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Abstract: Thin films of cellulose and cellulose–CaSiO3 composites were prepared using 1-ethyl-3-
methylimidazolium acetate (EMIMAc) as the dissolution medium and the composites were regener-
ated from an anti-solvent. The surface hydrophilicity of the resultant cellulose composites was lowered
by coating them with three different hydrophobizing agents, specifically, trichloro(octadecyl)silane
(TOS), ethyl 2-cyanoacrylate (E2CA) and octadecylphosphonic acid (ODPA), using a simple dip-
coating technique. The prepared materials were subjected to flame retardancy, water barrier, thermal,
mechanical and biodegradation properties analyses. The addition of CaSiO3 into the cellulose in-
creased the degradation temperature and flame retardant properties of the cellulose. The water
barrier property of cellulose–CaSiO3 composites under long term water exposure completely de-
pends on the nature of the hydrophobic agents used for the surface modification process. All of the
cellulose composites behaved mechanically as a pure elastic material with a glassy state from room
temperature to 250 ◦C, and from 20% to 70% relative humidity (RH). The presence of the CaSiO3

filler had no effect on the elastic modulus, but it seemed to increase after the TOS surface treatment.
Biodegradability of the cellulose was evaluated by enzyme treatments and the influence of CaSiO3

and hydrophobic agents was also derived.

Keywords: α-cellulose; CaSiO3; ionic liquid; coatings; hydrophobic agent coatings; biodegradability

1. Introduction

The development of flexible electronic devices is rapidly increasing worldwide and
they have great potential for use in the latest technology in the near future. Compared
to non-flexible materials, flexible materials have the advantage of being able to make
thin, light-weight and user-friendly electronic devices. Recently, various flexible electronic
devices such as photovoltaics, batteries, transistors, sensors, light-emitting diodes and
electronic skin have been reported [1–5]. The materials used for making flexible substrates
are mostly based on synthetic polymers, flexible glass and metal foils [6,7]. Polymer-based
flexible materials are made from polyimide, polyethylene terephthalate, polyethylene
naphthalate, polycarbonate, polystyrene and polypropylene. Most of these polymers origi-
nate from non-renewable petroleum resources and they are non-biodegradable and very
difficult to recycle. Therefore, various research groups are working towards achieving the
next generation of flexible materials from renewable resources to replace the non-renewable
petroleum-based polymers [5,8,9]. However, there are several practical challenges in de-
signing the next generation of flexible substrate materials with the required properties
such as chemical resistivity, suitable surface functionality, flammability, mechanical and
thermo-mechanical stability and degradability.
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Silk, wool, rubber and cellulose are natural polymers that are used in many ap-
plications [10–16]. Among the various types of natural polymers, cellulose is one of
the most attractive materials: cellulose has excellent mechanical properties, is the most
abundant biomass material, is available from renewable resources, is biocompatible and
biodegradable and its surfaces can be readily chemically functionalised. Recently, cellulose-
based flexible materials have been used in various electronic devices, for example, in
energy storage [17], transistors [18], photovoltaics [19], display [20], actuators [21] and
high-performance devices [22,23]. However, the insolubility associated with the non-
processability, flammability and hydrophilicity of cellulose restricts its fields of utilisation.
In the available reports, numerous methods have been developed to dissolve the cellulose
in various solvent mediums, to impart the additional properties to the cellulose-based
composite materials [24–28]. However, most of the above methods use hazardous non-
recyclable dissolution media, several side-reactions occur during the dissolution process
and they are completed at a high cost. Moreover, biopolymers are processed by injection
moulding, extrusion, thermoforming and blow moulding [29,30]. During the above pro-
cesses materials undergo various physicochemical, thermal changes and lose their original
properties. Therefore, several researchers have utilised ionic liquids (ILs) as the amenable
and environment-friendly solvent to dissolve the cellulose and they found that ILs are the
best dissolution medium [25,31–33]. Among the various ILs, 1-ethyl-3-methylimidazolium
acetate (EMIMAc) has a less sterically hindered cation group (EMIM) and a shorter alkyl
chain, which allows it to more easily enter the cellulose to break down the intermolecular
and intramolecular hydrogen bonds and accelerate the cellulose dissolution process [33–35].
EMIMAc has other advantages including low toxicity, low corrosiveness, low melting point,
lower viscosity and biodegradability [35,36].

The flammability of cellulose can be reduced by incorporating various flame retardants
(FR) [37–41]. The most common FR materials are mainly halogenated compounds and
are not environment-friendly. Therefore, non-halogenated FR is an attractive alternative
material to the halogenated FR [42–44]. On the other hand, in the literature, several
approaches have been reported that fabricate the hydrophobic agent on cellulose-based
materials including fluorocoating using plasma techniques, dyeing technologies, graft-
on-graft methods, spray-coating, dip-coating, photothiol and chemical vapour deposition
(CVD) methods [45–48]. However, some of the above techniques have limitations including
harsh conditions, requiring multi-step procedures, tedious fabrications and expensive
materials. Therefore, developing a fast, convenient and scalable method is important to
produce hydrophobic surfaces on cellulose-based materials.

To address the aforementioned issues, we employed EMIMAc ionic liquid (IL) as a
recoverable and amenable dissolution medium to dissolve the cellulose, CaSiO3 as the
filler to reduce the flammability, and three different hydrophobic agents to minimize the
cellulose’s hydrophilicity. The prepared composite was subjected to chemical, thermal,
mechanical and biodegradation studies and the results are reported here.

2. Materials and Methods
2.1. Experimental Details
2.1.1. Materials

α-cellulose (Sigma-Aldrich, Saint Louis, MI, USA) was dried under vacuum (Rotava-
por) for 4 h at 80 ◦C, 1-ethyl-3-methylimidazolium acetate (EMIMAc) (BASF, Ludwigshafen,
Germany, Basionics, >95 wt%) was kept under vacuum (Schlenk line) for 4 h at 90 ◦C.
HPLC grade methanol, toluene, tetrahydrofuran (THF), ethyl 2-cyanoacrylate (E2CA),
trichloro(octadecyl)silane (TOS) from Sigma-Aldrich, n-octadecylphosphonic acid (ODPA)
(97%, Alfa Aesar, Haverhill, MA, USA) and ethanol (VWR Chemicals, Radnor, PA, USA)
were used as received. Dried toluene was used to dissolve the trichloro(octadecyl)silane
(TOS). See Scheme 1 for the structure of hydrophobic agents. Calcium silicate (CaSiO3)
(Sigma-Aldrich) was kept under vacuum for 6 h at 110 ◦C to remove the moisture. Cel-
luclast 1.5 L produced by Trichoderma reesei ATCC 26921, citric acid monohydrate, 3,5-
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dinitrosalicylic acid (DNS), sodium hydroxide, sodium potassium tartrate, phenol and
sodium metabisulphite were obtained from Sigma-Aldrich.
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2.1.2. Preparation of Cellulose–CaSiO3 Composites

In this work, the Brabender plastograph (Duisburg, Germany) was used as the mixer
to prepare the cellulose–CaSiO3 composite in the presence of EMIMAc as the dissolution
medium. The mixer was pre-heated to 90 ◦C and the blade rotation speed was set to 70 rpm.
Cellulose composite with 10 wt% CaSiO3 was prepared as follows: 68 g of EMIMAc (85 wt%
w.r.t the total weight of α-cellulose and EMIMAc) and 1.3 g of CaSiO3 (10 wt% w.r.t the
total weight of α-cellulose and CaSiO3 used in the dissolution process) were added into the
pre-heated mixer and allowed to disperse well in EMIMAc for 5 min. Consequently, 12 g
of α-cellulose (15 wt% w.r.t the total weight of α-cellulose and EMIMAc) was divided into
4 × 3 g and added into the mixer consecutively every 5 min. Finally, mixing was allowed
for another 10 min at 90 ◦C. The total mixing time was 30 min. The resultant composite
was recovered from the mixer and kept in an air-tight container.

Cellulose-FR composite films were prepared in a hydraulic press equipped with a
heating unit (Moore, UK). 14 g of the above-prepared cellulose–CaSiO3 composite material
was kept between the non-stick bake-o-glide sheets (bake-o-glide is a non-stick baking
sheet that is polytetrafluoroethylene (PTFE)-coated fabric) and the pressed film was made
by keeping the non-stick baking sheet between the metal plates of the hydraulic press
followed by applying pressure (80 psi force at 90 ◦C). The uniform pressure was maintained
for 30 min. In the end, the cellulose film cast on the non-stick baking sheet was removed
and subjected to a regeneration process.

The non-stick baking sheet was placed in a methanol bath and left for few minutes.
Then the non-stick baking sheet was slowly peeled off in the methanol solvent to obtain
the cellulose composite in a continuous film form. The obtained film was placed in another
methanol solvent bath to remove EMIMAc completely from the cellulose composites.
Finally, the regenerated film was dried at room temperature (RT) using an embroidery
hoop as a supporting holder to obtain a non-curly film.

2.2. Surface Modification of Cellulose–CaSiO3 Composite Film via Hydrophobic Agent Coating

A hydrophobic agent with a weight of 10 wt% was used for the total mass of the
composite. Here, a simple dip-coating technique was adopted to coat the composite with
the hydrophobic agent.

(i) Cellulose–CaSiO3 composite surface coating with TOS

Cellulose composites coated with hydrophobic agent coated were prepared by im-
mersing the cellulose composites in 23 mg (0.003 M) of TOS in 19.8 g of dry toluene solution
for 2 or 30 min at room temperature. The whole reaction mixture (except the 2 min samples)
was kept under argon atmosphere to protect the TOS solution from moisture. Afterwards,
the cellulose composite was removed from the solution and dried at room temperature
for 30 min. The same procedure was repeated once again to make sure the surface of the
cellulose composites was completely coated with TOS. The resultant surface-modified
composites were dried at RT overnight and subjected to further characterisation studies.
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(ii) Cellulose–CaSiO3 composite surface coating with ODPA and E2CA

ODPA is not completely soluble in THF using a normal stirring method; therefore,
ODPA/THF (0.003 M, 20 mg in 19.8 g of THF) solution was sonicated for 20 s and used to
coat the cellulose composites. The rest of the procedure is the same as the previous TOS
coating procedure.

E2CA (0.003 M, 109 mg in 290.5 g of toluene) is a more reactive monomer and the
reaction mixture was prepared in a plastic container as E2CA reacts with glass. The dip-
coating was also performed at 4 ◦C (kept in the fridge). The rest of the procedure is the
same as the TOS coating procedure.

2.3. Characterization Techniques

Limiting oxygen index (LOI) and flammability tests UL-94 HB (horizontal) were
carried out following the standard methods such as ASTM D2863 and ASTM D635-03. The
LOI measurements were carried out using Fire Testing Technology, East Grinstead, UK,
according to the standard method. The sample was held vertically in the glass chamber of
the instrument in which the flow of oxygen and nitrogen mixture gas was controlled. The
LOI values of the composites were calculated from the required oxygen concentration in
the mixture of gases for burning the composites under the ignition. Samples (composites)
for flammability tests were cut into rectangular shape (125 mm × 13 mm) with a thickness
of 0.06–0.07 mm. Each cellulose composite film was marked with two lines perpendicular
to the longitudinal axis of the bar, 25 ± 1 mm and 100 ± 1 mm from the end that is to
be ignited and they were subjected to the horizontal flame test in accordance with the
standard method. A sample was clamped horizontally and the burner was used to ignite
the samples. The flame retardancy behaviour of the composites was calculated from the
time required to burn the defined distance. All the measurements were repeated three
times and the results averaged.

Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR,
Perkin Elmer: Waltham, MA, USA) was recorded in the frequency range of 4000 cm−1 to
550 cm−1. The surface morphology of uncoated cellulose-FR composites and those coated
with the hydrophobic agent were studied using a scanning electron microscope (JEOL
JSM-6480, Tokyo, Japan). Contact angle (CA) measurements were conducted using the
sessile droplet method in the air at room temperature with 2 µL droplets of de-ionized
(DI) water. The cellulose composite was fixed on the glass plate with the support of cello
tape and placed on the goniometer and the contact angle was determined 10 s after the
water droplet was deposited on the surface of the cellulose composites. Three samples
were used and each data point was an average of 10 measurements on each sample. The
time-dependent contact angle values were measured in all the hydrophobic agent-coated
samples at 10 s, 5 min and 15 min after water droplets were deposited on the surface of the
cellulose composites.

A Setsys Evolution TGA 16/18 from Setaram (Caluire, France) was used for the
thermogravimetric analysis (TGA); the Calisto program was employed to collect and
process the data. Cellulose films were loaded into an alumina crucible and TGA was
performed in the temperature range of 30 ◦C to 400 ◦C under argon atmosphere at a
heating rate of at 5 ◦C/min. During the heating ramp, evolving gas was transferred from
the analytical chamber to a mass spectrometer through a stainless-steel capillary. The mass
spectrometer was an Omnistar GSD 320 by Pfeiffer Vacuum (Aßlar, Germany), equipped
with a quadrupole mass analyser and a Faraday detector.

A dynamic mechanical analyser DMA1 from Mettler Toledo (Greifensee, Switzer-
land) was employed for the evaluation of all mechanical properties. The STARe program
was used to acquire and process the data. Rectangular sample films with dimensions of
25 mm × 4 mm × 0.06–0.07 mm were clamped in the tension clamping assembly leaving
a free length of 10 mm. The cross-section area was then 0.24–0.28 mm2. For humid-
ity measurements only, sample films were 10-mm wide, giving a cross-section area of
0.60–0.70 mm2. Strain-stress curves were measured in static mode from 0 N to 10 N at a
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constant load rate of 0.5 N/min and at 25 ◦C. Creep tests were performed in static mode at
25 ◦C by applying alternative loads of 1 N and 0 N over a period of 30 s. The elastic moduli
and damping factor were measured in dynamic mode at a strain amplitude of 0.1% at a
frequency of 1 Hz. For temperature scan measurements, the testing temperature ranged
from 25 ◦C to 250 ◦C at a heating rate of 2 ◦C/min. For humidity measurement, the testing
temperature was fixed to 30 ◦C using circulated water, and the humidity was set in the
analysis chamber using a modular humidity generator proUmid MHG32 (Ulm, Germany).

2.4. Biodegradability Studies

The activity of Celluclast 1.5 L was determined by measuring the soluble reducing
sugars using DNS assay [49]. Typical enzymatic hydrolysis consisted of 3 mg of sample,
0.2 mL of sodium citrate buffer (50 mM, pH 5.0) and Celluclast 1.5 L (1 Filter Paper Unit/g
of sample) kept for 1 h at 50 ◦C. All reactions were run in triplicate.

3. Results and Discussion
3.1. Preparation of Cellulose–CaSiO3 Composites

The cellulose–CaSiO3 composite was made using EMIMAc as a dissolution medium in
a Brabender plastograph mixer, and the film was formed by hydraulic pressing. Finally, the
film was regenerated using methanol as an anti-solvent. After the process, EMIMAc and
methanol were recovered using the solvent evaporation process. This is a simple method
of preparation that uses a relatively low thermal process and is economically affordable,
environment-friendly, industrially scalable and an overall quicker process. Further charac-
terisation studies have been carried out on the prepared cellulose–CaSiO3 composites.

3.2. Characterization of Cellulose–CaSiO3 Composites
Effect of CaSiO3 on Flame Retardant Properties of Cellulose–CaSiO3 Composites

A flame retardancy test was conducted on the prepared cellulose–CaSiO3 compos-
ite. The flame retardancy properties of cellulose without and with 10 wt% CaSiO3 were
evaluated in terms of LOI and UL-94 HB rating. The results are summarised in Table 1.
From LOI data, cellulose without filler is a flammable material and its LOI value is only
19. The LOI value increased from 19 to 20.7 when CaSiO3 was added as a flame-retardant.
The UL-94 HB test results of the prepared cellulose–CaSiO3 composites are also given in
Table 1. As can be seen, incorporating CaSiO3 considerably reduces the flammability of
cellulose. However, CaSiO3 is not an efficient filler for cellulose to meet the required FR
standard UL-94 HB test.

Table 1. Effect of the addition of CaSiO3 on the LOI and FR properties of cellulose.

Cellulose
Composites

LOI (%)
(ASTM-D2863)

Flammability Tests UL-94 HB, Time to Burn Marked
Area of Samples in Secs (Std. dev) (ASTM D635-03)

No fillers 19 23.7 (±1.2)

10 wt%-CaSiO3 20.7 36.3 (±2.8)

3.3. Surface Coatings of Cellulose–CaSiO3 Composites
3.3.1. Preparation of Coated Cellulose–CaSiO3 Composites

A hydrophobic cellulose composite was formed by coating the cellulose with a rela-
tively low concentration of a hydrophobic agent (0.003 M). In this work, we have chosen
TOS, E2CA and ODPA as the hydrophobic agents to introduce hydrophobicity into the
cellulose composites. To ensure the adequate coverage of the hydrophobic agents on the
composites, dip-coating was performed two times. The amount of hydrophobic agent
in the cellulose composites was calculated by measuring the weight difference between
the samples before and after coating with the hydrophobic agents and the calculated
amount was in the range of 2–5 wt% irrespective of the nature of the hydrophobic agents.
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The resultant hydrophobic agent-coated cellulose composites were subjected to further
characterisation studies.

3.3.2. ATR-FTIR of Uncoated and Coated Cellulose–CaSiO3 Composites

The ATR-FTIR spectra of uncoated and coated cellulose with 10 wt% CaSiO3 are shown
in Figure 1. The bands at 3353 cm−1 and in the range 2927–2879 cm−1 are the hydroxyl
group and –CH/–CH2 stretching vibration of the cellulose, respectively. The band at
1640 cm−1 is attributed to the presence of moisture in cellulose. All CaSiO3 bands are
merged with cellulose and no difference was observed in the cellulose–CaSiO3 composites
(Figure 1a,b). The TOS-coated cellulose–CaSiO3 composite (Figure 1c) has IR bands at
2946, 2918, 2851, 1467 cm−1 assigned to the –CH stretching region (–CH3 (sym), –CH2
(asym), –CH2 (sym) and –CH2 (bending)) of the octadecyl group from TOS attached with
cellulose–CaSiO3 composite. The ODPA-coated cellulose–CaSiO3 composite (Figure 1d)
has similar IR bands as the TOS spectrum. The E2CA-coated cellulose–CaSiO3 composite
(Figure 1e) has weak IR bands at 2918 and 2854 cm−1 (−CH2 (asym) and –CH2 (sym))
along with an additional band at 1741 cm−1 assigned to the –C=O stretching in the ester
group of the polymerised form of E2CA (PECA) [50,51].
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composite–TOS coated, (d) cellulose-10 wt% CaSiO3 composite–E2CA coated and (e) cellulose-10 wt% CaSiO3 composite–
ODPA coated.

3.3.3. Water Resistance Characteristics of Cellulose–CaSiO3 Composites

The water resistance properties of uncoated and coated cellulose composites were
evaluated by water contact angle measurements (Figure 2). The as-prepared uncoated
cellulose composite with 10 wt% CaSiO3 showed a slightly higher contact angle value (62◦)
than the cellulose without CaSiO3 (CA = 54◦, Figure 2). This is possibly due to the surface
roughness of cellulose being slightly increased in the presence of CaSiO3. However, the
contact angle value is within the hydrophilic range (CA = 0–90◦). Therefore, materials
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were coated with various types of hydrophobizing agents such as TOS, E2CA and ODPA
(Scheme 1).
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TOS and ODPA have a long alkyl chain (C18) as a tail, and Si and P with reactive
functional groups as a head, respectively. Functional groups in the head of the hydrophobic
agents interact with the hydroxyl (OH) groups of cellulose to make a bond while long
alkyl chains are oriented towards the upper directions and hinder the access of the water
to the cellulose surface. On the other hand, E2CA is a highly reactive monomer that
undergoes anionic polymerisation with the hydroxyl (OH) group of cellulose when exposed
to moisture present in the atmosphere and makes strong bonds with cellulose [52,53]. The
resultant polyethyl 2-cyanoacrylate (PECA) acts as a barrier to moisture and increases
the hydrophobicity of the cellulose [54]. Ultimately, the moisture absorption property of
cellulose can be controlled by introducing various functional groups into the OH groups of
cellulose. In other words, hydrophilicity can be reduced by introducing surface roughness
and lowering the surface energy of cellulose by modifying the surface functionality.

Figure 2 shows the variation of contact angles and water resistance properties of
cellulose and cellulose with 10 wt% CaSiO3 composites depending on the hydrophobic
agents. The contact angle value increased from 54◦ to 118◦ with TOS as the hydrophobic
agent (cellulose without CaSiO3 sample coated with TOS for 2 min). The contact angle
value was reduced from 118◦ to 107◦ (9% loss from the initial CA value) and 87◦ (26%
loss compared to the initial CA value) by extending the time of the water droplet on the
surface of the materials (water evaporation was not taken into account) from 10 s to 5 min
and 15 min, respectively. This could be due to the hydrolysis of the hydrophobic agent
or to the hydrophobic agent’s anchoring nature on the surface of the cellulose not being
strong enough to withstand the presence of water molecules, leading to a loss of surface
functionality followed by the absorption or penetration of water into the cellulose film.
When the hydrophobic agent coating time was extended from 2 min to 30 min, there was
no appreciable increase in the contact angle value (contact angle value of 120◦ for the
cellulose sample coated with TOS). However, as shown in Figure 2 the water resistance
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property of the cellulose increased and CA value reached to111◦ (7.5% from the initial CA
value) and 101◦ (16% loss from the initial CA value) after 5 min and 15 min, respectively.
This may be due to the increase in the interaction between TOS and cellulose while the
surface treatment time was extended from 2 min to 30 min and the amount of TOS in the
cellulose increased. Contact angle values did not improve appreciably when E2CA was
employed as the hydrophobic agent (82◦). When the coating time was extended from 2 min
to 30 min, the contact angle value further increased to 94◦. The water resistance property
of the E2CA-coated samples exhibited a similar trend to that of the TOS-coated samples.
Noticeably, the contact angle value is close to the value (64◦) of the uncoated cellulose
when ODPA was used as the hydrophobic agent. This is could be due to the less reactivity
and poor addition of ODPA with cellulose.

On the other hand, as shown in Figure 2, the highest contact angle values 134◦

(TOS), 107◦ (E2CA) and 115◦ (ODPA) were observed for cellulose–CaSiO3 composites.
This indicates that CaSiO3 may absorb more hydrophobic agents and make strong bonds
during the coating process, which explains the higher contact angle value than in the
absence of CaSiO3 [55,56]. Besides, there was no appreciable improvement in the contact
angle value while extending the hydrophobic agent coating time from 2 min to 30 min.
The water resistance properties of TOS- and E2CA-coated cellulose–CaSiO3 composites
exhibited a similar trend as that observed in the absence of CaSiO3. On the contrary, we
were unable to analyse the water resistance property of the ODPA-coated samples. As
mentioned earlier, this may be due to ODPA having less reactivity and poor coordination
with the cellulose–CaSiO3 composite in the presence of water.

The conductive ink printing studies have been carried out on uncoated and coated
cellulose-laponite composite and reported in the literature [54]. Therefore, we did not
repeat the same experiment with the prepared cellulose–CaSiO3 composite.

3.3.4. Surface Morphology Analysis of Uncoated and Coated Cellulose–CaSiO3
Composites by SEM

To evaluate the effect of hydrophobizing agents on the surface of the cellulose compos-
ites, SEM was used to analyse the surface morphology (Figure 3). The surface morphology
is more distinguishable due to the nature of hydrophobic agents used in the hydrophobic
process (Figure 3a–h). Figure 3a,b reveal that the uncoated cellulose–CaSiO3 composites
have a slightly different surface nature than coated samples (Figure 3c–h). After coating,
the distribution profile of the TOS treated sample (Figure 3c,d) is much higher than the
E2CA- (Figure 3e,f) and ODPA-treated samples (Figure 3g,h). This is could be because
the interaction between the cellulose–CaSiO3 composite and the hydrophobic agent is
more favourable in presence of TOS. This directly correlates with the higher water contact
angle values and higher water resistance properties of cellulose–CaSiO3 composites coated
with TOS.

3.3.5. Thermal Stability Studies of Uncoated and Coated Cellulose–CaSiO3 Composites

Thermogravimetry analysis (TGA) under inert gas was used to detect mass changes
upon heating; evolved carbon dioxide and water vapour were analysed at the same time
using mass spectrometry, because those are the main gases that evolve during the pyrolysis
of cellulose. The results are presented in Figure 4. As evidenced by the initial peak around
100 ◦C in Figure 4d, all samples release water vapour between 80 ◦C and 120 ◦C, most
likely due to material porosity, resulting in minor weight losses of less than 4 wt%. At
higher temperatures, the material stability is different for bare cellulose and TOS-coated
cellulose. Cellulose without TOS coating remains fairly stable up to 240 ◦C when it starts
decomposing, with the maximum degradation rate at 305 ◦C, as can be seen from the
differential weight changes (Figure 4b). By 320 ◦C, the decomposition has slowed down
and at 400 ◦C a char residue of 33.1 wt% is obtained (Figure 4a). This temperature range
corresponds to those in the CO2 and H2O profiles (in Figure 4c,d respectively): both gases
start to be detected between 220 ◦C and 230 ◦C with a maximum reached at 305 ◦C. These
temperatures are significantly lower than those previously observed with the same type
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of instrumentation [57,58], but this can be explained by our much slower heating rate of
5 ◦C/min compared to 50 ◦C/min in the reported study: any thermal event will then shift
towards lower temperatures. Cellulose without TOS coating but containing 10 wt% CaSiO3
shows a very similar decomposition profile, with the same temperature range. The only
difference is the char residue at 400 ◦C of 39.5 wt% (Figure 4a). Knowing that there was
an amount of 10 wt% of CaSiO3 in the starting material, it seems that this compound has
mostly not decomposed by 400 ◦C.
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On the other hand, TOS-coated cellulose starts decomposing as early as 120 ◦C and
continuously loses weight until 400 ◦C. This shows a two-step profile at 140 ◦C and 237 ◦C
according to the differential weight change in (Figure 4b). By looking at the water profile
(Figure 4d), H2O is clearly evolved from 120 ◦C with a first maximum at 150 ◦C and a
second maximum at 230 ◦C. Accordingly, CO2 is released at 130 ◦C with two maximum
temperatures of 175 ◦C and 240 ◦C (Figure 4c). Evolving gas profiles are in line with the
weight profile, indicating that decomposition occurs significantly sooner in this material
than in cellulose with no coating. A char residue of 51% was found at 400 ◦C (Figure 4a).
TOS-coated cellulose containing CaSiO3 shows a very similar thermal profile (Figure 4a)
with a two-step decomposition starting at 120 ◦C. The maximum decomposition rates
are reached at 146 ◦C and 211 ◦C (Figure 4b). Water vapour and carbon dioxide evolve
from 120 ◦C and 150 ◦C, respectively, and show a two-step profile with comparable peak
temperatures to the thermal profile (Figure 4c,d). At the final temperature, a residue of
51.2% was left (Figure 4a).

Generally, the weight loss profile is in line with the evolving gases profile, which leads
to the conclusion that the cellulose materials experience pyrolysis even at low temperatures
for the TOS-coated samples. The addition of the CaSiO3 filler appears to have no effect on
cellulose thermal degradation. On the contrary, the surface treatment with TOS shifts the
decomposition range towards low temperatures, with a start temperature of 120 ◦C instead
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of 240 ◦C. Chemically TOS is not likely to generate carbon dioxide at these temperatures;
however, it could enhance the reduction of the degree of polymerisation, leading to an
earlier degradation of cellulose.

3.3.6. Mechanical Property Studies of Uncoated and Coated Cellulose–CaSiO3 Composites

A stress–strain diagram is used to describe the deformation of a sample subjected
to increasing stress. The stress–strain curves of cellulose with no filler and cellulose with
10 wt% CaSiO3 filler are presented in Figure 5a. After a short initial linear range—or
Hooke’s region— the stress is no longer proportional to the strain and the slope of the
curve decreases. This plastic deformation begins when the strain exceeds 0.15%, which
corresponds to a load of 1 N. This low elastic limit is symptomatic of a glassy material
film [59,60]. In the initial linear region, the material behaves purely elastically and there is
no permanent deformation after removal of the stress. In the following mechanical studies,
the sample use was limited to reversible deformation only, with a strain amplitude of 0.1%
(DMA) and a stress amplitude of 1 N (creep test). To complete this descriptive study, the
creep behaviour of the films was investigated. It consisted of applying a constant load
then releasing it, and measuring the induced length variation. This was repeated 200 times,
the first and last cycles were compared to determine the possible fatigue of the material.
Figure 5b shows the creep curves of a cellulose film and a cellulose film with CaSiO3 filler.
They both show a purely elastic behaviour and no delay between the application of the
load and reaching the maximum elongation. This was the case in the process of releasing
the load as well. The materials behaved purely elastically even after 200 cycles with no
change in the shape of the creep curves.
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Figure 5. Static mechanical analyses of a cellulose film (black) and cellulose–CaSiO3 composite
(grey). (a): stress-strain curves at 25 ◦C. (b): Creep cycles showing the relative elongation of the films
in the first two cycles on the left (dashed) and in the last two ones on the right (solid).

The evolution in temperature of the elastic modulus and its components was then
studied. The complex modulus, measured by DMA, represents the degree of stiffness of
the material. In Figure 6, the two components of the complex modulus are plotted versus
temperature for cellulose and cellulose with 10 wt% CaSiO3. A storage modulus of 5 GPa
is shown from room temperature to 100 ◦C, it then decreases slightly to 2 GPa at 250 ◦C.
Regardless of the temperature range, the loss modulus exhibits a lower value of 0.2 GPa.
This difference in the order of magnitude is characteristic of glassy materials. From the
evolution of the damping factor in Figure 6, it is obvious that no particular transition of
the sample material occurs in this temperature range [59,61]. As the elastic modulus is
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reduced by only a factor of 2 up to 250 ◦C, it is reasonable to state that the temperature has
no detrimental effect on stiffness.
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Figure 6. Temperature scan of films made of cellulose only (black) and cellulose with 10 wt% CaSiO3

(grey). The storage modulus (solid), the loss modulus (dashed) and the damping factor (dotted) are
plotted versus temperature.

Cellulose films behave as a pure elastic material in the low strain region (below
0.15%) where they have a glassy state from room temperature up to 250 ◦C. No fatigue
behaviour could be observed upon the application of stress. These experiments were useful
to qualitatively describe the cellulose films but they are not adapted to a comparison of
composition. Instead, the value of the elastic modulus at a given temperature was used as
a mechanical descriptor. This was then compared amongst the four cellulose compositions.
The elastic modulus of the films was measured by DMA in an environment controlled
chamber where the temperature was set to 30 ◦C while the relative humidity was set at
either 20% or 70% RH. These two humidity values correspond to the low-end and high-
end values of RH reported in the literature [62]. By following the damping factor, the
equilibrium with the surrounding humidity could be detected. It appears that the film
needs to absorb moisture at 70% RH for at least 30 min before the damping factor stabilises,
but it takes between 30 and 50 min to release humidity to the environment at 20% RH. The
elastic modulus was, therefore, measured after 60 min, in a steady damping state.

Modulus values at 20% and 70% RH are compared in Figure 7 for the various cellulose
materials: cellulose with no filler, cellulose with TOS surface treatment, cellulose with
10 wt% CaSiO3 composite and coated cellulose-10 wt% CaSiO3 composite with TOS surface
treatment. It shows that the film stiffness is not affected by the humidity level to the same
extent depending on the material. In cellulose with no filler, regardless of the humidity
level, there is no significant difference in the values. In contrast, the elastic modulus of
the cellulose–CaSiO3 composite coated with TOS at 70% RH is half its value at 20% RH,
indicating that moisture absorption increases its flexibility. In this material, moisture has
a plasticizer effect on cellulose [61]. However, in absolute terms, the elastic modulus of
cellulose is still over 2 GPa even at 70% RH. It can be stated that the moisture content in
the ambient atmosphere is not detrimental to the mechanical characteristics of the cellulose
films. The large sample variability prevents a clear interpretation of the changes in modulus
value. Therefore, a statistical analysis of variance (ANOVA) tool was used to determine
how much of the measurement variation can be explained by the value of a factor [63];
in this case, the effect of both the presence of a CaSiO3 and the surface treatment on the
value of the elastic modulus. ANOVA determined that the presence of CaSiO3 had no
significant effect at the 90% confidence level (p-value of 0.36 and 0.28 at 20% and 70% RH,
respectively). The surface treatment, however, was proven at 90% confidence to show a
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significant effect (p-value of 0.0036 and 0.085 at 20% and 70% RH, respectively): the effect
of surface treatment is an increase in the elastic modulus. Furthermore, no interaction
between the two factors was proven at the 90% confidence level.
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The mechanical properties of cellulose films have been studied in both static and
dynamic modes. Whatever the material composition, the films exhibit glassy behaviour
with modulus values ranging from 2 GPa to 6 GPa depending on temperature and humidity,
making them suitable for application as a flexible substrate material in electronic devices.
Interestingly the mechanical properties are not significantly affected by the presence of
CaSiO3; however, the surface treatment with TOS appears to increase the modulus value.

3.4. Biodegradability Studies of Uncoated and Coated Cellulose–CaSiO3 Composites

The obtained cellulose-based composites were subjected to enzymatic hydrolysis.
CaSiO3 and the hydrophobizing agents reduced cellulase activity by ~30 to 60% from cellu-
lose without CaSiO3 and TOS (Figure 8). Although calcium is not a cellulase inhibitor [64],
when CaSiO3 was present in the composite, cellulase activity decreased irrespective of
the presence or absence of hydrophobic agents. This could be due to the adsorption of
cellulases by CaSiO3 particles in the composites, which can prevent the interaction between
cellulases and cellulose. Furthermore, cellulase activity decreased to 53%, 69% and 57%
after the hydrophobic coating performed with TOS, E2CA and ODPA (cellulose without
CaSiO3), respectively. As previously mentioned, another possible explanation is that the
cellulases are also adsorbed into the hydrophobic substrates [65–67] and their binding to
cellulose is disrupted. This is in good agreement with our recently reported result [54].
Among the various hydrophobic agents used in this work, E2CA has less of an effect on
cellulase activities. It can be speculated that this may be due to E2CA forming a hydropho-
bic porous film on the surface of cellulose [53,68]. However, further research is required to
confirm the above biodegradability activities.
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4. Conclusions

A cellulose-filler composite was prepared using CaSiO3 as a filler by a simple disso-
lution process. EMIMAc was used as an efficient, recoverable and reusable dissolution
medium without adding any organic solvent. The addition of CaSiO3 into cellulose in-
creases the thermal and flame retardancy properties. However, the prepared material
did not meet the required flame retardancy standard and further research is required to
improve this behaviour. The hydrophilicity of the cellulose composite was reduced by
treating it with efficient hydrophobic agents using a simple dip-coating method. The pre-
pared composite was mechanically stable in the ranges of temperature and humidity from
25 ◦C to 250 ◦C and from 20% RH to 70% RH. It showed a purely elastic behaviour with a
modulus value between 2 GPa and 6 GPa. Enzyme biodegradation studies on the cellulose
composite demonstrated that the hydrophobic agent coating reduced the hydrolysis of
cellulose by cellulases. However, cellulases are not completely inactive towards cellulose
composites and can be utilised to partially biodegrade the obtained composite. There-
fore, the prepared cellulose–CaSiO3 composite materials may be suitable as biodegradable
substrate materials for the next generation of electronic devices and can pave the way for
materials for advanced biodegradable electronic products.
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