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The Chemistry Development Kit (CDK) is a freely available open-source Java library for Structural Chemo-
and Bioinformatics. Its architecture and capabilities as well as the development as an open-source project
by a team of international collaborators from academic and industrial institutions is described. The CDK
provides methods for many common tasks in molecular informatics, including 2D and 3D rendering of
chemical structures, I/O routines, SMILES parsing and generation, ring searches, isomorphism checking,
structure diagram generation, etc. Application scenarios as well as access information for interested users
and potential contributors are given.

1. INTRODUCTION

Whoever pursues the endeavor of creating a larger
software package in chemoinformatics or computational
chemistry from scratch will soon be confronted with the
Syssiphus task of implementing the standard repertoire of
chemoinformatical algorithms and components invented
during the last 20 or 30 years. The obvious workaround for
this problem are commercially available chemoinformatics
libraries that have been developed by companies such as
MDL Information Systems, Inc., Daylight Chemical Infor-
mation Systems, Inc., Advanced Chemistry Development,
and certainly many others. A scientist in an academic
environment, however, often feels obliged to openly share
his results with the scientific community. Using proprietary
components for software development makes it impossible
to do so.

Generally, scientific software is too often closed source,
leaving the user with a black box performing magical
operations. Perceived as being counterproductive for the
overall scientific progress, this trend fortunately seems to
change. Sharing of ideas and results within communities is
probably the most central paradigm in science. By publishing
his results a scientist allows his colleagues to verify and build
upon his results, thereby advancing the particular field as a
whole [If I have seen further it is by standing on the shoulders
of giants. - Isaac Newton]. One of the motivations for such
contributions, besides the pure scientific curiosity, is, of
course, the gain of social recognition and reputation among
his peers.

In recent years the ideas sketched above have been part
of the open-source revolution that took place in the world

of software development, most widely recognized through
the great success of the free Unix-like operating system
GNU/Linux, a collaborative work of many individuals and
organizations, including the Free Software Foundation lead
by Richard Stallman and the Finish computer science student
Linus Torvalds who started the project. According to several
essays on this subject, open-source software, for which, by
definition, the source code is always freely available to the
public,1 has a number of intriguing benefits.

Most importantly, if the community of users is large
enough and everyone can look at the sources and change
them, it should not take too long until a particular software
error is found and fixed. “Given enough eyeballs, all bugs
are shallow”, as Eric Raymond put it in his widely recognized
essay “The Cathedral and the Bazaar”,2 in which he analyses
the mechanisms and principles of the open source movement.

Further, other scientists can easily build on existing results.
Credit can still be given in the appropriate form, because
open-source software is by no means freeware or in the
public domain. Quite the contrary, the package as a whole
as well as each piece of source code is labeled with a clear
copyright notice, stating the name of the copyright holder
and the nature of the license. This copyright notice must not
be removed. Additional comments, however, regarding the
changes and improvements made by others can, of course,
be added. Substantial improvements to an existing piece of
code by someone other than the copyright holder will usually
lead to something like team formation, including appropriate
copyright changes. This is especially important for academic
scientists, who need to be able to point out their contributions
to a particular field.

Considering the virtues of open-source software on one
hand and the scientific tradition on the other hand, we started
the CDK project under terms of a liberal open-source
license.3 We use SourceForge,4 a Web based open-source
development platform, for coordinating the contributions
from about 10 developers from about five different countries.
A greater number of people have subscribed to the developers
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mailing list and either listen silently or contribute by making
feature requests or critical comments. SourceForge provides
all the tools which are generally considered to be indispen-
sable components for coordinating the contributions from
developers and users in larger software projects, as there are
Webspace, mailing lists, bug trackers, software versioning
systems, release managers, etc.

This article is not only to describe the CDK project in
scientific and software-technological terms but also to
promote the underlying development model. The authors
think that these principles form a paradigm for scientific
software development where scientists can truly exploit the
benefits of the Internet for a distributed collaboration that
would not have been possible in pre-Internet times.

We are explicitly not claiming to give a general overview
of chemical open source software. This will form an article
of its own. However, we will give a synopsis on open source
Java software in the following section instead.

The interested reader is cordially invited to visit the CDK
project pages at http://cdk.sourceforge.net, get in touch with
the developers, make use of the CDK package, and ultimately
to extend its functionality.

2. OPEN SOURCE JAVA SOFTWARE IN CHEMISTRY

A number of libraries written in Java are freely available
in binary form, but they do not include access to use and
extend the source code.5-7 Libraries for other computer
languages have been described in the literature but are, to
our knowledge, not available to the public.8

To give an overview of the open source activitities in
chemistry, we analyzed the open source projects registered
at SourceForge.4 This Website has about 40 projects regis-
tered in the field of molecular chemistry, as found with a
search on keywords such as molecule, molecular, chemistry,
and chemical. Many projects are inactive: some are only
registered but show no activity at all, and some showed
activity in the past but never released software in binary form
or source code. The number of active projects is about 25-
30.

Of these projects 14 were found that use the Java
programming language. Three of these are inactive for a long
period and do not provide downloads. Two are succeeded
by this project,9,10 and four are based on CDK.11-15 Four
projects are interesting to note: MolMaster having a BSD
license16 and including visualization of isosurfaces, jVisu-
alizer having the GPL license17 for analyzing NMR cou-
plings, CML having an Artistic License18 with tools around
the Chemical Markup Language,19 and JOELib having the
GPL license20 with an extensive file IO library based on
OpenBabel21 and a library for molecular descriptors. Note
that the first two are not really libraries but applications
instead. CMLDOM and JOELib, however, are libraries with
similar functionality for storing chemical content in memory.

3. THE ORIGIN OF THE CDK

The CDK originated as a support project for a couple of
different chemoinformatics software packages, namely a
structure editor,11 a Web database for organic compounds
and their NMR chemical shifts,14 a program for computer
assisted structure elucidation,22 and a 3D structure viewer
and analyzer,13 which is still being ported to the CDK.

The authors of these programs generally agree on the
benefits of the programming language Java, as there are as
follows: clear object-oriented design, platform-indepen-
dency, and the fact that it has become an important standard
for client- and server-side applications on the Web. Since
most of the scientifically interesting applications in chemistry
have a computationally demanding kernel, they benefit from
a client/server architecture because the server part can then
be run on a powerful machine, while a user-friendly (Web-)
interface can be used on whatever client machine the user
chooses. These demands can be met much easier if one can
still resort to a single programming language for the
implementation and so we consider Java to be the program-
ming language of choice not only for chemoinformatics and
computational chemistry but also for scientific applications
in general.

Concerns are frequently raised with respect to the perfor-
mance of Java. However, the language structure itself,
compared for example with C++, provides no good reason
for Java having a generally lower performance than other
languages more frequently used in high performance com-
puting. Indeed, great efforts have been made to increase Java
runtime performance and so, today, given a proper imple-
mentation and using the right runtime environment, server-
side Java code does not need to be slower than C++ with
the same scope. We would like to point the reader’s attention
to a whole issue of the IBM systems journal dedicated to
the subject of high performance computing in Java.23

4. DEVELOPMENT MODEL

To participate in CDK development, the interested indi-
vidual needs to register with SourceForge (SF) to receive a
free SF account and subscribe to the developers mailing list
cdk-devel@lists.sourceforge.net. He or she then contacts one
of the project administrators, who then adds the new member
to the project’s developers list. Besides good Java program-
ming skills, a working knowledge for the Concurrent
Versions System (CVS) is needed. CVS is the most widely
used system for version management in the Open Source
community, which greatly facilitates the coordination of
multiple developers working on the same source tree.

It is quite common in computer science to write a
requirements specification before coding is started. Such a
specification describes the intended behavior of the software
(classes in this case) and can be used by developers to check
the implementation and by users to see how those classes
can be used. When the CDK was designed, such specification
was only partly made using Unified Modeling Language
(UML) diagrams.24 Currently we use Requests For Comment
(RFC) documents for proposing a new specification to which
the CDK library must conform. These RFC, which are a long
time Internet standard for decision making, are discussed on
the developers mailing list after which they are marked as
final after majority voting.

5. PROJECT CONVENTIONS

In Java, source code is organized in so-called packages,
which often (but not neccessarily) follow a naming scheme
of something like an inverted Internet address. Putting a class
such as Atom into a uniquely named package prevents class
name collisions in cases where another library, used together
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with the CDK, also contains an Atom class with different
function. Since the CDK is part of the OpenScience project,25

the CDK source tree is organized in packages under the
org.openscience.cdk root package. Frequently, a new devel-
oper is interested in adding a particular functionality to the
CDK, for example the capability for isomorphism and
automorphism checking. He discusses the implications of
his endeavor with the others CDK developers on the mailing
list. Taking into account the suggestions, caveats, etc., of
his codevelopers, he would then create a new subpackage
org.openscience.cdk.isomorphism and add his contribution
under this part of the source tree.

An important part of the CDK development effort is Unit
Testing, which is based on the idea of writing easily
repeatable tests for smallest units of the software package
in question. Whenever a programmer adds a new module
with new functionality to the CDK source tree, he is expected
to add a test to the org.openscience.cdk.tests package,
adhering to a particular naming convention. The unit testing
itself is based on the JUnit package,26 which makes it easy
to run a fully unattended test for the whole CDK package.
This has proven to be of great value for such a distributed
programming effort like the CDK. Especially if a developer
changes something within the CDK core classes, a full JUnit
test run of the CDK tests will show him within a few seconds
whether his changes broke something or not. Further, each
of these little test snippets is an instructive example on how
to use a particular CDK module.

Indispensable for a library is documentation. The CDK is
documented using the JavaDoc systemsan integral part of
the Java programming language. Using special tags, the code
is documented directly in the source code, from which
documentation can be produced automatically in various
formats, most importantly as Web pages. We are using source
code metrics to constantly measure the amount of docu-
mented source code statements, and we try to keep this
percentage as high as possible. In addition to the JavaDoc
API documentation, the user is guided by a few introductory
manuals.

It should also be mentioned that the CDK’s software
architecture has been independently chosen as subject of an
M.Sc. thesis at the Technion (Israel Institute of Technol-

ogy),27 focusing on automated methods for code inspection
and review. This is a common industrial process by which
source code is usually read manually to find errors, potential
improvements, dependencies, etc. The thesis focuses on
automizing the formal concept analysis using concept lat-
tices28 for the review of individual java classes. Concept
analysis is a mathematical classification technique, which is
used for different problems in software research. This
methodology is applied in three stages: (1) understanding
the public interface of the class for use as a black box, (2)
trying to reason about the design and possible errors in the
class based on its lattice, and (3) inspecting actual source
code. The first two stages are done without even having the
source code: the methods and fields are determined by
reverse engineering of the compiled class files. We have
already received valuable input from this related project
which will help us to resolve design flaws in our library.

6. DESCRIPTION OF THE LIBRARY’S
FUNCTIONALITY

6.1. The Core Classes.The classes contained in the root
section of the CDK’s package hierarchy are all formalized
representations of basic chemical concepts such as atoms,
bonds, molecules, etc. Figure 1 shows an UML diagram
explaining the inheritance hierarchy and the dependencies
between the fundamental classes of the CDK. The UML
diagrams shown in this article depict the relationship of only
the core classes. They are thus edited and do only show a
subset of their true interclass relationships. They show the
central role of the ChemObject class, which is the superclass
of all other classes and provides methods for storing even
complex properties for any derived CDK object.

The first and probably most obvious inheritance chain to
be mentioned in the core classes it that of Atom extending
AtomType extending Isotope extending Element. This is not
only logical from a chemical point of view but also provides
the basis for a simple mechanism for the creation of Atoms,
AtomTypes, Isotopes, and Elements based on subclasses of
a single IsotopeFactory tool class, which will be discussed
below. Placing the Atom in a long chain of inheritance
provides central access points to the different levels of

Figure 1. UML diagram, showing the inheritance hierarchy and the dependencies of the fundamental classes within the CDK.
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information. While the Element, for example, provides access
to the symbol or the atomic number, some AtomType can
further distinguish between the state of hybridization of an
Atom or some other distinction a force field might need.

A further level of abstraction is incorporated by the
AtomContainer and the ElectronContainer. The Electron-
Container forms the base for constructs such as Bonds and
Orbitals, whereas the AtomContainer is the envisioned
storage for Atoms together with their Bonds and is the
superclass for Rings, Molecules, and Substructures.

To support higher level concepts such as molecular
ensembles or reactions, the CDK core is complemented by
classes which group molecules into higher order constructs,
like SetOfMolecules, ChemSequence, ChemModel, and
ChemFile.

For clarity, the relationship of ChemObject and the
AtomContainer has been moved to an additional UML
diagram shown in Figure 2.

It shows how Molecules are contained in a SetOfMol-
ecules, which is part of a ChemModel. ChemModels are
meant to store the molecular information of the state of a
chemical systems at a given point in time. To allow for the
modeling of changes in time, we introduced the possibility
of arranging various ChemModels into a ChemSequence. The
ChemFile class is designed as the top level container, which
can contain all the concepts stored in a chemical document
among which one or more ChemSequences.

The Polymer class extends Molecule and provides con-
venient access to the Monomers it consists of. The Monomer
itself is implemented as an AtomContainer. A subclass of
Polymer is the BioPolymer used for representing protein and
DNA molecules. The Polymer design allows BioPolymers
to treat each amino acid as an AtomContainer.

6.2. 2D Structure Graphical Handling. The ability to
display and manipulate 2D drawings of chemical structures
is one of the most important features of any chemoinfor-
matics-related program. This includes the capability of
generating coordinates for those chemical structures which
have for example been generated by structure generator as
coordinateless, chemical graphs. The details for this latter
step are discussed in Section 6.4.

The Model-View-Controller paradigm (see for example
ref 29) is used in the CDK library design wherever
applicable. The classes for 2D structure graphical handling,
for example, work on top of a ChemModel whose content
they display and manipulate. A Renderer2D class produces
a 2D drawing comparable to those produced by the major
commercially available products. This view can be custom-
ized by altering the standard settings of a Renderer2DModel
object. If the pure display is to be complemented by an
option to manipulate the drawing, a Controler2D can be
added to the setup. Its settings, again, are determined by a
Controler2DModel and can be altered, for example, by using
setDrawNumbers(true) in order to display atom numbers
annotated to the structure. The Controler2D is an adapter to
the available input devices, typically mouse and keyboard,
and translates input into changes to the underlying models,
which again are reflected by changes in the view produced
by the Renderer2D. A simple resulting application is shown
in Figure 3.

6.3. 3D Structure Handling.To provide high performance
3D graphics, the Java3D API is used within the CDK. This,
however, makes CDK-based 3D applications no longer
platform independent. This dependency originates from
Java3D API relying on OpenGL or DirectX for the sake of

Figure 2. UML diagram, showing the inheritance hierarchy and the dependencies of classes group based on the AtomContainer concept.
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higher performance. SUN microsystems does only provide
the Java3D for Windows (both OpenGL and DirectX),
Solaris and SGI IRIX, whereas a Linux version is developed
by Blackdown30 and available for a variety of architectures.

In regard to loosing the platform independency the CDK
does also contain classes for 3D rendering which are not
based upon the Java3D API. Together with the separation
of the rendering classes, due to the Model-View-Controller
paradigm, this leads to the following four fundamental classes
for 3D rendering: Renderer3D, Renderer3DModel, Accel-
eratedRenderer3D, and AcceleratedRenderer3DModel, the
latter two based upon Java3D.

6.4. Structure Diagram Layout. Key fields of chemoin-
formatics, like virtual combinatorial chemistry, virtual screen-
ing, or computer-assisted structure elucidation, frequently
handle chemical structures as one-dimensional graphs. These
graphs are, for example, products of structure generators
which use graph theoretical techniques to exhaustively and
irredundantly generate all constistitutional isomers which are
in agreement with a given molecular formula. In any of these
programs, however, comes the point where, after a selection
during a virtual screening, for example, the successful
candidate structure(s) needs(s) to be presented to a chemist.
At this point, a tool is needed that generates 2D or 3D
coordinates to produce the kind of depiction a chemist is
used to. This process has been termed Structure Diagram
Generation.31 While 3D model builders such as CORINA32

are on our wishlist for the future and have not yet been
implemented, the CDK features a 2D structure diagram
generator, which has been written from scratch and which
can easily be seen as one of the finest and most useful parts
of the CDK, since most of its applications require structure
diagram generation at several stages.

6.5. Graph Invariants. This package contains a few
classes for the computation of graph invariants such as
Wiener Indices,33 Morgan’s extended connectivity (EC)
indices,34 and others.35 Morgan’s EC indices are, for example,
used for canonical labeling of compounds. This package is
likely to be one of the hot spot for future developments, since
many chemoinformatics applications, like (quantitative)
structure activity relationship ((Q)SAR) computations, do

often rely on calculating various combinations of graph
invariants of different types.

6.6. Structure Generators. This package holds some
simple structure generators which are used by the SENECA
system for computer-assisted structure elucidation.22 The
class SingleRandomStructureGenerator can be used to gener-
ate a totally random structure from the constitutional space
given by a certain molecular formula. Based on this randomly
generated structure one can then use RandomGenerator to
make small, random moves in constitution space, based on
an algorithm suggested by Faulon.36 If such a generator is
combined with a target function and simulated annealing
protocol, one can effectively search constitution space for
structures with certain desired properties, provided that these
properties can be reliably backcalculated from a given
constitutional formula.

To be able to build a structure generator for chemical
graphs based on evolutionary algorithms (like the well-known
genetic algorithm), we also included a CrossOverMachine,
which accepts two chemical graphs in the form of Atom-
Containers and produces two offsprings. Genetic Algorithms
are population based methods which produce new offsprings
for the next generation by a carefully chosen combination
of mutation and crossover procedures, applied to the current
population. The CrossOverMachine does thus complement
the mutation operation used in the RandomGenerator class.

6.7. Ring Searches.John Figueras’ fast algorithm for
finding the Smallest Set of Smallest Rings (SSSR) has been
implemented and is used for example by the structure
diagram generation package.37 Especially large condensed
ring systems, for which the process of coordinate generation
could take up to a minute due to a slow depth first ring
perception algorithm in older systems,38 can now be layed
out within fractions of a second as shown in Figure 4. Further
this package contains a class for partioning a given ring
systems into AtomContainers, one for each ring.

In other applications, like aromaticity detection, for
example, it is essential to compute the Set of All Rings
(SAR). While procedures have been published to produce
the SAR from a SSSR, it is computationally more efficient

Figure 3. Renderer2D and Controller2D cooperating in a simple,
CDK-based version of JChemPaint. JChemPaint supports interna-
tionalization, with this example showing a dutch interface.

Figure 4. A rings system parsed from a SMILES, analyzed by
Figueras’ SSSR algorithm and displayed by the MoleculeViewer
class. The process takes 300 ms on a 600 MHz Pentium with
Windows XP and JDK 1.3.1.
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to use specialized algorithms for this purpose. The CDK
contains an implementation of a fast and efficient algorithm
given by Hanser et al.39

6.8. Aromaticity Detection.There are various definitions
of aromaticity and at least as many ways of detecting
aromaticity according to these definitions. This package is
the intended container for all of them and does currently
hold an implementation of a HueckelAromaticityDetector
class. Based on the SAR detection algorithm by Hanser et
al. (see section 6.7) this class starts with the largest detected
ring, counts the number of alternating double or triple bond
electrons, and does also take into account free electron pairs
of heteroatoms. It then checks whether the ring contains
4n + 2 π-electrons, according to the well-known Hu¨ckel
rule. The ring, all its atoms, and bonds are marked as
aromatic, and the search continues with the remaining rings
of equal or smaller size, leaving out those rings that are
completely part of an already detected larger aromatic
system.

6.9. Isomorphism.Being able to determine if two chemi-
cal structures are identical or whether one structure is a
subgraph of another structure is one of the most important
capabilities of a chemoinformatics library. The Isomorphism
subpackage contains a versatile module for Maximum
Common Substructure (MCSS) Searches. Since MCSS
determination is the most general case of graph matching, it
can be used to determine structure identity and to do
subgraph matching and maximum common substructure
searches.

6.10. File Input/Output. File input and output is general-
ized in CDK. All file i/o classes implement either ChemOb-
jectReader or ChemObjectWriter. Each file format is rep-
resented by two separate classes implementing one of these
interfaces.

CDK currently supports IO classes for XYZ, MDL
molfile,40 PDB,41 and CML.42 The latter format was devel-
oped by Murray-Rust and Rzepa as the first XML based file
format for chemical content. The CDK contains both an input
and output class for this format. The CML input reader uses
an alternative to Murray-Rust’s DOM approach and is based
on SAX.43

6.11. Interaction with other Java Libraries. Besides file
i/o, CDK supports a second method to exchange data with
other programs and libraries. The interface to other libraries
makes it possible to combine methods from both libraries
giving access to a larger set of functionality. CDK provides
direct conversion of CDK classes to JOELib20 classes.
Support for CMLDOM19 is planned.

6.12. SMILES. Simplified Molecular Line Entry Speci-
fication (SMILES) provides string representations of mo-
lecular constitutions.44 Due to their compactness and relative
simplicity they are now widely used as an interchange format
for coordinateless molecular structures. Based on a specifica-
tion for unique (canonical) SMILES,45 it is also possible to
perform graph isomorphism checks. The CDK features a
generator for canonical SMILES, written to comply with the
rules published by the Daylight Inc. founders. While the
SMILES generator implements all of the published SMILES
standard including chirality, the SMILES parser in the CDK
package only complies to the (slightly extended) Super
Simplified SMILES specification46 which is sufficient to code
most organic structures.

6.13. Fingerprints. Fingerprinting is nowadays an indis-
pensable tool for judging molecular similarity, as a prefilter
for isomorphism checking and thus for structure searching
in databases. Here as well as in the case of SMILES an own
subpackage for this class of algorithms is justified because
there are various ways of computing fingerprints. By
allowing the addition of different fingerprinters instead of
just having one monolithic org.openscience.cdk.tools.Fin-
gerprinter we give the user the freedom of choosing whatever
methods yields the best performance for his case. The
Fingerprinter class in the CDK produces Daylight-type
fingerprints.47 It works by running a breadth-first search,
starting at each atom in the molecule, thereby producing
string representations of paths up to the length of six atoms.
For each of theses SMILES-like strings, hash codes are
computed, using the standard string hashing algorithm
provided by the Java language. With these hash codes, a
pseudorandom number generator with a default working
range of [0-1023] is seeded and the first random number is
retrieved. This number indicates a position in a fingerprint
bitstring of length 1024, which is then set to “1”. Based on
the entirety of all computed paths from the molecule, a
molecular fingerprint is obtained in the form of this bitstring.

6.14. Tools.The tools package contains utility classes for
all those cases that did not justify the creation of a dedicated
package. The IsotopeFactory, for example, can return pre-
configured instances of Elements and Isotopes for a given
element symbol or a given atomic mass.

The ConnectivityChecker class tests whether a given
chemical graph is connected, i.e., whether there is a bond
path between every possible pair of atoms in the graph and,
in the case of a nonconnected graph, it can return a Vector
with the disjunct pieces of the graph, stored in AtomCon-
tainer objects. Related to ConnectivityChecker is the Path-
Tools class which, for example, provides methods for finding
the shortest path between to given atoms in a molecule.

The MFAnalyser class has methods of returning the
molecular formula of a given Molecule object and for
creating an unbonded AtomContainer object from a given
molecular formula string. The HOSECodeGenerator produces
HOSE codes48 for each atom in a given AtomContainer. By
feeding these HOSE codes into the BremserOneSphere-
HOSECodePredictor class, one can predict expectation
ranges for carbon-13 NMR chemical shifts.49

7. RESULTS

The CDK is now the basis for a number of software
projects. The chemical editor JChemPaint11 which takes
advantage of the CDK and for which the CDK’s Model-
View-Controller mechanisms have been implemented is
again just a support tool for higher level applications such
as the Web database NMRShiftDB for organic compounds
and their NMR chemical shifts, or SENECA, a program for
computer assisted structure elucidation.22

While allowing the fast assembly of such large monolithic
applications such as SENECA or NMRShiftDB, the true
strength of the CDK lies in its ability to serve as a
chemoinformatician’s workbench. By just writing a few lines
of code, one can quickly test new ideas or modify existing
CDK based applications to make them suit other needs.
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The following code snippet illustrates how one can quickly
parse a list of SMILES strings into AtomContainers, produce
2D coordinates, and display the results in a MoleculeList-
Viewer.

8. CONCLUSION

We have presented details of a new open-source Java
library facilitating the implementation of software packages
in chemoinformatics. The CDK is freely available50 under
the terms of the GNU Lesser General Public License
(LGPL)3. The source code may thus be downloaded and
improved or adapted for specific needs. In contrast to the
famous GNU General Public License (GPL)51 the LGPL
allows for the use of the CDK in proprietary software
packages. While any use of the CDK for proprietary and
closed-source project is thus welcome, we also highly
appreciate feedback and any potential backflow. Companies
are using the CDK for commercial projects, such as
SafeBase, a theragenomics knowledge management system
on adverse drug reactions.52 At the IBM Germany Develop-
ment Lab in Bo¨blingen an Extreme Blue internship project
group has been started to write a CDK-based open source
2D/3D editor for chemical structures. The company IXELIS,
situated in Strasbourg, France, is working on a global
semantic information system applied to scientific knowledge
and has contributed the MCSS code, which came into
existence during their work with the CDK.

Further, our chemoinformatics software kit is the basis for
other open-source projects, like the SENECA system for
computer-assisted structure elucidation22 and NMRShiftDB,14

a free database of organic chemicals and their NMR data.
Besides its proven usability in research and production

quality scientific software, the CDK has also become a
valuable tool for teaching chemoinformatics. At least one
of our authors (C.S.) is using the software package in lectures
to demonstrate many standard chemoinformatics algorithms
on the functionality level as well as on the source code level.
Due to the inherent modularization of the object oriented
language Java, most of the classes and methods are concise
and easy to understand.

It should be mentioned that we have experienced, albeit
on a smaller scale than the large open-source projects, the
benefits and the fascination of the principles mentioned in
the Introduction. Based on this experience, this article is also
supposed to promote these ideas and to attract further

contributors for our project. The inspiring experience is that
as soon as a certain amount of material has accumulated and
a certain amount of publicity has been gained, an open-source
project becomes something like a self-runner, contributors
start adding their own subprojects, and new ideas are
integrated which would probably never have been borne in
mind if the CDK were created by a single organization and
even individual. Of course, such a development model also
has disadvantages. It is probably much more difficult to
adhere to certain quality standards, to respond to deadlines
(but on the other hand, there rarely are any in such small
projects), and to do strategic planning. It has been shown,
however, that these problems can be overcome.
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