300 R confocal Raman spectrometer
(WITec, Ulm, Germany), at excitation wavelength 785 nm, laser power 54 mW, acquisition
time of 1 spectrum was 60 s, using a ZEISS 50X/0.8 Epiplan Neofluar lens. Aliquots of 5 µL
of ACE solutions at an initial concentration of 0.3 µM were applied to the SERS substrate
and dried in air. The spectra were measured from at least 60 points in the coffering region
(Figure S1) of 5 drops for each type of ACE on one substrate. As a result, 197 samples
were collected. Additionally, Raman spectra of ACEs were measured dried on glass slides
(Heinz Herenz Medizinalbedarf GmbH, Hamburg, Germany) in the same manner as in
SERS experiments and the spectra were measured in the same conditions.

2.5. Preprocessing Spectra for LDA

The following steps were used to preprocess 197 obtained spectra where each spec-
trum was taken with 1024 points. This number is determined by spectrometer resolution.
First, the Raman shift range (300 to 1800 cm−1) was selected since this range contains
all vibrational bands. Then, the baseline was corrected using a rubber-band correction
and the outliers were eliminated according to the algorithm described in Supplementary
(Figure S2). The reason for the existence of outliers is mainly cosmic rays. They are charac-
terized by a high signal-to-noise ratio, exceeding this ratio at the same frequency. After that,
each spectrum was normalized to its own mean and standard deviation. Smoothing was
performed using a Savitsky–Golay [45] filter with a window size of 11 and a polynomial
order of 2. As a result, preprocessed spectra formed a matrix X of size 191 × 855, where
191 is a number of samples, and 855 is a number of spectral wavelengths from the selected
range called spectral features or just features. The obtained spectra were randomly divided
into training and test samples in a ratio of 50:50. The training part was augmented with
Gaussian noise [45].

To characterize and compare the groups of spectra, we used the concept of “spectral
archetype” proposed in [53]. Briefly, a “spectral archetype” is an “ideal” spectrum that
corresponds to an “ideal” analyte, free from random features arising from uncontrollable
causes. To construct a “spectral archetype”, groups of spectra were brought to the same
scale using normalization and averaging. For each spectral point, the standard deviation
was calculated for the entire set of spectra of the group. The standard deviation was
calculated for each Raman shift of the spectra. The procedure was performed using a
built-in function in the software environment OriginLab (OriginLab Corp., Northampton,
MA, USA). The “spectral archetype” was represented graphically as an average spectrum
with its standard deviation. Thus, the “spectral archetype” simultaneously characterizes
the spectrum itself and the width of the standard deviation describes the reproducibility.

2.6. ACE Classification with LDA

To separate the spectra of different ACEs, we used LDA. The result of this analysis is
the transformation of the original space of spectral bands into a space of smaller dimension,
in which the groups under study are well separable by the means of discriminant functions
(LD(X)) defined as:

SW =
c

∑
i=0

(x− xi)(x− xi)
T (1)

SB =
c

∑
i=0

(
xi − X

)(
xi − X

)T (2)

xi =
1
Ni

∑x∈Di
xk, (3)
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where c is the number of ACE groups, xk is the k−th row in X and Di—set of spectra xk from
one group. Matrices SW, SB are called Within-class scatter matrix and Between-class scatter
matrix. Then the eigenvectors of the following matrix A were used to construct LD(X):

A = S−1
W SB (4)

V =
[ →
vmaxλ1 ,

→
vmaxλ2 ..

→
vmaxλk

]
, (5)

where V consists of eigenvectors of matrix A (or components), corresponding to eigenvalues
in descending order:

Z = LD(X) = XV. (6)

The algorithm was trained on preprocessed data using a maximum number of compo-
nents equal to 2, which is the same as the first two columns of V . So, the resulting matrix
Z will have two columns, which correspond to the x,y coordinates of the spectrum or
the values of functions LD1(X), LD2(X). Preprocessing procedures and data analysis were
implemented within the framework of Python library Scikit-learn [54].

3. Results and Discussion
3.1. SERS Substrate Characterization

The SERS substrates technology, as well as their morphological, optical, electrophysical,
and enhancement properties were described in detail in [4,17]. Briefly, X-ray photoelectron
spectroscopy data (XPS) showed compositional identity to pure metallic silver [17,55]. The
XPS spectrum of silver film is shown in Supplementary Figure S3. This was confirmed by an
assessment of the electrophysical properties of the substrate, which showed that the films
were not porous, since the dependence of the current on the applied potential was linear
and did not correspond to the concept of hopping conductivity characteristic of porous
films or films at or below the percolation threshold. At the same time, the determination
of the permittivity by analyzing the spectra ellipsometric angles using the Drude–Lorentz
equation showed a difference from the results in [56] for continuous opaque thin silver
films, which can be caused by the influence of the surface nanostructure determined by the
roughness parameters. To determine them, the atomic force microscopy (AFM) method
was used, which showed the polycrystalline structure of the substrates. An AFM image
of silver substrate is shown in Supplementary in Figure S4. The values of the roughness
parameters showed that the surface can be defined as smooth on the macroscale, since the
root-mean-square roughness parameter did not exceed 2 nm. However, on the microscale,
we used the parameter R3z from Standard ISO 4287–1997 describing the vertical distance
between the third highest peak and the third lowest valley. R3z was already 7.78 nm, which
made it possible to consider local irregularities as hot spots that implement SERS [4]. As a
result of the combination of these parameters, SERS is realized due to the nanostructured
surface of the substrate.

The stability of the substrates was also assessed and follows from the constancy of the
ellipsometric parameters, since the ellipsometric is highly sensitive to minimal changes
in morphology and optical properties caused by degradation processes. The spectra of
ellipsometric parameters were measured at three points of a freshly formed sample and
after two months of storage. The spectra were in good agreement. The continuity of the
films and the thickness of 100 nm determine the presence of good thermal conductivity.
Moreover, we could see that ACEs did not degrade during the measurement of the spectra,
despite the long accumulation time and the increased laser excitation power. This was
shown by sequentially measuring the ACE spectra from one point 10 times consecutively
without interruption. It appeared that the standard deviation of this measurement cycle
was small (no more than 9%). The reproducibility of the spectra was also shown when
measured at different points in the sediment. Sufficient reproducibility is confirmed by the
value of the standard deviation, which did not exceed 15%. Evaluation of the enhancement
properties of the substrate was provided based on the comparison of the Raman spectrum
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on glass and the SERS spectrum, measured under the same conditions (Figure S5). The
enhancement coefficient of the substrate was determined as (1–1.5) × 103 from the ratio
of the amplitudes of the maximal vibrational band of the SERS spectrum and the Raman
spectrum. Thus, the enhancement coefficient was relatively low, but we had enough
opportunities for long-term accumulation of spectra at sufficiently high laser powers. The
Raman spectra were characterized by a very low signal-to-noise ratio which made them
unsuitable for comparative analysis of spectra of ACE produced by different cells. We
could note, however, that the main vibrational bands in the Raman and SERS spectra of
each separate ACE coincided.

In addition, as we used ACE in the presence of zinc salt necessary for maintaining
active ACE conformation, we measured the SERS spectra of this salt alone. It appeared that
zinc chloride showed two bands at 299 and 392 cm−1 (not shown) which did not affect the
ACE spectra.

3.2. ACE SERS Measurement

Three types of ACE from seminal fluid, lung and heart tissues were purified and
brought to a concentration similar to 1 µM. The SERS spectrum of each ACE represents a
rich spectral picture (Figure 1).
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Figure 1. SERS spectra of ACEs. Red traces indicate those vibrational bands which contain the
differences in ACE spectra.

Visually, the spectra were very similar and the positions of the main vibration bands
were close or almost the same. Differences were noticeable in minor vibration bands. The
positions of these bands in Figure 1 are marked with red traces. Note that we could not
expect great differences between the spectra, as the protein structure of lung, heart and
seminal fluid ACEs is the same. So, we could expect that the minor differences could be
caused by different glycosylation of the ACEs from different sources.

The measurements were carried out in a coffering at an equidistant distance from the
edges along the dash-dotted line as shown on optical image of coffering in Supplementary
Figure S1. The exact mapping of the bands is shown in Table 1.
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Table 1. ACE band assignment.

Seminal Fluid Lung Heart Band Assignment Amino Acid
or Dipeptide Reported Band Ref

324 - 328 - - - -

344 - 346 - - - -

421 423 425 Skeletal def. - - -

435 - - Skeletal def. - - -

445 - 448 - - - -

453 - - Benzene ring def. Trp 454 [57]

492 - - COO− bend. + CH2 Gly 497, 496 [58,59]

- 502 - - - - -

537 538 543 COO− def. Arg 535 [60]

572 - - COO− rock. Thr 568 [61]

591 - - NH def. Trp 595 [62]

630 628 630 C-S str. Met 632 [63]

652 649 650 Imidazole ring breathing His 657 [59]

683 - - C-S str. Met-Leu 685 [64]

766 766 765 CH2 rock. Met 765 [59]

833 835 833 Ring breathing mode
and out-of-plane Tyr 837 [65]

857 859 859 Ring def. Fermi resonance 857 [65]

885 885 886 C-N str. + Cβ-Cδ str. Ala 885 [66]

905 906 902 Asp 902 [59]

945 940 941 C-C str. His 948 [57]

954 950 953 C-C str. Gly(Gly-Glu) 956 [67]

963 963 966 C-C str. Pro-Leu 961 [67]

1011 1010 1010 Indole asym. ring breathing Trp(Trp-Leu) 1011 [67]

1041 1043 1037 C-N str. Pro(Pro-Leu) 1044 [67]

1053 1052 1051 Cα-N str., C-N str. Met-Leu,
Ala-Ala 1056, 1050 [63,67]

1069 - - C-N str. Glu(Gly-Glu) 1066 [67]

1095 - - Cα-C-N str. asym.,
NH2 twist.

Pro-Pro,
Met-Leu 1092, 1095 [63,68]

1130 1132 1132 N-H wag. Lys 1142 [61]

1169 1174 1173 N-H wag. His 1160 [61]

- 1183 1183 - Glu-Gly,
Leu-Gly 1194, 1174 [67]

1212 1215 1213 Ring def. Phe 1214 [59]

1241 1240 1243 CH2 wag. Leu(Leu-Gly) 1241 [67]

1260 1262 1256 Amide III - 1264 [61]

- 1270 1270 CH2 wag. Leu(Leu-Glu),
Ser-Gly 1276, 1266 [67]
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Table 1. Cont.

Seminal Fluid Lung Heart Band Assignment Amino Acid
or Dipeptide Reported Band Ref

1283 1279 - CH2 wag. Trp(Trp-leu) 1283 [67]

1307 1307 1307 CH2 wag. Glu(Gly-Glu) 1307 [67]

1324 1326 1327 C-NH2 str. Met-Leu 1323 [67]

1339 1333 1335 C-H bend. Asp 1336 [69]

1348 1346 1344 - Glu 1346 [59]

1366 1366 1367 Indole vibration Trp(Trp-Leu) 1363 [67]

1385 1385 1386 - - - -

1392 1394 1396 COO− sym. str. Leu-Leu 1396 [67]

1441 - - CH2 sciss. Gly(Leu-Gly) 1440 [67]

1459 1453 1457 CH2 sciss. Gly(Leu-Gly) 1454 [61]

1473 1467 1468 Cγ, Cδ bend. Arg 1477 [59]

1557 1555 1555 Cβ-Cγ def. Lys 1556 [70]

1605 1600 - Ring C-C str. Phe 1602 [61]

- 1613 1611 Sym.ring C-C str. Gly(Tyr-Gly) 1613 [67]

1618 - 1623 Indole NH Trp(Trp-Leu) 1621 [61]

1663 1666 1664 Amide I - 1664 [61]

Cα, Cβ, Cγ, and Cε refer to the 1st, 2nd, 3rd, and 5th carbon atoms of the terminal COO− group, respec-
tively; def.—deformational, str.—stretching, sciss.—scissoring, bend.—bending, wag.—wagging, rock.—rocking,
twist.—twisting, sym.—symmetrical, asym.—asymmetrical.

Many peaks are attributed mainly to the side-chain vibrations, but the main chain
(amide I and amide III) is also presented in Table 1. In the SERS spectra, skeletal defor-
mation of amino acids can be found below 450 cm−1 [61,70,71], thus, vibrations between
324–448 cm−1 are attributed to skeletal deformational modes. For band description in the
spectra of three ACEs, we accepted the following order—“seminal fluid—lung—heart”
ACE—and used this order further throughout the whole text. Thus, the most intense
bands in the ACE spectra were observed at 766-766-765, 1011-1010-1010, 1348-1346-1344,
1459-1453-1457, and 1663-1666-1664 cm−1. These bands correspond to Met CH2 rocking,
Trp indole ring breathing, Gly vibrations, Gly CH2 scissoring and Amide I, respectively.
Generally, SERS spectra of the same protein obtained by different research groups may vary
because of selective enhancement of amino acids near a metal surface [59,61,70,72], which
can lead to minor differences in the position of the determined vibration bands relative to
the literature data. Some bands in ACE SERS spectra demonstrate higher enhancement
than others due to many reasons. For example, Gly and amino acids adjacent to Gly are
able to orient closer to the surface than amino acids with a bigger side chain. Met provides
a strong signal because of sulfur atom attraction to the silver surface. Trp also has intensive
SERS bands due to the strong conjugation of the indole ring with the substrate. In addition
to Trp, other aromatic amino acids make many contributions to the spectra: 652-649-650
His, 766-766-765 Tyr, and 1212-1215-1213 Phe, due to similar mechanism.

The ACE molecule contains 142 Leu residues, Leu being the most abundant amino
acid in the enzyme. Its content is almost 20% higher than for average protein [63], so,
Leu may appear in SERS spectra of ACE more often than for average protein. We see
contributions from Leu at 683, 963-963-966, 1241-1240-1243, (no)-1270-1270, 1324-1326-1327.
These vibration bands are not intense, since Leu is a hydrophobic molecule and is not
characterized by strong interactions with the substrate surface. Most likely, we can observe
Leu fluctuations due to its proximity to other active amino acids.
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We have shown earlier that the amino acid sequence, 1173–1203, located on the C
terminus of seminal fluid ACE was in contact with silver substrate [17]. In the spectra of
the three ACEs, we observed traces of the deformation vibrational band of the carboxylic
group COO− of Arg1203 at 537-538-543 cm−1, which is the C-terminal residue. Since the
silver film surface is characterized by a positive charge in water [17,63] we also see many
vibration bands from negatively charged Glu and Asp, as well as many vibration bands
of aromatic groups in His and Phe, characterized by an excess of electron density due
to π-electrons.

The adsorption of ACE molecules on the silver surface caused by the interaction
of sulfur in amino acids and the silver surface led to the appearance of (C-S) band at
630-328-630 cm−1 in Met [64]. It is worth noting that we observed Met vibration bands
in ACE spectra but did not observe bands corresponding to sulfur-containing Cys. So, it
can be assumed that ACE globules were oriented by the Met-enriched regions towards
the substrate surface. Since the content of Met is low (about 2.5%), it is easy to determine
the limited areas of its accumulation, while the areas containing Cys turn out to be remote
from the substrate.

However, some neutral and positively charged amino acid residues were traced in the
spectra, which may be due to their spatial orientation and proximity to the silver surface,
regardless of the nature of the side chain. The possibility of observing vibration bands of
neutral and positively charged amino acid is due to the following. Interaction between
the molecule and the silver substrate is provided due to COO− group, S-containing amino
acids, and aromatic groups. As a result of this, hydrophobic regions can also approach the
substrate. It is shown from the review [73], based on a number of studies, that the region of
the electromagnetic SERS mechanism extends to several nanometers far from the substrate
surface. Consequently, the hydrophobic regions fall into the enhanced field region and can
be enhanced, whereupon we also observe their vibration bands in our spectra.

In addition to bands from single amino acid residues, bands of dipeptide vibrations
were found in the spectra. To determine the bands of dipeptides, the literature data [61] de-
voted to the interpretation of the SERS spectra of a number of dipeptides were used. So, the
position of these dipeptides in the amino acid sequence was determined with a sufficiently
high accuracy. The most intensive characteristic peptide bands are 954-950-953 cm−1 (corre-
sponding to dipeptides 589GE590, 1187GE1188), 1011-1010-1010 (representing 580WL581,
1178WL1179), and 1459-1453-1457 cm−1 (corresponding to dipeptide 1190LG1191).

Note that the spectra of lung and heart ACE contained vibrational bands at 1183 cm−1

corresponding to dipeptides Leu-Gly or Glu-Gly, and at 1270 cm−1 corresponding to Ser-
Gly or Leu-Glu. Since these bands were observed only in lung and heart ACE spectra,
these peptides were likely located in the stalk region and transmembrane segment absent
in seminal fluid ACE which represents a soluble ACE form. So, these regions can be
characteristic for the membrane form of ACE, which is often present as a contaminant in
purified preparations of tissue ACE [74–76]. Thus, we can suggest the exact positions of
dipeptides as follows, 1217LG1218, 1236LG1237, 1245LG1246, 1205EG1206 and 1211SG1212.

The spectra of all three ACEs demonstrated the vibrational band at 963-963-966 cm−1,
corresponding to the combination Pro-Leu localized on the substrate [17]. This combination
is located only in the linker region between N and C domains in ACE structure and
corresponds to 602PL603. The observation of the band from the linker region and, in
general, the preservation of the shape of the spectra and the ratio of the amplitudes of the
main bands suggest that tissue ACEs (from lung and heart) are characterized by the same
model of landing on the silver SERS substrate, as was previously proposed for seminal
fluid ACE [17]. In this model, the ACE globule is located on the substrate in such a way
that some potential N-glycosylation sites Asn9, Asn25, Asn82, Asn648, Asn666, Asn731,
and Asn913 are far from the substrate surface [17]. In addition, the Asn454 is located inside
the protein globule and cannot interact with the substrate.

Of particular interest to us are potential N-glycosylation sites on which glycans could
be in direct contact with the substrate, namely, Asn131, Asn289, Asn416, Asn685, Asn1162,
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and Asn1196. However, although the last two residues are in direct contact with the
substrate in a proposed model [17], they are most likely not glycosylated [32,34,36]. Other
N-glycosylation sites, Asn45, Asn117 and Asn480, on the ACE globule are located at a
short distance from the substrate and, therefore, glycans able to occupy an area of 200 Å
or more [77] can also interact with the substrate and/or interfere with protein core–silver
substrate interaction.

Thus, the presence or absence of glycans at potential N-glycosylation sites Asn45,
Asn117, Asn131, Asn289, Asn416, Asn480 and Asn685, as well as the fine structure of
these glycans, could lead to the differences in the SERS spectra of ACE from different
sources. As ACE from different sources could differ both in the position of really occupied
glycosylation sites and in the glycan structures [32,34,37,78], the observed differences in
the SERS spectra should be mainly associated with the appearance of vibration bands of
different oligosaccharides, especially with the same landing of molecules on the substrate
surface. Knowing that a small number of potential N-glycosylation sites are located near
the substrate, we can assume that the differences in the spectra could not be significant.
Indeed, the spectra were very similar, as can be seen in Figure 1, with the exception of
some bands. Thus, the spectrum of seminal fluid ACE contained exclusive bands at 453,
492, 572, 591, 683, 1069, 1095 cm−1, which were absent in the lung and heart ACE spectra.
Additionally, we could see the shifts in the maxima of the vibrational bands and a change
in the shape of the peaks throughout the spectra of all types of ACEs.

Pairwise comparison of the heart ACE–lung ACE pair spectra shows that there is a
band at 1623 cm−1 (indole NH in Trp(Trp-Leu)) characteristic only for the lung ACE, while
the bands at 502 (unknown band), 1279 (CH2 wag. in Trp(Trp-Leu))), and 1600 cm−1 (ring C-
C str. in Phe) were characteristic only for the heart ACE. Similarly, pairwise comparison of
the spectra in the seminal fluid ACE–lung ACE pair shows that the bands at 502 (unknown
band), 1183 (in Glu-Gly, Leu-Gly), 1270 (CH2 wag. in Trp(Trp-Leu)), and 1613 cm−1 (sym.
ring C-C in Gly(Tyr-Gly)) were characteristic only for the lung ACE, while the bands at
572 (COO− rock. in Thr), 591 (NH def. in Trp), 683 (C-S str. in Met), 1069 (C-N str. in
Pro(Pro-Leu)), 1095 (Cα-C-N str. asymm. in Pro-Pro, and NH2 twist. in Met-Leu), 1441
(CH2 sciss. in Gly(Leu-Gly)), 1618 cm−1 (indole NH in Trp(Trp-Leu)) were characteristic
only for ACE from seminal fluid. These differences correspond to the position of the
oscillation bands at the maximum and, most likely, are caused by the influence of adjacent
glycan structures within different ACEs. However, a more precise analysis of the spectra
could be carried out by the LDA described below.

3.3. ACE Classification with LDA

As ACE spectra differed subtly, these differences had to be considered in a com-
plex way using machine learning methods. This approach might take into account even
tiny differences.

The averages of the processed spectra for each ACE type are shown in Figure 2 and
represent the images of the main groups of spectra, which will be used for calculation.

On the graph, the changes in the averaged spectra are represented over an entire fre-
quency range. We could preliminarily visually estimate the expected changes from the bands
(Figure 1). Although, with the help of LDA, we can determine two discriminative functions—
LD1(X) and LD2(X)—which are a linear combination of all spectral features (X—spectral
features, corresponding to each sample). The resulting subspace of LD functions is shown
in Figure 3.

Figure 3 demonstrates the projections of the spectra on LDA axes 1 and 2, which
approximate the original representation of the spectral array in 2D space. The spectra
presented in this space define three groups of clouds that correspond to different ACE from
definite source. The possibility of constructing separate disjoint clouds is a direct proof that
the spectra of ACEs from different sources differ from each other (when projected on some
axes in a smaller space) and can be separated using classification methods (linear classifier)
as depicted in Table 2.
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Table 2. Main classification metrics for each ACE group on test set.

Precision Sensitivity F score Quantity

Lung ACE 1.00 1.00 1.00 33
Seminal fluid

ACE 1.00 1.00 1.00 31

Heart ACE 1.00 1.00 1.00 35
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Table 2 shows the result of ACE separation, taking into account the entire study range
on 99 deposited (test) samples. The accuracy of the prediction attains a value of 100%,
which indicates that all samples were determined correctly.

3.4. Analysis

We evaluated the contribution of spectral bands (features) to the separation of ACE
spectra using a linear classifier. To do this, the extra lanes were eliminated as follows:

• Contribution value (importance) to the separation exceeds 95% quantile in absolute value;
• Contributions at the boundaries of the studied range were not taken into account in

the analysis.

This approach helped to filter out some of the signs (~700) that included noise. The
presented values were normalized to the maximum importance of contributions and are
shown in Figure 4.
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Figure 4. Feature importance analysis of trained LDA model. Bar plots indicate the most significant
model weights for each ACE group after filtering described above. The average spectra of the
corresponding ACE are also shown in the figure.

Figure 4 shows which bands have the greatest contribution to the separation of differ-
ent ACEs. To verify this, the following experiment was carried out:

1. The values of the bar plot were sorted in descending order;
2. The first band was taken and the forecast was based on it;
3. The mean value of the target metric with its standard deviation on random train and

test sampling from X was recorded;
4. The process continued until convergence.

The resulting dependence is depicted in Figure 5, which demonstrates the posi-
tion of the first 25 features forming three intervals (a) and the first 50 features forming
six intervals (b). Three groups of green lines are seen in Figure 5a and six groups of green
lines in Figure 5b. Figure 5c shows how many features are needed for maximum accuracy
(equal to 1). Thus, the spectra of ACEs from three different sources can be successfully
separated based only on three selected band intervals according to 25 first features. Further
addition of bands to the calculation did not lead to any significant improvement in the
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result, since the accuracy takes values very close to 1 and its confidence interval is much
smaller than at the beginning of the numerical experiment (Figure 5c).
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50 selected features; (c) achieved accuracy with its confidence (2σ) interval vs number of selected
features for the classification.

It is important to show which vibration bands from preceding defined intervals made
the greatest contribution to the differences between the spectra. The analysis based on the
visualized contributions of the features made it possible to determine these bands. They
are shown in Figure 6. Additionally, the corresponding spectra averaged over the group
and their confidence interval were depicted in each subfigure. For ACE from seminal
fluid, such intervals were: 431–458 cm−1 with feature importance 0.48, which corresponds
to the band 435 cm−1 (skeletal def.), and 867-885 cm−1 with importance 0.47. For the
heart ACE, such intervals were: 1235-1254 cm−1 with importance 0.81, which corresponds
to the oscillation band 1243 cm−1 (CH2 wag. In Leu(Leu-Gly)), and 944–960 cm−1 with
importance 0.6, which corresponds to the oscillation band 953 cm−1 (C-C str. In Gly(Gly-
Glu)). For the lung ACE, such intervals were: 532–545 cm−1 with feature importance
0.4, which corresponds to the band 538 cm−1 (COO− def. in Arg), and 1077-1091 with
importance 0.39. Note that these intervals do not match the differences between ACEs from
Table 1, since the table reflects the vibrational band maximum position, while the band
width and shape are taken into account by the LDA in the cumulative form of weights
(Figure 4). Thus, the intervals reflect the most significant contributions (weights). It is
seen that some of these intervals unambiguously correlate with the vibrational bands of
the spectra of ACE from different sources. However, some, such as the differences in the
intensity of the bands (Table 1), are most likely associated with the structure of glycans.
Glycan fluctuations are unidentified due to their complexity and ambiguity, but they make
the main contribution to the differences in ACEs spectra from different sources.
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Previously, we have shown that lung ACE produced by lung endothelial cells, heart
ACE, produced by heart endothelial and myofibrolast cells, and seminal fluid ACE, pro-
duced by epithelial cells of prostate and epididymis, can be differently glycosylated [32,34].
The most striking differences were found in the putative glycan structures on the Asn666
glycosylation site; seminal fluid ACE and heart ACEs could contain complex and hybrid
type glycans, respectively, while in the lung ACE, this site most likely bears the high
mannose type glycan [34]. In the ACE model on the silver substrate, however, this site
is located far from the substrate. We can especially select two from a list of potential
N-glycosylation sites which are located near the silver substrate on the ACE model, namely,
Asn117 on the N domain of ACE and Asn685 on the C domain. It was shown earlier by
mass spectrometry of tryptic hydrolyzates of purified ACEs that these two Asn residues
could be glycosylated in all three ACEs, i.e., from seminal fluid, lung and heart. The fine
structures of glycans at these sites, e.g., the content of fucose and neuraminic acid, the
number of branches, etc., may differ significantly [34]. Different glycosylation of Asn117
and Asn685 in different ACEs was indirectly confirmed by the differences in binding of
monoclonal antibodies, recognizing epitopes on the ACE surface, to these ACEs. Namely,
it was shown that the local surface conformation of ACE from seminal fluid differs from
that of lung ACE in the Asn685 region [32,34], while the surface of heart ACE differs from
lung ACE in the Asn117 region [33,34]. Therefore, we assume that it is the differences in
the glycan structures at Asn117 and Asn685 that give the differences in the SERS spectra of
ACE from different tissues.

4. Conclusions

For the first time, SERS spectra of human ACE from heart, lung and seminal fluid
were measured and compared with full assignment. The difference between three ACEs,
produced by different cells in the organism, was demonstrated using a numerical method
based on machine learning—the LDA method. It was shown that, for spectra separation, it
is sufficient to use the first 25 features. However, more thorough data could be obtained
using 50 features. Three main ranges of features contributing to the separation were identi-
fied for each of the three ACE species. Several frequency intervals did not correspond to
assignment vibration bands and therefore may belong to the glycan structures within ACE
glycoprotein which are responsible for the main contribution to the separation of ACE from
different sources. Thus, on the example of ACE, we first demonstrated the prospects and
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opportunities of the SERS method for distinguishing isoforms of a glycoprotein produced
in different cell types and differently glycosylated.

The possibility of the application of the LDA method was shown for defining the
most significant vibrational bands in the spectra of differently glycosylated proteins having
equal protein structure. This approach makes it possible to extract chemical spectral
information only through statistically pure methods and to define protein species produced
in different cells. The use of deep mathematical methods in relation to medicine would
expand SERS diagnostic capabilities, making it possible to determine tissue-specific proteins
at pathologies.
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//www.mdpi.com/article/10.3390/biomedicines10061389/s1. Figure S1. Coffering of dried ACE
drop. The dash-dot line shows the location of the points along which the spectra were measured;
Figure S2. Outliers on ACEs spectra: (a) heart ACE; (b) lung ACE; (c) seminal fluid ACE. Outliers
are marked with red circles; Figure S3. XPS spectrum of substrate; Figure S4. AFM image of silver
substrate morphology; Figure S5. ACE RS in comparison with SERS spectra: (A) heart ACE; (B) lung
ACE; (C) seminal fluid ACE. SERS spectra reduced by a factor 103.
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