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Walking animals demonstrate impressive self-organized locomotion and adaptation

to body property changes by skillfully manipulating their complicated and redundant

musculoskeletal systems. Adaptive interlimb coordination plays a crucial role in this

achievement. It has been identified that interlimb coordination is generated through

dynamical interactions between the neural system, musculoskeletal system, and

environment. Based on this principle, two classical interlimb coordination mechanisms

(continuous phase modulation and phase resetting) have been proposed independently.

These mechanisms use decoupled central pattern generators (CPGs) with sensory

feedback, such as ground reaction forces (GRFs), to generate robot locomotion

autonomously without predefining it (i.e., self-organized locomotion). A comparative

study was conducted on the two mechanisms under decoupled CPG-based control

implemented on a quadruped robot in simulation. Their characteristics were compared

by observing their CPG phase convergence processes at different control parameter

values. Additionally, the mechanisms were investigated when the robot faced various

unexpected situations, such as noisy feedback, leg motor damage, and carrying a load.

The comparative study reveals that the phase modulation and resetting mechanisms

demonstrate satisfactory performance when they are subjected to symmetric and

asymmetric GRF distributions, respectively. This work also suggests a strategy for the

appropriate selection of adaptive interlimb coordination mechanisms under different

conditions and for the optimal setting of their control parameter values to enhance their

control performance.

Keywords: adaptive interlimb coordination, phase resetting, phase modulation, decoupled CPGs, sensory

feedback, self-organized locomotion

1. INTRODUCTION

Walking animals demonstrate impressive self-organized locomotion and adaptation to body
property changes by skillfully manipulating their complicated and redundant musculoskeletal
systems (Taga et al., 1991; Dickinson et al., 2000; Der and Martius, 2012; Grabowska et al.,
2012). Many studies have clarified that adaptive interlimb coordination plays a crucial role in this
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achievement (Aoi et al., 2017; Mantziaris et al., 2017).
Investigations of various aspects of adaptive interlimb
coordination mechanisms have attracted significant attention in
various research fields.

To demonstrates these mechanisms, biologists have proposed
some neurological principles, such as central pattern generators
(CPGs) (Marder and Bucher, 2001), reflex chains (Grillner,
1975), and sensory feedback (Grillner, 2003; Rossignol et al.,
2006), through biological experiments. In addition, roboticists
have developed many bio-inspired neural control schemes for
legged robots to emulate animal-like self-organized locomotion
(Kimura et al., 2007; Owaki et al., 2013; Barikhan et al.,
2014; Ambe et al., 2018; Fukui et al., 2019; Miguel-Blanco
and Manoonpong, 2020). To realize self-organized locomotion
and adaptation on artificial legged systems, many adaptive
robot control schemes based on distributed abstract CPGs
incorporating ground reaction force (GRF) feedback have been
proposed (Kimura et al., 2007; Owaki et al., 2013; Barikhan et al.,
2014; Ambe et al., 2018; Fukui et al., 2019). Specifically, the GRF
feedback is exploited to modulate the phase relationships of the
CPGs under two main strategies: (continuous) phase modulation
(PM) and (discrete) phase resetting (PR).

PM typically uses continuous GRFs to modulate CPG phases
continuously (Kimura et al., 2007; Owaki et al., 2013, 2017;
Barikhan et al., 2014; Fukuhara et al., 2018; Miguel-Blanco and
Manoonpong, 2020). In contrast, the PR uses discrete GRFs to
reset the CPG phases intermittently (Tsujita et al., 2001; Aoi
and Tsuchiya, 2007; Nomura et al., 2009; Aoi et al., 2010, 2012;
Ambe et al., 2018). While both mechanisms have proved their
effectiveness in their own right and have been widely used in
various fashions, they have not been systematically analyzed and
compared to identify their characteristics in detail. For instance,
how the control parameter values of the mechanisms influence
the phase convergence process and whether the mechanisms
show different performances in different situations. It is necessary
to consider in which situations the PM (PR) works better.

From this point of view, a comparative study of the PM and
PR for self-organized locomotion was conducted. They were
used to modulate four decoupled neural SO (2)-based CPGs1

(Pasemann et al., 2003) relying on local GRF information. The
modulated CPGs, acting as an adaptive neural controller, were
implemented on a quadruped robot in simulation, as shown
in Figures 1A,B. The CPG outputs were utilized to drive the
robot joint movements such that the robot could autonomously
perform self-organized locomotion, as shown in Figure 1C. The
study focused on: (1) the parameter characteristics of the PM
and PR and (2) their adaptations to unexpected robot situations
(e.g., noisy feedback, leg motor damage, and carrying a load). The
validation of the study was quantified by three metrics including:
phase convergence time, phase deviation, and cost of transport
(COT). Consequently, this work provides suggestions on how
to choose adaptive interlimb coordination mechanisms properly
in different situations and set their control parameter values
optimally to enhance their control performance.

1Note that an SO (2)-based CPG is a special type of 2-neuron network where the

weight matrix of the network is an element in the special orthogonal group SO(2).

The rest of this article is structured as follows. Details of
the materials and methods are provided in section 2. The
experimental results are presented in section 3. A discussion
of the experimental results and the conclusions are provided
in section 4.

2. MATERIALS AND METHODS

In this section, the adaptive neural controller for studying the
PM and PR is elucidated. It is composed of four identical and
decoupled neural SO (2)-based CPGs (Pasemann et al., 2003;
Sun et al., 2018) modulated by the PM or PR. Subsequently,
a simulation environment with a quadruped robot (called
“Lilibot”) is introduced. It is an experimental platform for
assessing the PM and PR by implementing the adaptive neural
controller on the robot to generate self-organized locomotion.
In addition, certain variables and metrics for analyzing and
assessing the CPG phase convergence and self-organized
locomotion are introduced.

2.1. Adaptive Neural Controller
The adaptive neural controller integrates the four CPGs with
either PM or PR. The controller was proposed for easily
demonstrating the PM and PR in an integrative manner. The
PM and PR have numerous forms that comply with different
CPG models and robots (Kimura et al., 2007; Owaki et al., 2013;
Barikhan et al., 2014; Sun et al., 2020). To compare the PM and
PR conveniently and consistently, four neural SO (2) oscillators
are used as four decoupled CPGs. The SO (2)-based CPG has a
simple neural network topology with analyzable neural dynamics
(Pasemann et al., 2003). Thus, it can easily integrate either the PM
or the PR for straightforwardly modulating or resetting the CPG’
phase. Detailed descriptions are provided in the following.

2.1.1. Decoupled Neural SO (2)-Based CPGs
Four decoupled neural SO (2)-based CPGs were used to produce
multiple periodic signals for driving the quadruped robot (see
Figure 1). Each neural SO (2)-based CPG consists of two
connected neurons, where their neural activities are later adjusted
by the PM or PR. It outputs two periodic signals that are
transferred by a motor preprocessing unit to drive the hip 2 and
knee joints of a leg. As a result, the leg’s foot can trace a proper
ellipse-like trajectory with swing forward and stance backward.
The foot movement status detected by the GRF is transferred
to the PM or PR through a sensory preprocessing unit. Based
on the GRF feedback, the PM or PR generates modulation
signals to its corresponding CPG. In the single closed-loop
CPG-based control, the outputs of the CPG coordinate the
two joint movements of the leg (i.e., intralimb coordination),
while the interlimb coordination among legs is realized only
by the interactions between the robot body dynamics and the
environment (i.e., physical communications) through the PM
(Owaki et al., 2013) or PR (Aoi et al., 2012) with GRF feedback of
each leg. This is because the four CPGs are decoupled and have no
direct neural communication between them. The four CPGs can
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FIGURE 1 | (A) Four identical and decoupled neural SO (2)-based CPGs

modulated by the PM or PR relying on the sensory feedback (i.e., GRFs). They

are used to control a quadruped robot. (B) Each CPG is composed of two

mutually connected neurons. It outputs two synchronized signals (o1,2). The

signals are linearly re-scaled as motor commands (θ1,2) for controlling the hip 2

and knee joints of a leg through the motor preprocessing unit. For simplicity,

here the hip 1 joint is kept fixed and set to a certain position. (C) The

quadruped was demonstrated under the self-organized locomotion generation

process. The process was divided into two stages: transition (Stage 1) and

formation (Stage 2).

be described using a matrix in discrete time equations as follows:

a(n+ 1) = w · o(n)+ b+ f (n) (1)

o = tanh(a), (2)

where a = (aik), o = (oik), and b = (bik) ∈ R
2×4 represent the

activations, outputs and biases of the CPG neurons, respectively.
Each column of the three matrix variables (i.e., a, o, and b)
represents the values of a CPG. Moreover, n indicates the time of
the discrete-time equations, where the update frequency is 60 Hz
in the following investigations. w ∈ R

2×2 is the synaptic weights
of a CPG (see Equation 4). f = (fik) ∈ R

2×4 represents the

modulation term of the PM or PR (see Equations 6–8). fik is the
PM or PR term projecting to the ith neuron of the kth CPG. The
projection can adjust the CPG neuron activities online, thereby
resulting in the CPG phase adaptation.

The CPG outputs (o) are used to drive the joint movements
through a linear transformation of the motor preprocessing unit
(see Figure 1). It is given by the following equation:

θ = αo+ β , (3)

where θ and β ∈ R
2×4 represent the desired joint angles and

their biases, respectively.
Based on previous work (Manoonpong et al., 2013), each

SO (2)-based CPG can generate periodic coordinated signals for
intralimb and interlimb coordination by setting its weights and
biases as follows:

w =

(

1.4 2.6
−2.6 1.4

)

, (4)

b =

(

0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01

)

. (5)

The CPGs’ parameter setup is used for the
following investigations.

2.1.2. Phase Modulation (PM) Mechanism
The fundamental principle of the PM is to modulate the CPG
phase continuously by relying on the continuous GRF signal.
Based on the model of the neural SO (2)-based CPG with sensory
feedback introduced by (Barikhan et al., 2014), amodified version
of the sensory feedback is proposed. It is formulated as the PM
modulation term in the following equations:

fik(n) =

{

−γ
Fk(n)
mg cos(oik(n)), i = 1,

−γ
Fk(n)
mg sin(oik(n)), i = 2,

(6)

where oik is the output of the ith neuron in the kth CPG, γ

is a positive constant that represents the sensory feedback gain,
and Fk is the GRF value whose range depends on the specific
robot weight. Here, mg represents the weight of the robot. It
is 2.5 kg for the robot used in the investigations. The robot
weight is introduced to normalize the sensory feedback gain for
generalization. In addition, γ is a dimensionless parameter that
is independent of the robot.

From Equation (6), one can find that the greater the Fk(n)
a leg perceives, the higher the inhibition [if fik(n) < 0] or
excitation [if fik(n) > 0] the corresponding leg’s PM makes.
More specifically, when the robot is on the ground, its four legs
support and promote the robot body together. Thus, there is an
approximately equal distribution among the GRFs of the four
legs during locomotion. This means that, when the GRF of a
stance leg decreases, the GRFs of other stance legs must increase.
Therefore, the four CPGs have different modulation strengths.
This results in phase differences among the four CPGs. Once
the CPG phase differences converge to a proper status, adaptive
interlimb coordination (i.e., self-organized locomotion) emerges
(Owaki et al., 2013; Sun et al., 2018).
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2.1.3. Phase Resetting (PR) Mechanism
The fundamental principle of the PR is to reset the CPG phase
intermittently by relying on the discrete GRF signal. For neural
SO (2)-based CPG, the PR functionality is realized by resetting
the CPG neuron activities to specific values when the GRF value
increases over a threshold. Thus, the PR modulation term can be
described as follows:

fik(n) =

{

(1− (w11o1k(n)+ w12o2k(n)+ b1k))κ , i = 1,
−(w21o1k(n)+ w22o2k(n)+ b2k)κ , i = 2,

(7)

κ =

{

1.0, Fk(n) > Ft
mg
4 , Fk(n− 1) 6 Ft

mg
4

0.0, otherwise
, (8)

where oik is the activity/output of the ith neuron in the kth
CPG, mg is the weight of the robot, and Ft is a positive value
representing GRF threshold factor that influences the timing of
the PR. Here,

mg
4 is regarded as a reference GRF value given that

the four legs share the support of the robot weight. Once the
GRF [Fk(n)] of a leg becomes more than

mg
4 , the leg is indicated

to be in the stance phase, thereby triggering the PR. Thus, to
realize proper phase resetting, Ft value can be easily set in a small
range ∼1.0. Moreover, Ft is a dimensionless parameter that is
independent of the robot.

More specifically, the condition in Equation (8) indicates that
once the GRF value of a leg increases over Ft

mg
4 , then κ of the leg

(e.g., the kth leg) is equal to 1.0. As a result,

fik(n) =

{

1− (w11o1k(n)+ w12o2k(n)+ 0.01), i = 1,
−(w21o1k(n)+ w22o2k(n)+ 0.01), i = 2,

. (9)

Replacing them into Equations (1) and (2), the kth neural SO(2)-
based CPG outputs at the next step are approximately reset to:

oik(n+ 1) = tanh(aik(n+ 1))

=

{

tanh(w11o1k(n)+ w12o2k(n)+ 0.01+ 1− (w11o1k(n)+ w12o2k(n)+ 0.01)), i = 1,
tanh(w21o1k(n)+ w22o2k(n)+ 0.01− (w21o1k(n)+ w22o2k(n)+ 0.01)), i = 2,

=

{

tanh(1), i = 1,
tanh(0), i = 2,

≈

{

0.76, i = 1,
0, i = 2,

.

(10)

The CPG outputs are reset to the approximation from its limit
cycle when a phase-resetting event occurs, followed by the CPG
outputs returning to its limit cycle (see Figure 3A). Owing to
the differences among the four GRFs, the phases of the CPGs
are reset at different moments, thereby having phase differences.
For example, when the robot wriggles with four legs supporting
it on the ground, the GRFs of the four legs are close to Ft

mg
4 .

In this case, the robot torso twisting back and forth leads to
the GRFs with different change tendencies (e.g., front leg GRFs
increase while hind leg GRFs decrease), which results in the
GRFs of the legs meeting the PR condition at different moments.
When the CPG phase differences converge to a proper status,
adaptive interlimb coordination (i.e., self-organized locomotion)
emerges (Aoi et al., 2010, 2012). More detailed information on
the locomotion generation process can be found in the following
experiments and corresponding videos.

2.2. Experimental Platform
The experimental platform for studying the PM and PR is
a quadruped robot in the simulation. The simulated robot is
based on a small-size quadruped robot with multiple sensory
feedback (Lilibot) which was developed in our previous works
(Sun et al., 2020). The simulation environment was built using
CoppeliaSim2 with physical engine Vortex3. The framework
for connecting the robot with the adaptive neural controller
(including the PM or PR) is based on the robot operation system
(ROS)4 (see Figure 2). The robot and controller are regarded
as two ROS nodes and communicate with each other through
two ROS topics. A motor topic is used to transfer commands
from the controller node to the robot node, while a sensory
topic is used to acquire GRF signals from the robot node and
then send them to the controller node. The update frequency
of the two ROS nodes is 60 Hz, the CoppeliaSim calculation
time step is 50 ms (20 Hz) during which main script of the
simulated models is executed once. The simulation runs on a
laptop (Thinkpad E470C) setup with an Intel Core i5-7200U and
8GB DDR4. The detailed information and source of the robotic
platform can be found at https://gitlab.com/neutron-nuaa/lilibot.
The launch sequence of the modules in the simulation is the
CoppeliaSim initially and the two ROS nodes after 60 steps (3
s in CoppeliaSim).

2.3. Measurement of CPG Phase
Convergence and Self-Organized
Locomotion
In this study, we focused on the autonomous phase regulation
of decoupled CPGs modulated by the PM and PR, resulting in
quadruped self-organized locomotion. Here, we consider a neural
SO(2)-based CPGwith specific dynamical properties in which the

CPG with a certain frequency exhibits a limit cycle similar to a
unit circle in phase space, as shown in Figure 3A. In other words,
the PM and PR are used to modulate the CPG phase rather than
adapting to other properties (for example, amplitudes, offsets,
and frequency). As a result, under the CPG parameter setup in
Equations (4) and (5), the phase relationship of the decoupled
CPGs converges to a certain state where the quadruped robot can
form a specific gait (i.e., trot-like gait).

To clearly analyze and assess the characteristics of the PM and
PR for the CPG phase regulation, several variables and metrics
(see Table 1) were introduced to measure their CPG phase
convergence process and resulting self-organized locomotion

2https://www.coppeliarobotics.com/
3https://www.cm-labs.com/vortex-studio/
4https://www.ros.org/
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FIGURE 2 | Experimental platform with the quadruped robot in CoppeliaSim (20 Hz) communication with the adaptive neural controller. The controller and the robot

are regarded as two ROS nodes (60 Hz) and communicate with each other through two ROS topics. A motor topic transfers commands from the motor

preprocessing unit of the controller node to the robot joints while a sensory topic acquires GRF signals from the robot and then send them to the sensory

pre-processing unit of the controller node.

(see Figure 3). The metrics were used to assess the PM and PR in
the experiments. Because the variables are the basis of the metric
definitions, the variables are here introduced in the following
subsection first. They include the phase difference and its mean
and standard deviation.

2.3.1. Variables
A phase difference between two CPGs can identify the phase
relationship of the two CPGs as well as the movement
relationship between the two limbs/legs controlled by the two
CPGs. The outputs of a CPG (e.g., ok1 and ok2) at a moment can
be illustrated as a point (Pk) in a phase diagram (see Figure 3A).
The two axes of the phase diagram represent the CPG outputs
o1,2. When the CPGs produce periodic signals (see Figure 3B),
their outputs follow their limit cycle to move. The limit cycle of
a neural SO (2)-based CPG is similar to a circle whose origin is
at the center of the coordinate. In the adaptive neural controller,
the four neural SO (2)-based CPGs are identical with the same
parameter values, so their limit cycles are the same in the phase
diagram. Therefore, a phase difference (e.g., φkl) between two
CPGs (i.e., the kth and lth CPGs) can be represented by the
angle between the two points (i.e., Pk and Pl). Its mathematical
description is as follows:

φkl = arccos(
Pk · Pl

‖Pk‖‖Pl‖
), (11)

where Pk and Pl represent the vectors of the kth and lth CPGs
in the phase diagram, respectively (Figure 3A). φkl ∈ [0,π]
represents the magnitude of their (relative) phase difference.
Based on this definition (φkl), when the adaptive neural controller
is implemented on the quadruped robot to generate self-
organized locomotion (Figure 3D), one can find the phase

differences (i.e., φ12 and φ13) change from in phase to stable
phase relationships (Figure 3B). As a result, the phase differences
among the CPGs can display their phase relationship online (see
Figure 3C). A video to show the phase difference convergences
of the four decoupled CPGs modulated by the PM and PR can be
seen in http://www.manoonpong.com/AICM/video1.mp4.

The phase differences undulate during the phase convergence
process. To monitor the undulation, the mean and standard
deviation of the phase differences are introduced. Because φkl ∈

[0,π] changes in a linear manner, it can be regarded as linear data
rather than circular data when calculating its statistical variables.
Thus, the mean and standard deviation are described as follows:

φmean
kl (n) =



























1

N

n
∑

i=n−N

φkl(i), n > N

1

n

n
∑

i=0

φkl(i), n ≤ N

, (12)

φstd
kl (n) =































1

N

√

√

√

√

n
∑

i=n−N

(φkl(i)− φmean
kl

(n))2, n > N

1

n

√

√

√

√

n
∑

i=1

(φkl(i)− φmean
kl

(n))2, n ≤ N

, (13)

φstd(n) =

4
∑

l=2

φstd
1l (n), (14)

where φmean
kl

(n) and φstd
kl
(n) are the mean and standard deviation

of the phase difference φkl at current step n, respectively. N is
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FIGURE 3 | (A) The limit cycle of the SO(2)-based CPGs that was used to investigate the autonomous phase regulation. The coordinates (0.76, 0) represent the

phase-reset point realized by the PR. A phase difference (e.g., φkl ) between two CPGs (i.e., the kth and lth CPGs) is defined as the angle between the two points (i.e.,

Pk and Pl ). (B) The first neuron outputs (o1k with k=1, 2, 3, and 4) of the four CPGs that are used to control the four legs, respectively (see Figure 1). (C) The CPG

phase differences (i.e., φ12, φ13, φ14) and their standard deviation (φstd ). φstd can indirectly reflect the phase deviation. Empirically, once the value of φstd reduces to

< 0.7 (see the red point), the CPG outputs and phase differences become more stable. The CPG phase convergence process can be divided into two stages (Stage

1 and Stage 2) determined by the point. (D) In the corresponding gait diagram, the black areas indicate stance phases while the white areas indicate swing phases.

Note that, φ12, φ13, and φ14 are the phase differences of the CPG2, CPG3, and CPG4 with respect to the CPG1, respectively. RF, RH, LF, and LH are the right front,

right hind, left front, and left hind legs, respectively.

TABLE 1 | List of the variables and defined metrics.

Variables Symbols Metrics Symbols

Phase difference φkl (n) Phase convergence time T

Mean of phase difference φmean
kl (n) phase deviation φs

Standard deviation of phase difference φstd
kl (n) Cost of transport COT

Sum of standard deviation of phase differences φstd (n)
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the number of steps in a period from the current to a previous
step. It is empirically set to 50 in the following experiments.
Here, φstd(n) is the sum of φstd

12 (n),φ
std
13 (n), and φstd

14 (n) at the nth
step. This can reflect the instantaneous/current deviation of the
phase differences in overall. The less φstd(n), the higher the phase
deviation at the nth step.

To identify whether the CPG phase relationships are so
stable that self-organized locomotion is recognized to be formed,
according to the instantaneous indication of the phase deviation
[φstd(n)], a constant φstd

t is introduced as a threshold for
distinguishing the phase convergence process. It is empirically set
to 0.7 in the following experiments.

2.3.2. Metrics
Based on the proposed variables (see Table 1), the first metric
is phase convergence time, which indicates how long the CPG
phase relationship takes to converge and the robot takes to
generate self-organized locomotion under the restrict conditions.
The state transition of the decoupled CPGs with the PM/PR from
the initial fixpoint (0, 0, 0) to the desired fixpoint (π , π , 0) is
accompanied by a process in which φstd first increases and then
decreases. Based on many experiments, we realize that if φstd first
reduces to less than a threshold (φstd

t = 0.75) from a high value,
the dynamical system will converge, and the quadruped robot
can form a trot-like gait. Thus, the phase convergence time (T)
is described as:

T =
min(ni)

H
, φstd(ni − 1) ≥ φstd

t ,φstd(ni) < φstd
t , (15)

where φstd
t is the threshold. ni is the step when φstd is reduced

to less than φstd
t in a trial, whereas min(ni) is the minimal value

of ni and represents the step when φstd first reduces to less than
the threshold. H is the update frequency of the control node
(i.e., 60Hz).

The second metric is phase deviation, which estimates the
deviation of the phase differences. It can reflect the extent to
which the converged CPG phase relationships are sustained
during a self-organized locomotion period. It is defined using the
reciprocal of the mean of φstd(n) as follows:

φs =
1

mean(φstd(n))
, mean(φstd(n)) 6= 0, (16)

where mean(φstd(n)) represents the mean of φstd in the period
(e.g., withM steps). The greater φs, the higher the phase deviation
of the formed self-organized locomotion over the period.

The last metric is the cost of transport (COT). It is used
to measure the energy efficiency of the formed self-organized
locomotion over a period. The COT is described as bellows:

{

COT = E
mgd

,

E =
∑12

j=1

∑M
n=1

Ij(n)Vj(n)

H ,
(17)

where E is the energy consumption when the robot with weight
mg travels with a distance d. The energy is calculated using the
robot joint motor current Ij(n) and voltageVj(n).M indicates the
number of steps over the period.H is the update frequency of the
experimental system.

3. EXPERIMENTAL RESULTS

To systematically analyze and compare the characteristics of
the PM and PR for self-organized locomotion, three robot
experiments were conducted to measure the proposed metrics.
First, the phase convergence time (see Equation 15) of the
PM and PR under different parameter values was investigated.
Subsequently, the phase convergence time of the PM and PR
under different robot situations (i.e., a normal situation as a
baseline, noisy feedback, leg damage, and carrying a load) were
compared. Finally, the phase deviation (see Equation 16) and
COT (see Equation 17) under the robot situations were also
studied. More than 15 trials were conducted for each experiment
under each mechanism (i.e., the PM or PR). Each trial was
performed for more than 35 s.

At the beginning of each trial, an identical initialization
procedure was conducted to maintain all experimental trials with
the same initial conditions when the PM/PR was activated (initial
state). The initialization required 270 time steps of 13.5 s, from
the start of the simulation (n = 0) to the moment of dropping the
robot on the ground (n = n0, where n0 = 270 in the following
experiments). This initialization duration was selected to provide
sufficient time to fulfill three settings: (1) setting/initializing the
GRFs [Fk(n0)] to zero by holding the robot in the air; (2) setting
the joints of the four legs to the initial positions [θik(n0)] at the
beginning of the simulation in all trials, so that the four legs
had the same initial movement when the robot was dropped on
the ground; (3) setting the CPG weights and biases to the initial
values shown in Equations (4) and (5). The four neural SO(2)-
based CPGs had the same parameter values and performed as
the quasi-periodic attractors (see Figure 3A). As a result, the
four CPGs generated stable periodic signals [oik(n0)] in phase to
control leg movement in the initial state (see Figure 3B).

3.1. Phase Convergence Time Under
Different Parameter Values
From Equations (6) and (8), it is known that the PM and PR
parameters (i.e., sensory feedback gain γ and force threshold
factor Ft) play a key role in the CPG phase convergence.
Therefore, this experiment investigated the optimal parameter
values for fast CPG phase convergence through massive trails.
To do that, the proposed adaptive neural controller with the
PM or PR was applied to the robot. After initialization, the
robot was placed on the ground, and it started to interact
with the environment to form self-organized locomotion. The
experimental results are depicted in Figures 4, 5.

For the PM, a sequence of the sensory feedback gains from
0.0 to 1.0 was tested. The range of the gain (i.e., 0.04, 0.12, 0.2,
0.28, 0.36, and 0.4) is shown in Figure 4. The other parameter
values are not shown because they cannot enable the CPG
phase differences to converge in all 15 trials. In the figure, the
phase convergence time and success rate within 15 trials were
recorded. Obviously, when the gain is in the range of [0.12, 0.36],
the success rate is 100%. This means that the PM with these
parameter values enables the robot to generate self-organized gait
robustly in all 15 trials. One can also find that the best value of the
gain is 0.36, by which the average phase convergence time is∼6 s.
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FIGURE 4 | The phase convergence time and success rate of the PM trials

with different sensory feedback gains (γ in Equation 6). The green points and

bars show the average and variance of the phase convergence time,

respectively. The blue points represent the success rate. When the gain is

0.36, the success rate is 100% and has the fastest phase convergence.

FIGURE 5 | The phase convergence time and success rate of the PR trials

with different force threshold factors (Ft in Equation 6). The green points and

bars show the average and variance of the phase convergence time,

respectively. The blue points represent the success rate. When the threshold

factor is 0.64, the success rate is 100% and has the fastest phase

convergence.

Consequently, the fastest phase convergence speed of the PM can
be realized by setting γ to 0.36. This value was used for the PM in
the following experiments.

For the PR, a sequence of the force threshold factor from
0.0 to 1.5 was tested. The range of the threshold (i.e., 0.0,
0.09, 0.27, 0.45, 0.64, 0.82, 0.91, and 1.0) is shown in Figure 5.
The other parameter values are not shown because they cannot
enable the CPG phase differences to converge in all 15 trials.
In the figure, the phase convergence time and success rate

FIGURE 6 | Four different situations that the robot experienced in the

experiments. S1 was a normal situation. In S2, the GRFs of the four legs were

added with Gaussian noise. In S3, the hip joint and knee joint of the right front

leg were fixed to imitate leg damage. In S4, the robot carried a load of 0.6 kg.

within 15 trials were recorded. Obviously, when the threshold
factor is in the range of [0.09, 0.91], the success rate is ≥40%.
Especially, when the threshold factor is 0.64, the success rate
is 100%. This means that the PR with the parameter value
enables the robot to generate self-organized gait robustly in all 15
trials. In addition, the corresponding average phase convergence
time is just approximately a second with a small derivation.
Consequently, 0.64 is the optimal parameter value of the PR for
the fastest phase convergence speed. This value was also used for
the PR in the following experiments.

A success rate of 0 and 100% implies that the robot could
not and could perform self-organized locomotion in all 15 trials.
The basis for determining whether the robot forms self-organized
locomotion (walking pattern) is that the phase differences (φ12,
φ13, φ14) among the four CPGs converge to particular states
around the desired fixpoint (π ,π , 0) or the sum of their standard
deviation (φstd) first reduces to less than a threshold (i.e., 0.7).
For example, if the robot can perform a trot-like gait, the phase
differences (φ12, φ13, φ14) should converge to approximately (π ,
π , 0) (see Supplementary Figures 1, 2).

3.2. Phase Convergence Time in Different
Situations
The sensory feedback, GRF information, plays an essential role
in the function of the PM and PR. To observe the adaptation of
the PM and PR with respect to the GRFs, the PM and PR were
examined in different robot situations, in which the robot might
perceive different GRFs. The situations are illustrated in Figure 6.
Their description can be seen in Table 2.

The abnormal situations (S2, S3, and S4) were used to
compare the functional properties of the PM and PR. The
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TABLE 2 | The description of the four different situations that the robot

experienced in the experiments.

Situations Description

S1 (normal situation) This was a normal situation. It served as a baseline for

comparison with other unexpected situations.

S2 (noisy feedback) The GRFs of four legs were added with Gaussian noise

with an amplitude of 20% of the maximum value of the

GRFs.

S3 (leg damage) The hip and knee joints of the right front leg were fixed,

so the right front leg was unable to move during the

experiments.

S4 (carrying a load) The experiment robot (Lilibot) carried a 0.6 kg load, and

the load was near its hind legs.

FIGURE 7 | Phase convergence time of the PM and PR in four different

situations. The solid and dashed lines in the boxes indicate the median and

mean values of the phase convergence time, respectively.

parameter settings of the abnormal situations were determined
empirically to distinguish them from the normal situation (S1).
In the S2 situation, Gaussian-distributed noise was empirically
determined based on a trade-off between significant noise effects
and the undisturbed phase regulation function of the PM and
PR. Consequently, we used Gaussian distributed noise with a
standard deviation of 20% of the GRFs. In the S4 situation, the
weight of the payload was selected based on a trade-off between
obviously distinct GRFs of the legs and the robot load capability.

The experiments were also performed by implementing the
adaptive neural controller with the PM or PR on the quadruped
robot but in the four situations. A video to show the robot
generating self-organized locomotion under the PM and PR
in the four situations are shown in http://www.manoonpong.
com/AICM/video2.mp4. The experimental results can be seen
in Figure 7.

For the PM, the average phase convergence time is <3 s in
all situations. The best performance is in the S3 situation with
the lowest average and variance of the phase convergence time,

while the worst is in the S2 situation with the largest variance.
Moreover, some trials in the S2 situation require more than 6 s
to realize phase convergence. Overall, the unexpected situations
(i.e., S2, S3, and S4) have faster phase convergence than that of the
normal situation (S1). This is because the unexpected situations
induced significant differentiation among the GRFs which can
speed up the phase difference convergence.

For the PR, the phase convergence time of every situation in
some trails is less than a second. Moreover, the average phase
convergence time is <2 s, except for in the S2 situation, which
exhibits the worst performance with the largest average and
variance of the phase convergence time. Some trails cost more
than 7 s to realize phase convergence in the S2 situation. This is
because the added sensory noise made the GRFs randomly cross
the force threshold so that the regular phase resetting process
was destroyed. In the worst case, the CPG phase would never
be reset.

To compare the results, the PR shows faster phase
convergence than the PM on average, except for the trials
in the S2 situation. This is because the PR rapidly reset the
CPG phases once the GRFs increased over the threshold (i.e.,
0.64) while the PM utilized the continuous GRFs with the gain
(i.e., 0.36) to adjust the CPG phases smoothly. Consequently,
the continuous phase modulation of the PM can cause slower
but stable phase convergence. The rapid but intermittent phase
resetting of the PR can cause faster phase convergence but with
random success.

3.3. Phase Deviation and COT in Different
Situations
After the CPG phase differences (φkl) converge, the robot
exhibits self-organized locomotion. It is also important to study
how the phase differences and the formed locomotion are
maintained. Therefore, this experiment exploited the deviation
of the converged phase differences and used energy efficiency to
assess the self-organized locomotion in the various situations.

The results of the phase deviation are shown in Figure 8.
For the PM, the S1 situation has the greatest average phase
deviation among the four situations. Specifically, the average
phase deviation in the S1 and S2 situations is >1.5, while it is
<1.5 in the other two situations. For the PR, the S2 situation has
a large drop in the average phase deviation compared with the
other situations. Specifically, the average phase deviation in the
S1 and S2 situations is <1.75, while it is >1.75 in the other two
situations. Comparatively, the average phase deviation of the PM
is higher than that of the PR in the S1 and S2 situations, but lower
than that of the PR in the S3 and S4 situations.

The results of the energy efficiency (measured by COT) are
shown in Figure 9. For the PM, the lowest and the highest average
COT are in the S1 and S3 situations, respectively. Specifically,
the average COT in the S1 and S2 situations is <0.9, while it is
>0.9 in the S3 and S4 situations. For the PR, the S2 situation
has the highest COT in the four situations. Comparatively, the
average COT of the PM is less than that of the PR in the S1
and S2 situations, but higher than that of the PR in the S3 and
S4 situations.
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FIGURE 8 | Phase deviation of the self-organized robot locomotion under the

PM and PR in the four situations. The solid and dashed lines in the boxes

indicate the median and mean values of the phase deviation, respectively.

FIGURE 9 | COT of the self-organized robot locomotion under the PM and PR

in the four situations. The solid and dashed lines in the boxes indicate the

median and mean values of the COT, respectively.

According to the results shown in Figures 8, 9, the statistical
analysis reveals that the PM has higher phase deviation and
energy efficiency (lower COT value) than those of the PR in the
S1 and S2 situations, while this result is reversed in the S3 and
S4 situations.

Both the PM and PR have different performances (i.e.,
phase deviation and COT) in these situations. This results
from the situations causing the robot to perceive different GRF
distributions. The statistical GRFs under the PM and PR in the
experiments are shown in Figures 10, 11, respectively.

In Figure 10, under the PM, the four legs (i.e., the RF, RH,
LF, and LH legs) show more similar GRFs values in the S1 and
S2 situations than in S3 and S4 situations. This phenomenon can

FIGURE 10 | GRF distribution of the self-organized robot locomotion under

the PM in four situations. Note that RF, RH, LF, and LH indicate the right front,

right hind, left front, and left hind legs, respectively.

FIGURE 11 | GRF distribution of the self-organized robot locomotion under

the PR in the four situations. Note that RF, RH, LF, and LH indicate the right

front, right hind, left front, and left hind legs, respectively.

also be seen in Figure 11 under the PR. The GRF distributions
of the four legs in the S1 and S2 situations are symmetric, while,
in the S3 and S4 situations, the GRFs show relative asymmetry.
Taken together, the PM shows higher phase deviation and energy
efficiency when facing a symmetric GRF distribution, while
the PR shows higher performance when facing an asymmetric
GRF distribution.

4. DISCUSSION AND CONCLUSION

The aim of this study was to comparatively analyze the
characteristics of the two classical adaptive interlimb
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coordination mechanisms, the PM (see Equation 6) and PR
(see Equation 7), for autonomous CPG phase regulation
and resulting self-organized locomotion and adaptation. The
essential functions of the PM and PR represent two different
ways to regulate the phase relationships among decoupled CPGs.
Typically, the PM uses continuous GRFs to modulate CPG
phases gradually while the PR uses discrete GRFs to reset the
CPG phases intermittently. In this study, the two mechanisms
were separately applied to the adaptive neural controller with
four decoupled SO (2)-based CPGs (see Figure 1). They were
implemented on the quadruped robot to experimentally assess
the PM’s and PR’s parameters and adaptability to unexpected
robot situations (see Figure 6). The experimental results indicate
that (1) the PM and PR parameter values significantly influence
the success rate and speed of the CPG phase convergences;
(2) overall, the PM exhibits slower but more stable phase
convergence while the PR exhibits faster but less stable phase
convergence (see Figures 4, 5); (3) the CPG phase convergence
time varies in different situations (see Figure 7); and (4) the
PM and PR perform better when the robot is subjected to
symmetrical and asymmetrical GRF distributions, respectively
(see Figures 8–11).

The decoupled CPGs with the PM/PR form a complex
dynamical system that comprises three sublevels. Its difference
equations can be seen in Equations (1), (6), and (7). (1) The
top sublevel dynamical system comprises four identical and
decoupled CPGs with the PM or PR, the state variables of which
are the CPG phase differences (i.e., φ12, φ13, and φ14). (2) The
middle sublevel dynamical system is a CPG with the PM or PR.
The PM or PR term can be regarded as external adjustments
on the CPG (basis sublevel dynamical system) when the robot
interacts with the ground. (3) The basis sublevel dynamical
system is a neural SO(2)-based CPG. Its state variables are the
CPG outputs (oik, i = 1, 2). Here, it is an oscillatory system under
the proper parameter configuration (see Equations 4 and 5). Its
dynamics is a limit cycle in the phase space (see Figure 3A). The
initial conditions of a multiple-coupling CPG system strongly
influence the convergence results (Dénes et al., 2019). In this
work, the initial condition of the top sublevel dynamical system
is the CPG coordination [o1k(n0), o2k(n0)] at the CPG limit cycle
when the robot lands on the ground (n = n0). Thus, the ensemble
of the initial conditions of the top dynamical system is the entire
CPG limit cycle. In all experiments, we considered the initial
condition of the time 270 steps (n0 = 270) where o1k(n0) ≈ 0.836
and o2k(n0) ≈ 0.067.

The convergence results (e.g., success rate) of the top
sublevel dynamical system depend on the initial condition as
well as the PM and PR parameter values [sensory feedback
gain (γ ) and GRF threshold (Ft)]. When the PM and PR
parameter values are outside their effective range (e.g., γ /∈

[0.12, 0.6] and Ft /∈ [0.09, 0.91], see Figures 4, 5), the robot
cannot achieve self-organized locomotion (success rate is 0%)
regardless of any initial condition. In this case, the top sublevel
dynamical system always stays at an initial fixpoint (0,0,0) (see
Supplementary Figures 1, 2). This is because the PM and PR
with inappropriate parameter values cannot drive the system
dynamics from the initial fixpoint to the desired fixpoint (π , π , 0)

where a gait can be formed. More specifically, for the PM, if γ <

0.12 (e.g., γ = 0, Supplementary Figure 3), the sensory feedback
strength is extremely weak tomodulate the CPG phase; if γ > 0.6
(e.g., γ = 1, Supplementary Figure 5), the sensory feedback
modulation is extremely strong, thereby significantly changing
the CPG properties (e.g., output amplitudes and offsets). For
the PR, if Ft < 0.09 (e.g., Ft = 0, Supplementary Figure 6),
the four CPG phases are reset at the same time so that
their phase differences are zero; if Ft > 0.91 (e.g., Ft =

1.5, Supplementary Figure 8), the four CPG phases never
reset because the sensory feedback cannot meet the phase-
resetting condition.

The statistical results (success rate) of the self-organized
locomotion are related to the initial condition and parameter
values. For the PM, if the parameter value (γ ) is in the
range of [0.12, 0.6], the PM-based control enables the robot to
generate self-organized locomotion with a 100% success rate.
The experimental real-time data of the case (e.g., γ = 0.36)
are shown in Supplementary Figure 4. The dynamical system
converges to the desired fixpoint (π , π , 0) in the phase space
(see Supplementary Figure 1). For the PR, if the parameter value
(Ft) is in the range of [0.09, 0.91], the PR-based control enables
the robot to generate self-organized locomotion (e.g., Ft =

0.64, Supplementary Figure 7) with some uncertainties. The
dynamical system can converge to the desired fixpoint (π ,π , 0) in
the phase space (Supplementary Figure 2). A slight difference in
the initial condition may cause distinct convergence results. For
example, when Ft is 0.45, in one trial (Supplementary Figure 9),
the robot can perform self-organized locomotion; in another
trial using the same parameter value and the same initial
procedure, the robot cannot generate self-organized locomotion
(see Supplementary Figure 10). This is because, in the success
case, the GRFs of the four legs can cross the GRF threshold
at slightly different times owing to slightly different dynamics
among the four legs at the touch moment, even when the four
legs touch the ground at the same time. This is because the GRFs
of the four legs approached the GRF threshold with a slightly
different increase rate when the robot touched the ground (see
Supplementary Figure 9). According to this, the results based on
the PR are more sensitive to the initial condition than those based
on the PM.

The cases with a 0% success rate in Figures 4, 5 result from the
inappropriate “physical coupling strength” of the CPGs. In this
work, the adaptive synchronizations/coordination among the
decoupled CPGs is realized via sensory feedback in the form of
the PM or PR, which provides physical communication/coupling
effects on the CPGs. The PM and PR parameter values (γ of the
PM and Ft of the PR) determine the “physical coupling strength.”
When the parameter values are extremely small or large, the
“physical coupling strength” also becomes extremely small or
large such that synchronization will not be achieved. As a result,
the CPG phase relationships (φ12, φ13, and φ14) of the decoupled
CPGs are not appropriate for forming a stable gait.

The PM and PR have been analyzed from various aspects in
different ways in other works (Aoi et al., 2012; Owaki et al.,
2013, 2017; Ambe et al., 2018). For instance, Owaki et al. (2013)
have summarized the spontaneous phase shift of the decoupled
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CPGs, which are regulated by local force feedback in the form
of the PM, as follows: (i) a phase delay is introduced in the
CPG of each leg owing to the physical effect of the local force
feedback; (ii) this phase delay, which is introduced when the
leg is in a stance phase, allows time for other legs to enter the
stance phase; (iii) as more legs begin to support the body, the
load on the support leg decreases; consequently, the feedback
effect on the support leg decreases, allowing it to enter the swing
phase. The mechanism reveals how the phases of the CPG are
appropriately modified by local sensory feedback, resulting in
the generation of the self-organized locomotion. Ambe et al.
(2018) analyzed the phase evolution of (no direct interaction)
ipsilateral oscillators, which are regulated by local force feedback
in the form of the phase resetting. In this case, the CPG
phases are shifted and converge to the final state when the legs
touch the ground at proper moment. This is because the force
feedback can regulate the leg retraction timings by resetting the
CPG phase.

However, in the above-mentioned studies the characteristics
of the PM and PR models’ parameters seem to receive less
attention and have not been reported in detail. In this work, the
effects of the parameters of the PM and PR on the CPG phase
convergences were systematically investigated. As a result, their
optimal normalized parameter values were found (see Figures 4,
5). This increases the practicality of the two mechanisms for
obtaining fast phase convergence in the normal situation (i.e., the
S1 situation) by reducing themanual parameter tuning. However,
the phase convergence times vary in different robot situations
(see Figure 7). This suggests that adaptive parameter values of the
PM and PR are necessary in various situations. Recently, some
studies have implemented learning techniques to obtain adaptive
sensory feedback gains of the PM mechanisms (Sun et al., 2018;
Dujany et al., 2020; Miguel-Blanco and Manoonpong, 2020).

Another important property of the PM and PR is their
adaptability to changes in body properties. It has been reported
in many works (Owaki et al., 2013, 2017; Ambe et al., 2018), in
which researchers have reproduced certain impressive animal-
like movements on legged robots, such as self-organized gaits
and autonomous gait transition in response to changes in body
properties (e.g., leg amputations and weight redistribution) and
environments. These works viewed the adaptability in terms of
adaptive walking patterns. In this work, the phase deviation
(Equation 16) and energy efficiency (i.e., COT, see Equation
17) were exploited in four elaborated robot situations (see
Figure 6).

The four situations varied the four legs’ GRF amplitudes
and exhibited two different GRF distributions: symmetrical
GRFs (in the S1 and S2 situations) and asymmetrical GRFs
(in the S3 and S4 situations). The experimental results show
that the higher phase deviation of the CPGs corresponds to the
higher energy efficiency of the self-organized locomotion. This
reflects a straightforward relationship of the control metric to
locomotion performance. The relationship maybe attributed
to the higher phase deviation with fewer unpredictable joint
movement changes, thereby saving energy cost. Moreover,
the PM and PR exhibited good performance when they were
subjected to symmetric and asymmetric GRF distributions,

respectively. This indicates that the two mechanisms should
be selected in different situations in the self-organized
robot locomotion.

Taken together, the comparative study of the PM and PR
in this work reveals not only the relationship between their
parameter values and the speed of the self-organized locomotion
generation, but also the preferred situations for high phase
deviation and energy efficiency in locomotion. Based on this
study, it suggests that the PM and PR are effective in different
situations. However, these conclusions are based on the robot
experiments with the specific neural SO(2)-based CPG setup
and the simulated quadruped robot platform. This limits the
generality of the conclusions in general CPG and legged robots.
In addition, the definition of the phase convergence time depends
on empirically tuned parameters (i.e., φstd

t in Equation 15
and N in Equation 12), which were determined by observing
the experiments implemented in our specific robotic platform.
As a result, the statistical results of the phase convergence
time, phase deviation (Figures 4, 5, 7, 8) could be affected by
the experimental platform. Moreover, the metric φstd is not
monotonic and could crossover the threshold more than once,
for example, in the S2 situation where the GRFs have additional
noise (see Supplementary Figure 16). Thus, to obtain the same
experimental conclusion on other experimental platforms, the
empirical parameters should be adjusted manually according to
a specific experimental platform. Thus, in future work, we will
further theoretically investigate the two mechanisms based on
a dynamical system perspective (Sándor et al., 2015; Aguilar
et al., 2016; Martin et al., 2016; Dénes et al., 2019) to further
analyze the properties of the mechanisms (e.g., using Poincaré
map Owaki and Ishiguro, 2017) and structural stability and to
verify the experimental results on other robotic systems, such as
hexapod robots.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TS implemented the control methods, analyzed the data, and
wrote the original manuscript. XX guided the experimental
design and the research direction, as well as reviewed the
manuscript. ZD supervised the study. DO supervised the
study and reviewed the manuscript. PM fully supervised this
study (including the research idea, experimental design,
experimental data analysis) and wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

We gratefully acknowledged the financial support of NSFC-
DFG Collaborative Research Program (Grant no. 51861135306,
PM, project Co-PI), the NUAA research fund (Grant no.

Frontiers in Robotics and AI | www.frontiersin.org 12 April 2021 | Volume 8 | Article 638684

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Sun et al. Adaptive Interlimb Coordination Mechanisms

1005-YQRO7001, PM, Project PI), the National Natural Science
Foundation of China (Grant no. 51435008 to ZD), and Chinese
Government Scholarship (Grant no. CSC201906830012 to TS).
The authors would like to also thank Weijia Zong, Yan Li, and
Potiwat Ngamkajornwiwat for their comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2021.638684/full#supplementary-material

REFERENCES

Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova,

N., et al. (2016). A review on locomotion robophysics: the study of

movement at the intersection of robotics, soft matter and dynamical

systems. Rep. Prog. Phys. 79:110001. doi: 10.1088/0034-4885/79/11/

110001

Ambe, Y., Aoi, S., Nachstedt, T., Manoonpong, P., Wörgötter, F., and

Matsuno, F. (2018). Simple analytical model reveals the functional role of

embodied sensorimotor interaction in hexapod gaits. PLoS ONE 13:e0192469.

doi: 10.1371/journal.pone.0192469

Aoi, S., Egi, Y., Sugimoto, R., Yamashita, T., Fujiki, S., and Tsuchiya, K. (2012).

Functional roles of phase resetting in the gait transition of a biped robot

from quadrupedal to bipedal locomotion. IEEE Trans. Robot. 28, 1244–1259.

doi: 10.1109/TRO.2012.2205489

Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., and Wörgötter, F.

(2017). Adaptive control strategies for interlimb coordination in legged

robots: a review. Front. Neurorobot. 11:39. doi: 10.3389/fnbot.2017.

00039

Aoi, S., and Tsuchiya, K. (2007). Adaptive behavior in turning of an oscillator-

driven biped robot. Auton. Robots 23, 37–57. doi: 10.1007/s10514-007-9029-8

Aoi, S., Yamashita, T., Ichikawa, A., and Tsuchiya, K. (2010). “Hysteresis in

gait transition induced by changing waist joint stiffness of a quadruped

robot driven by nonlinear oscillators with phase resetting,” in 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (Taipei: IEEE),

1915–1920. doi: 10.1109/IROS.2010.5650447

Barikhan, S. S., Wörgötter, F., and Manoonpong, P. (2014). “Multiple decoupled

cpgs with local sensory feedback for adaptive locomotion behaviors of bio-

inspired walking robots,” in International Conference on Simulation of Adaptive

Behavior (Charm: Springer), 65–75. doi: 10.1007/978-3-319-08864-8_7

Dénes, K., Sándor, B., and Néda, Z. (2019). Pattern selection in a ring

of Kuramoto oscillators. Commun. Nonlin. Sci. Numer. Simul. 78:104868.

doi: 10.1016/j.cnsns.2019.104868

Der, R., and Martius, G. (2012). The Playful Machine: Theoretical Foundation and

Practical Realization of Self-Organizing Robots, Vol. 15. Berlin: Springer Science

& Business Media.

Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M., Kram, R., and Lehman,

S. (2000). How animals move: an integrative view. Science 288, 100–106.

doi: 10.1126/science.288.5463.100

Dujany, M., Hauser, S., Mutlu, M., van der Sar, M., Arreguit, J., Kano, T.,

et al. (2020). “Emergent adaptive gait generation through Hebbian sensor-

motor maps by morphological probing,” in International Conference of

Intelligent Robots and Systems (IROS) (Las Vegas, NV: IEEE), 7866–7833.

doi: 10.1109/IROS45743.2020.9341211

Fukuhara, A., Owaki, D., Kano, T., Kobayashi, R., and Ishiguro, A. (2018).

Spontaneous gait transition to high-speed galloping by reconciliation

between body support and propulsion. Adv. Robot. 32, 794–808.

doi: 10.1080/01691864.2018.1501277

Fukui, T., Fujisawa, H., Otaka, K., and Fukuoka, Y. (2019). Autonomous gait

transition and galloping over unperceived obstacles of a quadruped robot

with CPG modulated by vestibular feedback. Robot. Auton. Syst. 111, 1–19.

doi: 10.1016/j.robot.2018.10.002

Grabowska, M., Godlewska, E., Schmidt, J., and Daun-Gruhn, S. (2012).

Quadrupedal gaits in hexapod animals—inter-leg coordination in free-walking

adult stick insects. J. Exp. Biol. 215, 4255–4266. doi: 10.1242/jeb.073643

Grillner, S. (1975). Locomotion in vertebrates: central mechanisms and reflex

interaction. Physiol. Rev. 55, 247–304. doi: 10.1152/physrev.1975.55.2.247

Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal

networks. Nat. Rev. Neurosci. 4, 573–586. doi: 10.1038/nrn1137

Kimura, H., Fukuoka, Y., and Cohen, A. H. (2007). Adaptive dynamic walking of a

quadruped robot on natural ground based on biological concepts. Int. J. Robot.

Res. 26, 475–490. doi: 10.1177/0278364907078089

Manoonpong, P., Parlitz, U., and Wörgötter, F. (2013). Neural control

and adaptive neural forward models for insect-like, energy-efficient, and

adaptable locomotion of walking machines. Front. Neural Circuits 7:12.

doi: 10.3389/fncir.2013.00012

Mantziaris, C., Bockemühl, T., Holmes, P., Borgmann, A., Daun, S., and

Büschges, A. (2017). Intra-and intersegmental influences among central pattern

generating networks in the walking system of the stick insect. J. Neurophysiol.

118, 2296–2310. doi: 10.1152/jn.00321.2017

Marder, E., and Bucher, D. (2001). Central pattern generators and

the control of rhythmic movements. Curr. Biol. 11, 986–996.

doi: 10.1016/S0960-9822(01)00581-4

Martin, L., Sándor, B., and Gros, C. (2016). Closed-loop robots driven by short-

term synaptic plasticity: emergent explorative vs. limit-cycle locomotion. Front.

Neurorobot. 10:12. doi: 10.3389/fnbot.2016.00012

Miguel-Blanco, A., and Manoonpong, P. (2020). General distributed neural

control and sensory adaptation for self-organized locomotion and fast

adaptation to damage of walking robots. Front. Neural Circuits 14:46.

doi: 10.3389/fncir.2020.00046

Nomura, T., Kawa, K., Suzuki, Y., Nakanishi, M., and Yamasaki, T. (2009).

Dynamic stability and phase resetting during biped gait. Chaos 19:026103.

doi: 10.1063/1.3138725

Owaki, D., Goda, M., Miyazawa, S., and Ishiguro, A. (2017). A minimal model

describing hexapedal interlimb coordination: the tegotae-based approach.

Front. Neurorobot. 11:29. doi: 10.3389/fnbot.2017.00029

Owaki, D., and Ishiguro, A. (2017). A quadruped robot exhibiting spontaneous

gait transitions from walking to trotting to galloping. Sci. Rep. 7:277.

doi: 10.1038/s41598-017-00348-9

Owaki, D., Kano, T., Nagasawa, K., Tero, A., and Ishiguro, A. (2013). Simple robot

suggests physical interlimb communication is essential for quadruped walking.

J. R. Soc. Interface 10:20120669. doi: 10.1098/rsif.2012.0669

Pasemann, F., Hild, M., and Zahedi, K. (2003). “So (2)-networks as neural

oscillators,” in International Work-Conference on Artificial Neural Networks

(Berlin: Springer), 144–151. doi: 10.1007/3-540-44868-3_19

Rossignol, S., Dubuc, R., and Gossard, J.-P. (2006). Dynamic

sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154.

doi: 10.1152/physrev.00028.2005

Sándor, B., Jahn, T., Martin, L., and Gros, C. (2015). The sensorimotor loop

as a dynamical system: how regular motion primitives may emerge from

self-organized limit cycles. Front. Robot. AI 2:31. doi: 10.3389/frobt.2015.00031

Sun, T., Shao, D., Dai, Z., and Manoonpong, P. (2018). “Adaptive neural

control for self-organized locomotion and obstacle negotiation of quadruped

robots,” in 2018 27th IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN) (Nanjing: IEEE), 1081–1086.

doi: 10.1109/ROMAN.2018.8525645

Sun, T., Xiong, X., Dai, Z., andManoonpong, P. (2020). Small-sized reconfigurable

quadruped robot with multiple sensory feedback for studying adaptive and

versatile behaviors. Front. Neurorobot. 14:14. doi: 10.3389/fnbot.2020.00014

Taga, G., Yamaguchi, Y., and Shimizu, H. (1991). Self-organized control of bipedal

locomotion by neural oscillators in unpredictable environment. Biol. Cybernet.

65, 147–159. doi: 10.1007/BF00198086

Tsujita, K., Tsuchiya, K., and Onat, A. (2001). “Adaptive gait pattern control of

a quadruped locomotion robot,” in Proceedings 2001 IEEE/RSJ International

Frontiers in Robotics and AI | www.frontiersin.org 13 April 2021 | Volume 8 | Article 638684

https://www.frontiersin.org/articles/10.3389/frobt.2021.638684/full#supplementary-material
https://doi.org/10.1088/0034-4885/79/11/110001
https://doi.org/10.1371/journal.pone.0192469
https://doi.org/10.1109/TRO.2012.2205489
https://doi.org/10.3389/fnbot.2017.00039
https://doi.org/10.1007/s10514-007-9029-8
https://doi.org/10.1109/IROS.2010.5650447
https://doi.org/10.1007/978-3-319-08864-8_7
https://doi.org/10.1016/j.cnsns.2019.104868
https://doi.org/10.1126/science.288.5463.100
https://doi.org/10.1109/IROS45743.2020.9341211
https://doi.org/10.1080/01691864.2018.1501277
https://doi.org/10.1016/j.robot.2018.10.002
https://doi.org/10.1242/jeb.073643
https://doi.org/10.1152/physrev.1975.55.2.247
https://doi.org/10.1038/nrn1137
https://doi.org/10.1177/0278364907078089
https://doi.org/10.3389/fncir.2013.00012
https://doi.org/10.1152/jn.00321.2017
https://doi.org/10.1016/S0960-9822(01)00581-4
https://doi.org/10.3389/fnbot.2016.00012
https://doi.org/10.3389/fncir.2020.00046
https://doi.org/10.1063/1.3138725
https://doi.org/10.3389/fnbot.2017.00029
https://doi.org/10.1038/s41598-017-00348-9
https://doi.org/10.1098/rsif.2012.0669
https://doi.org/10.1007/3-540-44868-3_19
https://doi.org/10.1152/physrev.00028.2005
https://doi.org/10.3389/frobt.2015.00031
https://doi.org/10.1109/ROMAN.2018.8525645
https://doi.org/10.3389/fnbot.2020.00014
https://doi.org/10.1007/BF00198086
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Sun et al. Adaptive Interlimb Coordination Mechanisms

Conference on Intelligent Robots and Systems. Expanding the Societal Role of

Robotics in the NextMillennium (Cat. No. 01CH37180), Vol. 4 (Maui, HI: IEEE),

2318–2325.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Sun, Xiong, Dai, Owaki and Manoonpong. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 14 April 2021 | Volume 8 | Article 638684

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion
	1. Introduction
	2. Materials and Methods
	2.1. Adaptive Neural Controller
	2.1.1. Decoupled Neural SO (2)-Based CPGs
	2.1.2. Phase Modulation (PM) Mechanism
	2.1.3. Phase Resetting (PR) Mechanism

	2.2. Experimental Platform
	2.3. Measurement of CPG Phase Convergence and Self-Organized Locomotion
	2.3.1. Variables
	2.3.2. Metrics


	3. Experimental Results
	3.1. Phase Convergence Time Under Different Parameter Values
	3.2. Phase Convergence Time in Different Situations
	3.3. Phase Deviation and COT in Different Situations

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


